Volume 8, 2024

Table of contents

List of Reviewers

Neuroscience

USING MACHINE LEARNING FOR EARLY ALZHEIMER'S DETECTION IN COGNITIVE NEUROSCIENCE

Orrù Graziella, Piarulli Andrea, Ciro Conversano, Angelo Gemignani

DOI: 10.21175/RadProc.2024.01

Received: 2 AUG 2024, Received revised: 3 OCT 2024, Accepted: 10 OCT 2024, Published online: 2 NOV 2024

Alzheimer's disease (AD) is a leading cause of dementia, with early detection crucial for effective intervention. Machine learning (ML) has emerged as a promising tool for identifying AD-related biomarkers in neuroimaging and cognitive assessments. We reviewed literature from peer-reviewed journals and conference proceedings using PubMed, focusing on studies employing ML for early AD detection through neuroimaging and cognitive data. ML techniques show significant promise in early AD detection. Key studies demonstrate high accuracy in distinguishing between AD, mild cognitive impairment (MCI), and healthy controls. Notable, methods include MRI- based biomarkers, computer-aided diagnosis systems, and various ML algorithms. ML techniques can enhance early AD detection, leading to improved patient outcomes. Despite the promising results, this study did not conduct a systematic review, and further research is needed to address data availability and refine feature selection for better accuracy and generalizability.
  1. R. Brookmeyer, C. H. Kawas, N. Abdallah, A. Paganini-Hill, R. C. Kim, M. M. Corrada, “Impact of interventions to reduce Alzheimer's disease pathology on the prevalence of dementia in the oldest-old”, Alzheimer's & Dement., vol. 12, no. 3, pp. 225-232, 2016.
    https://doi.org/10.1016/j.jalz.2016.01.004
  2. G. Orrù, S. Sampietro, S. Catanzaro, A. Girardi, M. Najjar, V. Giantin, G Sergi, E. Manzato, G. Enzi, E.M. Inelmen, A Coin, “Serial position effect in a free recall task: differences between probable dementia of Alzheimer type (PDAT), vascular (VaD) and mixed etiology dementia (MED)”, Archives of Gerontology and Geriatrics, vol. 49, pp. 207-210, 2009.
    https://doi.org/10.1016/j.archger.2009.09.030
  3. A. Coin, M. Najjar, S. Catanzaro, G. Orru, S. Sampietro, G. Sergi, E. Manzato, E. Perissinotto, G. Rinaldi, S. Sarti, A. Imoscopi, E. Ruggiero, A. Girardi, “A retrospective pilot study on the development of cognitive, behavioral and functional disorders in a sample of patients with early dementia of Alzheimer type”, Archives of Gerontology and Geriatrics, vol. 49, pp. 35-38, 2009.
    https://doi.org/10.1212/wnl.34.7.939
  4. B. Dubois, A. Padovani, P. Scheltens, A. Rossi, G. Dell’Agnello, “Timely diagnosis for Alzheimer’s disease: a literature review on benefits and challenges”, J. Alzheimers Dis., vol. 49, no. 3, pp. 617-631, 2016.
    https://doi.org/10.3233/JAD-150692
  5. S. Vieira, W. H. Pinaya, A. Mechelli, “Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and applications”, Neurosci. Biobehav. Rev., vol. 74, pp. 58-75, 2017.
    https://doi.org/10.1016/j.neubiorev.2017.01.002
  6. D. B. Dwyer, P. Falkai, N. Koutsouleris, “Machine learning approaches for clinical psychology and psychiatry”, Annu. Rev. Clin. Psychol., vol. 14, pp. 91-118, 2018.
    https://doi.org/10.1146/annurev-clinpsy-032816- 045037
  7. R. Ferrucci, F. Mameli, F. Ruggiero, M. Reitano, M. Miccoli, A. Gemignani, C. Conversano, M. Dini, S. Zago, S. Piacentini, B. Poletti, A. Priori, G. Orrù, “Alternate fluency in Parkinson’s disease: A machine learning analysis”, PLOS ONE, vol. 17, no. 3, pp. e0265803-1-12, 2022.
    https://doi.org/10.1371/journal.pone.0265803
  8. G. Pace, G. Orrù, M. Monaro, F. Gnoato, R. Vitaliani, K. B. Boone, A. Gemignani, G. Sartori, “Malingering detection of cognitive impairment with the B test is boosted using machine learning”, Front. Psychol., vol. 10, pp. 1650-1-8, 2019.
    https://doi.org/10.3389/fpsyg.2019.01650
  9. A.B. Shatte, D.M. Hutchinson, S.J. Teague, “Machine learning in mental health: a scoping review of methods and applications”, Psychol. Med., vol. 49, no. 9, pp. 1426-1448, 2019.
    https://doi.org/10.1017/S0033291719000151
  10. A. Ferrarese, G. Sartori, G. Orrù, A. C. Frigo, F. Pelizzaro, P. Burra, M. Senzolo, “Machine learning in liver transplantation: a tool for some unsolved questions?”, Transplant Int., vol. 34, no. 3, pp. 398-411, 2021.
    https://doi.org/10.1111/tri.13818
  11. L. Nanni , M. Interlenghi, S. Brahnam, C. Salvatore, S. Papa, R. Nemni, I. Castiglioni and Alzheimer's Disease Neuroimaging Initiative, "Comparison of transfer learning and conventional machine learning applied to structural brain MRI for the early diagnosis and prognosis of Alzheimer's disease," Front. Neurol., vol. 11, p. 576194, 2020.
    https://doi.org/10.3389/fneur.2020.576194
  12. I. Bazarbekov, A. Razaque, M. Ipalakova, J. Yoo, Z. Assipova, A. Almisreb, “A review of artificial intelligence methods for Alzheimer's disease diagnosis: Insights from neuroimaging to sensor data analysis”, Biomed. Signal Process. Control, vol. 92, pp. 106023, 2024.
    https://doi.org/10.1016/j.bspc.2024.106023
  13. G. Orrù, M. Monaro, C. Conversano, A. Gemignani, G. Sartori, “Machine learning in psychometrics and psychological research”, Front. Psychol., vol. 10, pp. 2970-1-10, 2020.
    https://doi.org/10.3389/fpsyg.2019.02970
  14. E. Moradi, A. Pepe, C. Gaser, H. Huttunen, J. Tohka, and Alzheimer's Disease Neuroimaging Initiative, “Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects”, NeuroImage, vol. 104, pp. 398-412, 2015.
    https://doi.org/10.1016/j.neuroimage.2014.10.002
  15. L. Khedher, J. Ramírez, J. M. Górriz, A. Brahim, F. Segovia, and Alzheimer’s Disease Neuroimaging Initiative, “Early diagnosis of Alzheimer’s disease based on partial least squares, principal component analysis and support vector machine using segmented MRI images”, Neurocomputing, vol. 151, pp. 139-150, 2015.
    https://doi.org/10.1016/j.neucom.2014.09.072
  16. K.M.M. Uddin, M.J. Alam, M.A. Uddin, S. Aryal, “A novel approach utilizing machine learning for the early diagnosis of Alzheimer's disease”, Biomed. Mater. Devices, vol. 1, no. 2, pp. 882-898, 2023.
    https://doi.org/10.1007/s44174-023-00078-9
  17. C. Kavitha, V. Mani, S. R. Srividhya, O. I. Khalaf, C. A. Tavera Romero, “Early-stage Alzheimer's disease prediction using machine learning models”, Front. Public Health, vol. 10, p. 853294, 2022.
    https://doi.org/10.3389/fpubh.2022.853294
  18. C. Salvatore, A. Cerasa, P. Battista, M. C. Gilardi, A. Quattrone, I. Castiglioni, and Alzheimer's Disease Neuroimaging Initiative, “Magnetic resonance imaging biomarkers for the early diagnosis of Alzheimer's disease: a machine learning approach”, Front. Neurosci., vol. 9, p. 307, 2015.
    https://doi.org/10.3389/fnins.2015.00307
  19. J. Venugopalan, L. Tong, H. R. Hassanzadeh, M.D. Wang, “Multimodal deep learning models for early detection of Alzheimer’s disease stage”, Sci. Rep., vol. 11, no. 1, p. 3254, 2021.
    https://doi.org/10.1038/s41598-020-74399-w
  20. P. Chlap, et al., "A review of medical image data augmentation techniques for deep learning applications", J. Med. Imaging Radiat. Oncol, vol. 65, no. 5, pp. 545-563, 2021.
    https://doi:10.1111/1754-9485.13261
  21. R. Zebari, A. Abdulazeez, D. Zeebaree, D. Zebari, J. Saeed, “A comprehensive review of dimensionality reduction techniques for feature selection and feature extraction”, JASTT, vol. 1, no. 1, pp. 56-70, 2020.
    https://doi.org/10.38094/jastt1224
Orrù Graziella, Piarulli Andrea, Ciro Conversano, Angelo Gemignani, "Using machine learning for early Alzheimer's detection in cognitive neuroscience", RAD Conf. Proc., vol. 8, 2024, pp. 1-6; http://doi.org/10.21175/RadProc.2024.01
Radioecology

GROSS BETA-RADIOACTIVITY OF LEAVES OF THUJA PYRAMIDALIS IN CONDITIONS OF HYDROPONICS AND SOIL IN ARARAT VALLEY AND DILIJAN FOREST EXPERIMENTAL STATION

L.M. Ghalachyan, Kh.S. Mayrapetyan, A.H. Tadevosyan, A.A. Ghahramanyan, S.A. Eloyan, A.S. Yeghiazaryan, A.A. Hakobjanyan

DOI: 10.21175/RadProc.2024.02

Received: 13 SEPR 2024, Received revised: 3 NOV 2024, Accepted: 12 NOV 2024, Published online: 14 NOV 2024

Armenia is affected by the ecological disaster connected with the forest area reduction. It is a mountainous country with a dry subtropical climate and it has a nuclear power plant (NPP), located in the Ararat Valley. All these are not only the basis of the ecological disaster but also make it deeper. For its prevention, it is necessary to restore and expand green zones, and forests. The use of decorative trees and shrubs with the ability to filter the air from radionuclides (RN) is extremely important in green construction. In recent years, the decorative coniferous tree Thuja occidentalis “Pyramidalis” is one of the most demanded landscaping trees in Armenia. The characteristics of gross β-radioactivity of Thuja pyramidalis leaves were studied under outdoor hydroponic and soil cultivation conditions in the territory of the Institute of Hydroponics Problems (IHP) in the Ararat Valley (a zone with a radius of 30 km from the Armenian NPP) (ANPP) and the Dilijan Forest Experiment Station (DFES) (a zone with a radius of 90 km from the ANPP). This has a practical significance because the use of radio-ecologically favorable tree species and shrubs in green construction will have an important ecological significance. The gross β-radioactivity of the leaf samples was determined by radio-chemical methods using a small background UMF-1500 radiometer using sensor CTC-5. According to results, regardless of the growth zone, hydroponic trees exceeded soil ones in the amount of β-radiating technogenic and natural RN by 1.2-1.3 times. Leaves of the Thuja pyramidalis grown in the IHP territory exceeded those grown in DFES in gross β-radioactivity: in hydroponics - 1.6 times, in soil - 1.7 times. Thuja pyramidalis as a radio-ecologically beneficial tree species is proposed to be used for the creation of green zones. This will have important ecological significance as it will reduce the movement of RN in the biosphere.
  1. A. Mikhaylov, N. Moiseev, K. Aleshin, T. Burkhardt, “Global climate change and greenhouse effect”, Entrepreneurship and Sustainability Issues, vol. 7, no. 4, 2897, 2020.
    http://doi.org/10.9770/jesi.2020.7.4(21)
  2. Annual 2023 Global Climate Report. National Centers for Environmental Information Retrieved from: https://www.ncei.noaa.gov/access/monitoring/monthly- report/global/202313
    Retrieved on: Jan. 20, 2024
  3. 3. V. Knapp, D. Pevec, Promises and limitations of nuclear fission energy in combating climate change, Energy Policy, vol. 120, pp. 94-99, 2018.
    https://doi.org/10.1016/j.enpol.2018.05.027
  4. B.F. Myasoedov, S.N. Kalmykov, “Nuclear power industry and the environment”, Mendeleev Communications, vol. 25, no. 5, pp. 319-328, 2015.
    https://doi.org/10.1016/j.mencom.2015.09.001
  5. D. Todorovic, D. Popović, J. Ajtic, J. Nikolic, “Trace Elements and Radionuclides ( 137 Cs, 40 K, 210 Pb and 7 Be) in Urban Air Monitored by Moss and Tree Leaves”, Environmental Science and Pollution Research, vol. 20, pp. 525–532, 2013.
    http://doi.org/10.1007/s11356-012-0940-y
  6. 6. Г.Т. Бозшатаева, А.И. Касымбекова, Г.С. Оспанова, Г.К. Турабаева, М.Б. Кыдыралиева, “Использование биоиндикаторов для оценки состояния атмосферного воздуха”, Меж. ж. прикладных и фундаментальных исследований, т. 12, no. 2, стр. 302-306, 2017 (G.T. Bozshataeva, A.I. Kasymbekova, G.S. Ospanova, G.K. Turabaeva, M.B. Kydyralieva, “Use of bioindicators to assess the state of atmospheric air”, International Journal of Applied and Fundamental Research, vol. 12, no. 2, pp. 302-306, 2017.).
    Retrieved from: https://applied- research.ru/ru/article/view?id=12039
    Retrieved on: March 03, 2024
  7. О.Л. Воскресенская, А.В. Леухин, В.С. Воскресенский, А.Р. Сазонов, “Накопление и распределение радионуклидов в органах туи западной, произрастающей в условиях городской среды”, Вестник Марийского государственного университета, т. 8, cтр. 39-42, 2012 (O.L. Voskresenskaya, A.V. Leukhin, V.S. Voskresensky, A.R. Sazonov, “Accumulation and distribution of radionuclides in the organs of western thuja growing in urban environments”, Bulletin of the Mari State University, vol. 8, pp. 39-42, 2012.).
    Retrieved from: https://cyberleninka.ru/article/n/nakoplenie-i- raspredelenie-radionuklidov-v-organah-tui- zapadnoy-proizrastayuschey-v-usloviyah-gorodskoy- sredy/viewer
    Retrieved on: May 10, 2024
  8. А.Н. Переволоцкий, Е.А. Гончаров, Т.В. Переволоцкая, “К вопросу о моделировании распределения радионуклидов в лесных биогеоценозах”, Радиационная биология. Радиоэкология, том 6, cтр. 655-663, 2016 (A.N. Perevolotsky, E.A. Goncharov, T.V. Perevolotskaya, “On the issue of modeling the distribution of radionuclides in forest biogeocenoses”, Radiation biology. Radioecology, vol. 6, pp. 655-663, 2016.).
    Retrieved from: https://ecoradmod.narod.ru/rus/publication/perevolockij 16rbrehles_modeli.pdf
    Retrieved on: Feb 10, 2024
  9. P. Wang, S. Yu, H. Zou, X. Lou, H. Ren, L. Zhou, et al., “Levels, sources, variations, and human health risk assessment of 90 Sr and 137 Cs in water and food around Sanmen Nuclear Power Plant (China) from 2011 to 2020”, Front. Public Health, vol. 11, pp. 1136623-1-13, 2023.
    http://doi.org/10.3389/fpubh.2023.1136623
  10. C. Park, D. Lee, H.K. Heo, S. Ahn, “Increasing of Urban Radiation due to Climate Change and Reduction Strategy using Vegetation”, In AGU Fall Meeting Abstracts, vol. 2017, pp. PA21A-0336, 2017.
    Retrieved from: https://ui.adsabs.harvard.edu/abs/2017AGUFMPA21A03 36P/abstract
    Retrieved on: June 15, 2023
  11. I.A. Vlad, M. Vlad, I. Vlad, “Researches concerning the influence of cultivation and technology systems upon growth and development of Thuja occidentalis L. Pyramidalis and Thuja occidentalis L. Globosa cultivars”, Analele Universităţii din Oradea, Fascicula Protecţia Mediului, vol. 24, 119-130, 2015
    Retrieved from: http://protmed.uoradea.ro/facultate/publicatii/protectia_ mediului/2015A/hort/05.%20Vlad%20Ioana.pdf
    Retrieved on: July 30, 2023
  12. Ս.Ա. Կտրակյան, Երևանի կանաչ տնկարկների դենդրոֆլորայի հարստացման և գեղազարդության բարձրացման խնդիրները: Հայաստանի կենսաբանական հանդես, հատոր 72, համար 1-2, էջ 42-47, 2020 (S.A. Ktrakyan, “Tasks for enriching dendroflora and enhancing the decorativity of green stands in Yerevan”, Biological Journal of Armenia, vol. 72, no. 1-2, pp. 42-47, 2020.)
    Retrieved from: https://arar.sci.am/dlibra/publication/284232/edition/26 0887/content
    Retrieved on: Oct 25, 2023
  13. G. Tepanosyan, V. Muradyan, A. Hovsepyan, G. Pinigin, A. Medvedev, S. Asmaryan, “Studying spatial-temporal changes and relationship of land cover and surface Urban Heat Island derived through remote sensing in Yerevan”, Armenia. Building and Environment, vol. 187, pp. 107390. 2021. http://doi.org/10.1016/j.buildenv.2020.107390
  14. K. Mayrapetyan, A. Hakobjanyan, L. Ghalachyan, A. Karapetyan, A. Ghahramanyan, S. Eloyan, A. Yeghiazaryan, A. Tadevosyan, “Hydroponical growth and radionuclide accumulation specificities of Thuja occidentalis in Ararat Valley and Dilijan forest zone conditions”, RAD Conference Proceedings, vol. 6, pp. 38–42, 2022.
    http://doi.org/10.21175/RadProc.2022.07
  15. Լ. Վալեսյան, “Հայաստանի ազգային ատլաս”. Երևան, «Գեոդեզիայի և քարտեզագրության կենտրոն» ՊՈԱԿ, հատոր Ա, 2007, 230 էջ (L. Valesyan, National Atlas of Armenia. Editor, Yerevan, vol. A, 2007, 232 pages). Retrieved from: https://online.fliphtml5.com/qgxio/flkz/#p=1
    Retrieved on: Jan 12, 2022
  16. Г.Б. Бабаян, “Почвы и природные условия Дилижанкой лесной агрохимической станции (ДИЛАС),” Сообщения института Агрохимических проблем и гидропоники, том 21, стр. 21–25, 1980 (G.B. Babayan, “Soils and natural conditions of the Dilijan Forest Agrochemical Station (DILAS),” Communications of the Institute of Agrochemical Problems and Hydroponics, vol. 21, pp. 21–25, 1980).
    Retrieved from: https://arar.sci.am/dlibra/publication/282592/edition/25 9388/content
    Retrieved on: Feb. 20, 2022
  17. A. Vardanyan, L. Ghalachyan, A. Tadevosyan, V. Baghdasaryan, A. Stepanyan, M. Daryadar, “The phytochemical study of Eleutherococcus senticosus (Rupr. & Maxim) leaves in hydroponics and soil culture”, Functional Foods in Health and Disease, vol. 13, no. 11, pp. 574-583, 2023.
    https://www.doi.org/10.31989/ffhd.v13i11.1183
  18. Государственный стандарт ССС (ГОСТ 194113- 89). Государственный комитет СССП по стандартам, Москва (State Standard ССС (ГОСТ 194113-89). Gosudarstvenny committee SSSP on standards, Moscow.). Retrieved on: Feb. 25, 2024.
  19. Ф.И. Павлоцкая, “Методы определения 90Sr и других изотопов”, Физико-химические методы исследования почв, Москва, Россия: Изд-во “Наука”, 1966, 126 стр. (F. I. Pavlotskaya, “Methods of determining 90 Sr and other isotopes”, in Physiological-chemical methods of soil study, Moscow, Russia, 1966, 126 p.).
  20. L.M. Ghalachyan, A.H. Tadevosyan, “Acumulation of Artificial Radionuclides in Ecosystem of Irrigation Water-Soil-Herb in Anthropogenic Zones of Armenian NPP”, Bulletin, State Agrarian University of Armenia, vol. 4, pp. 5- 8, 2016.
    Retrieved from:
    https://library.anau.am/images/stories/grqer/Izwestiya/4 _2016/
    Retrieved on: Jan. 11, 2024
  21. O.A. Belyaeva, K.I. Pyuskyulyan, N.E. Movsisyan, L.V. Sahakyan, A.K. Saghatelyan, “Radioecological studies in Armenia: a review”, National Academy of Sciences of RA., Electronic Journal of natural sciences, Ecology, vol. 34, no.1, pp. 34-40, 2020.
    Retrieved from: https://www.globalgeochemicalbaselines.eu
    Retrieved on: June. 16, 2023
  22. Сельскохозяйственная радиоэкология, Под. ред. Р.М. Алексахина, Н.А. Корнеева. М., Экология, 400 стр., 1992 (Agricultural radioecology, Ed. by R.M. Aleksakhin, N.A. Korneev. Moscow, Ecology, 400 pp., 1992.).
  23. А.И. Щеглов, О.Б. Цветнова, “Биологический круговорот 137Cs и 40К в дубравах и агрофитоценозах на темно-серых лесных почвах Тульской области России”, Радиационная биология. Радиоэкология, том 57, no. 2, стр. 201- 209, 2017 (A.I. Shcheglov, O.B. Tsvetnova, “Biological cycle of 137Cs and 40K in oak groves and agrophytocenoses on dark gray forest soils of the Tula region of Russia”, Radiation biology. Radioecology, vol. 57, no. 2, pp. 201-209, 2017).
    https://doi.org/10.7868/S0869803117020138
  24. Y. Gu, “Analysis and Evaluation on Radioactivity of Common Building Materials”, Chemical Engineering Transactions, vol. 62, pp. 127-132, 2017.
    https://doi.org/10.3303/CET1762022
  25. M. Trautmannsheimer, P. Schramel, R. Winkler, K. Bunzl, “Chemical fractionation of some natural radionuclides in a soil contaminated by slags”, Environmental Science & Technology, vol. 32, no. 2, pp. 238-243, 1998.
    http://doi.org/10.1021/es970446o
  26. A. Hakobjanyan, A. Karapetyan, A. Ghahramanyan, A. Yeghiazaryan, A. Gasparyan, K. Mayrapetyan, Photosynthetic abilities and essential oil content of hydroponic and soil Thuja occidentalis, Bioactive Compounds in Health and Disease, vol. 7(10), pp. 550-557, 2024.
    https://doi.org/10.31989/bchd.v7i10.1457
  27. S. Jan, Z. Rashid, T.A. Ahngar, S. Iqbal, M.A. Naikoo, S. Majeed, T.A. Bhat, R. Gul, I. Nazir, “Hydroponics–A review”, International Journal of Current Microbiology and Applied Sciences, vol. 9, no. 8, 1779-1787, 2020.
    https://doi.org/10.20546/ijcmas.2020.908.206
L.M. Ghalachyan, Kh.S. Mayrapetyan, A.H. Tadevosyan, A.A. Ghahramanyan, S.A. Eloyan, A.S. Yeghiazaryan, A.A. Hakobjanyan, "Gross beta-radioactivity of leaves of thuja pyramidalis in conditions of hydroponics and soil in Ararat Valley and Dilijan forest experimental station", RAD Conf. Proc., vol. 8, 2024, pp. 7-11; https://doi.org/10.21175/RadProc.2024.02
Other topic

THEORETICAL ANALYSIS OF DELAMINATION IN A VISCOELASTIC MULTILAYERED BAR BUILT- UP AT BOTH ENDS

Victor Rizov

DOI: 10.21175/RadProc.2024.03

Received: 6 AUG 2024, Received revised: 29 SEP 2024, Accepted: 7 OCT 2024, Published online: 24 NOV 2024

This paper reports the results of a theoretical consideration of the delamination problem in a multilayered load- bearing bar of rectangular cross-section loaded in time-dependent torsion. The bar is built-up at both ends. Besides, the bar is supported by a spring and a dashpot. The bar has two portions with different thickness. There is a delamination near the border between the two portions of the bar. The viscoelastic behavior of the bar is treated by a model that is subjected to shear stresses which vary with time. The torsion moments in the bar portions are determined by analyzing the time-dependent equilibrium with taking into account the effects of the spring and dashpot supports. Then these torsion moments are used to find-out the time-dependent strain energy in the bar. The strain energy release rate (SERR) for the delamination is obtained by differentiating the time-dependent strain energy with respect to the delamination area. The time-dependent compliance of the bar is analyzed to verify the SERR. Effects of the external loading, locations of the spring and dashpot supports, bar geometry, material properties and other parameters on the SERR are evaluated and discussed. The results of the analysis are presented in forms of various graphs illustrating the change of the SERR.
  1. Y. Tokovyy , C. -C. Ma, “Three-Dimensional Temperature and Thermal Stress Analysis of an Inhomogeneous Layer”, J. Therm. Stresses, vol. 1, no. 3, pp. 790–808, 2013.
    https://doi.org/10.1080/01495739.2013.787853
  2. Y. Tokovyy, C.-C. Ma, “Axisymmetric Stresses in an Elastic Radially Inhomogeneous Cylinder Under Length-Varying Loadings”, ASME J. Appl. Mech., vol. 83, no. 11, pp. 111007, 2016.
    https://doi.org/10.1115/1.4034459
  3. L. Tokova, A. Yasinskyy, C.-C. Ma, “Effect of the layer inhomogeneity on the distribution of stresses and displacements in an elastic multilayer cylinder”, Acta Mech., vol. 228, no. 8, pp. 2865-2877, 2017.
    http://doi.org/10.1007/s00707-015-1519-8
  4. I. Dahan, U. Admon, J. Sarei, B. Yahav, M. Amar, N. Frage, M.P. Dariel, “Functionally graded Ti-TiC multilayers: the effect of a graded profile on adhesion to substrate”, Mater. Sci. Forum, vol. 308-311, no. 2, pp. 923-929, 1999.
    https://doi.org/10.4028/www.scientific.net/msf.308- 311.923
  5. N. Dolgov, “Determination of Stresses in a Two-Layer Coating”, Strength Mater., vol. 37, no. 2, pp. 422-431, 2005.
    https://doi.org/10.1007/s11223-005-0053-7
  6. J.-H. Yu, S. Guo, D.A. Gillard, “Bimaterial curvature measurements for CTE of adhesives: optimization and modelling”, J. Adhes. Sci. Technol., vol. 17, no. 2, pp. 149- 164, 2003.
    https://doi.org/10.1163/156856103762301970
  7. J.S. Kim, K.W. Paik, S.H. Oh, “The Multilayer-Modified Stoney’s Formula for Laminated Polymer Composites on a Silicon Substrate”, J. Appl. Phys., vol. 86, pp. 5474–5479, 1999.
    https://doi.org/10.1063/1.371548
  8. S-N. Nguyen, J. Lee, M. Cho, “Efficient higher-order zig- zag theory for viscoelastic laminated composite platesˮ, Int. J. Solids Struct., vol. 62, no. 2, pp. 174-185, 2015.
    http://doi.org/10.1016/j.ijsolstr.2015.02.027
  9. S.-N. Nguyen, J. Lee, J-W. Han, M. Cho, “A coupled hygrothermo-mechanical viscoelastic analysis of multilayered composite plates for long-term creep behaviorsˮ, Compos. Struct., vol. 242, 112030, 2020.
    https://doi.org/10.1016/j.compstruct.2020.112030
  10. L.B. Freund, “The stress distribution and curvature of a general compositionally graded semiconductor layer”, J. Cryst. Growth, vol. 132, no. 1-2, pp. 341-344, 1995.
    https://doi.org/10.1016/0022-0248(93)90280-A
  11. J.J. Moore, “Self-propagating high-temperature synthesis of functionally graded PVD targets with a ceramic working layer of TiB-TiN or TiSi-Tin”, J. Mater. Synth. Process., vol. 10, pp. 319-330, 2002.
    https://doi.org/10.1023/A:1023881718671
  12. I. Markov, D. Dinev, “Theoretical and experimental investigation of a beam strengthened by bonded composite strip”, Reports of International Scientific Conference VSU’2005, pp. 123-131, 2005.
  13. A. Attia, A.T. Berrabah, F. Bourada, et al., “Free Vibration Analysis of Thick Laminated Composite Shells Using Analytical and Finite Element Method”, J. Vib. Eng. Technol., 2024.
    https://doi.org/10.1007/s42417-024-01322-2
  14. F.Y. Addou, F. Bourada, A. Tounsi et al., “Effect of porosity distribution on flexural and free vibrational behaviors of laminated composite shell using a novel sinusoidal HSDT”, Archiv. Civ. Mech. Eng, vol. 24, no. 102, 2024.
    https://doi.org/10.1007/s43452-024-00894-w
  15. F. Bounouara, M. Sadoun, M.M. Selim Saleh, A. Chikh, A.A. Bousahla, A. Kaci, F. Bourada, A. Tounsi, A. Tounsi, “Effect of visco-Pasternak foundation on thermo- mechanical bending response of anisotropic thick laminated composite plates”, Steel and Composite Structures, vol. 47, pp. 693-707, 2023.
    https://doi.org/10.12989/scs.2023.47.6.693
  16. S.R. Choi, J.W. Hutchinson, A.G. Evans, “Delamination of multilayer thermal barrier coatings”, Mech. Mater., vol. 31, no. 2, pp. 431–447, 1999.
    https://doi.org/10.1016/S0167-6636(99)00016-2
  17. N.E. Dowling, “Mechanical behaviour of materialsˮ, Pearson, 2011.
  18. J.W. Hutchinson, Z. Suo, “Mixed mode cracking in layered materials”, Adv. Appl. Mech., vol. 64, pp. 804- 810, 1992.
    https://doi.org/10.1016/S0065-2156(08)70164-9
  19. multilayered functionally graded non-linear elastic circular shafts under combined loads”, Frattura ed Integrità Strutturale, vol. 46, no. 12, pp. 158–177, 2018.
    https://doi.org/10.3221/IGF-ESIS.46.16
  20. V. Rizov, H. Altenbach, “Multi-Layered Non-Linear Viscoelastic Beams Subjected to Torsion at a Constant Speed: A Delamination Analysis”, Eng. Trans., vol. 70, no. 1, pp. 53-66, 2022.
    https://doi.org/10.24423/EngTrans.1720.20220303
  21. V. Rizov, “Inhomogeneous beam structures of rectangular cross-section loaded in torsion: a delamination study with considering creep”, Procedia Struct. Integrity, vol. 41, pp. 94–102, 2022.
    https://doi.org/10.1016/j.prostr.2022.05.012
  22. V.I. Rizov, “Analysis of two lengthwise cracks in a viscoelastic inhomogeneous beamstructure”, Engineering Transactions, vol. 68, pp. 397-415, 2020.
    https://doi.org/10.24423/EngTrans.1214.20201125
  23. K.S. Chobanian, Stresses in combined elastic solids, Science, 1997.
Victor Rizov, "Theoretical analysis of delamination in a viscoelastic multilayered bar built-up at both ends", RAD Conf. Proc., vol. 8, 2024, pp. 12-15; https://doi.org/10.21175/RadProc.2024.03
Other topic

FUNCTIONALLY GRADED FRAMES UNDER SUPPORT DISPLACEMENTS: A LONGITUDINAL FRACTURE ANALYSIS WITH REFRENCE TO NON-LINEAR RELAXATION

Victor Rizov

DOI: 10.21175/RadProc.2024.04

Received: 6 AUG 2024, Received revised: 29 SEP 2024, Accepted: 3 OCT 2024, Published online: 24 NOV 2024

The current study deals with the problem of longitudinal fracture in functionally graded load-caring frame structures under support displacements in the conditions of non-linear relaxation behavior. The latter is taken in account by applying a non-linear stress-strain-time constitutive law that holds for viscoelastic engineering materials subjected to constant strains. The frame under consideration is functionally graded along its thickness (thus, the material properties vary continuously along the thickness of the frame members). The frame is statically undetermined. Therefore, the support displacements induce stresses in the frame. These stresses lead to longitudinal fracture in the frame that is analyzed theoretically. The time-dependent strain energy release rate (SERR) for a longitudinal crack in the frame is derived by considering the energy balance under non-linear relaxation. The time-dependent complementary strain energy in the frame is analyzed for verifying the solution of the SERR due to support displacements. Various graphs are plotted to illustrate the effects of different factors (magnitude of support displacements, time, etc.) on the longitudinal fracture behavior. Analyzing the combined effects of static indeterminacy, support displacements and non-linear relaxation behavior on longitudinal fracture of functionally graded frame structures is the main novelty and the added value of the current paper.
  1. E.K. Njim, M. Al-Waily, S.H. Bakhy, “A Critical Review of Recent Research of Free Vibration and Stability of Functionally Graded Materials of Sandwich Plate”, IOP Conf. Ser.: Mater. Sci. Eng. (INTCSET 2020), vol. 1094, pp. 012081-1-30, 2021.
    https://doi.org/10.1088/1757-899X/1094/1/012081
  2. I.M. El-Galy, B.I. Saleh, M.H. Ahmed, “Functionally graded materials classifications and development trends from industrial point of view”, SN Appl. Sci., vol. 1, pp. 1378-1-22, 2019.
    https://doi.org/10.1007/s42452-019-1413-4
  3. F.F. Calim, Y.C. Cuma, “Forced vibration analysis of viscoelastic helical rods with varying cross-section and functionally graded material”, Mech. Based Des. Struct. Mach., vol. 51, no. 7, pp. 3620-3631, 2023.
    https://doi.org/ 10.1080/15397734.2021.1931307
  4. T. Hirai, L. Chen, “Recent and prospective development of functionally graded materials in Japan”, Mater Sci. Forum, vol. 308-311, pp. 509-514, 1999.
    https://doi.org/10.4028/www.scientific.net/MSF.308- 311.509
  5. R.M. Mahamood, E.T. Akinlabi, Introduction to Functionally Graded Materials. In: Functionally Graded Materials. Topics in Mining, Metallurgy and Materials Engineering. Springer, Cham, 2017.
    https://doi.org/10.1007/978-3-319-53756-6_1
  6. Y. Miyamoto, W.A. Kaysser, B.H. Rabin, A. Kawasaki, R.G. Ford, Functionally Graded Materials: Design, Processing and Applications, Kluwer Academic Publishers, Dordrecht/London/Boston, 1999.
  7. M. Chitour, A. Bouhadra, F. Bourada, B. Mamen, A.A. Bousahla, A. Tounsi, A. Tounsi, M.A. Salem, K.M. Khedher, “Stability analysis of imperfect FG sandwich plates containing metallic foam cores under various boundary conditions”, Structures, vol. 61, p. 10621, 2024. https://doi.org/10.1016/j.istruc.2024.106021
  8. D.E. Lafi, A. Bouhadra, B. Mamen, A. Menasria, M. Bourada, A.A. Bousahla, F. Bourada, A. Tounsi, A. Tounsi, M. Yaylaci, “Combined influence of variable distribution models and boundary conditions on the thermodynamic behavior of FG sandwich plates lying on various elastic foundations”, Structural Engineering and Mechanics, vol. 89, no. 2, pp. 103-119, 2024.
    https://doi.org/10.12989/sem.2024.89.2.103
  9. A. Tounsi ,  A.A. Bousahla ,  S.I. Tahir ,  A.H. Mostefa ,  F. Bourada ,  M.A. Al-Osta ,  A. Tounsi , “Influences of Different Boundary Conditions and Hygro-Thermal Environment on the Free Vibration Responses of FGM Sandwich Plates Resting on Viscoelastic Foundation”, International Journal of Structural Stability and Dynamics, vol. 24, no. 11, p. 2450117,2024.
    https://doi.org/10.1142/S0219455424501177
  10. S. Shrikantha Rao, K.V. Gangadharan, “Functionally graded composite materials: an overview”, Procedia Mater. Sci., vol. 5, no. 1, pp. 1291- 1299, 2014.
    https://doi.org/10.1016/j.mspro.2014.07.442
  11. H.S. Hedia, S.M. Aldousari, A.K. Abdellatif, N.A. Fouda, “New design of cemented stem using functionally graded materials (FGM)”, Biomed. Mater. Eng., vol. 24, no. 3, pp. 1575-1588, 2014.
    http://doi: 10.3233/BME-140962
  12. S. Nikbakht , S. Kamarian , M.A. Shakeri, “A review on optimization of composite structures Part II: Functionally graded materials”, Compos. Struct., vol. 214, pp. 83-102, 2019.
    http://doi.org/10.1016/j.compstruct.2019.01.105
  13. R. Madan, K. Saha, S. Bhowmick, “ Limit speeds and stresses in power law functionally graded rotating disks”, Advances in Materials Research, vol. 9, no. 2, pp. 115-131, 2020.
    http://doi.org/10.12989/amr.2020.9.2.115
  14. E.K. Njim, S.H. Bakhy, M. Al-Waily, “Free vibration analysis of imperfect functionally graded sandwich plates: analytical and experimental investigation”, Arch. Mater. Sci. Eng., vol. 111, no 2, pp. 49-65, 2021.
    https://doi.org/10.5604/01.3001.0015.5805
  15. L. Tokova, A. Yasinskyy, C.-C. Ma, “Effect of the layer inhomogeneity on the distribution of stresses and displacements in an elastic multilayer cylinder”, Acta Mechanica, vol. 228, no. 8, pp. 2865-2877, 2017.
    https://doi.org/10.1007/s00707-015-1519-8
  16. N.E. Dowling, "Mechanical behaviour of materials", Pearson, 2011.
  17. V. Rizov, “Delamination analysis of inhomogeneous viscoelastic beam of rectangular section subjected to torsion”, Coupled Systems Mechanics, vol. 12, no. 1, pp. 69-81, 2023.
    https://doi.org/10.12989/csm.2023.12.1.069
  18. V. Rizov, H. Altenbach, “Fracture analysis of inhomogeneous arch with two longitudinal cracks under non-linear creep”, Adv. Mater. Res., vol. 12, no 1, pp. 15-29, 2023.
    https://doi.org/10.12989/amr.2023.12.1.015
  19. V. Rizov, “Effects of Periodic Loading on Longitudinal Fracture in Viscoelastic Functionally Graded Beam Structures”, J. Appl. Comput. Mech., vol. 8, no. 1, pp. 370–378,2022.
    https://doi.org/10.22055/JACM.2021.37953.3141
  20. Hr. Varbanov, A. Tepavicharov, T. Ganev, “Applied theory of elasticity and plasticity”, Sofia, 1992.
Victor Rizov, "Functionally graded frames under support displacements: a longitudinal fracture analysis with refrence to non-linear relaxation", RAD Conf. Proc., vol. 8, 2024, pp. 16-19; https://doi.org/10.21175/RadProc.2024.04
Other topic

TWIST VELOCITY INFLUENCE ON LENGTHWISE FRACTURE OF INHOMOGENEOUS BARS UNDER TORSIONAL LOADING

Victor Rizov

DOI: 10.21175/RadProc.2024.05

Received: 6 AUG 2024, Received revised: 29 SEP 2024, Accepted: 1 OCT 2024, Published online: 24 NOV 2024

This paper is concerned with studying the influence of the twist velocity on lengthwise fracture of inhomogeneous load-carrying bar subjected to torsional loading. The bar under consideration has non-linear elastic behavior. The cross-section of the bar is a circle. The bar has three portions with different radius of the cross-section. The bar is under angles of twist that are time-dependent. The material of the bar is continuously inhomogeneous in radial direction. The influence of the twist velocity is taken into account by applying a non-linear stress-strain constitutive law that includes a term with the first derivative of the shear strain with respect to time. This constitutive law is used to develop a theoretical analysis of lengthwise fracture in terms of the strain energy release rate (SERR) with considering the twist velocity. Actually, obtaining of the SERR with taking into account the twist velocity is the basic aim of this paper. The parameters of the stressed and strained state of the twisted bar that are needed for deriving the SERR are obtained by analyzing the equilibrium of the bar portions. The energy balance in the bar is investigated to verify the SERR. Numerical results are obtained and reported in form of graphs for clarifying the effect of various factors and parameters on the SERR in continuously inhomogeneous bars under time-dependent twist.
  1. F. Chen, M. Jia, Y. She, Y. Wu, Q. Shen, L. Zhang, “Mechanical behavior of AlN/Mo functionally graded materials with various compositional structures”, J Alloys Compd., vol. 816, 152512, 2020.
    https://doi.org/10.1016/j.jallcom.2019.152512
  2. M.M. Nemat-Allal, M.H. Ata, M.R. Bayoumi, W. Khair- Eldeen, “Powder metallurgical fabrication and microstructural investigations of Aluminum/Steel functionally graded material”, Materials Sciences and Applications, vol. 2, no. 12, pp. 1708-1718, 2011.
    https://doi.org/10.4236/msa.2011.212228
  3. M. Rezaiee-Pajand, M. Mokhtari, A.R. Masoodi, “Stability and free vibration analysis of tapered sandwich columns with functionally graded core and flexible connections”, CEAS Aeronaut J, vol. 9, pp. 629–648, 2018.
    https://doi.org/10.1007/s13272-018-0311-6
  4. M. Rezaiee-Pajand, A.R. Masoodi, “Stability Analysis of Frame Having FG Tapered Beam–Column”, Int J Steel Struct, vol. 19, p. 446–468, 2019.
    https://doi.org/10.1007/s13296-018-0133-8
  5. N. Radhika, J. Sasikumar, J.L. Sylesh, R. Kishore, “Dry reciprocating wear and frictional behaviour of B4C reinforced functionally graded and homogenous aluminium matrix composites”, J. Mater. Res. Technol., vol. 9, no. 2, pp. 1578-1592, 2020.
    https://doi.org/10.1016/j.jmrt.2019.11.084
  6. A.J. Markworth, K.S. Ramesh, Jr. W.P. Parks, “Review: modeling studies applied to functionally graded materials”, J. Mater. Sci., vol. 30, 2183-2193, 1995.
    https://doi.org/10.1007/BF01184560
  7. https://doi.org/10.1007/BF01184560 7. J. Toudehdehghan, W. Lim, K.E. Foo1, M.I.N. Ma’arof, J. Mathews, “A brief review of functionally graded materials”, MATEC Web of Conferences, vol. 131, pp. 03010-1-6, 2017.
    https://doi.org/10.1051/matecconf/201713103010
  8. R.A. Ahmed, R.M. Fenjan, L.B. Hamad, N.M. Faleh, “ A review of effects of partial dynamic loading on dynamic response of nonlocal functionally graded material beams”, Adv. Mater. Res., vol. 9, no. 1, pp. 33-48, 2020.
    https://doi.org/10.12989/amr.2020.9.1.033
  9. Y. Tokovyy, C.-C. Ma, “Axisymmetric Stresses in an Elastic Radially Inhomogeneous Cylinder Under Length-Varying Loadings”, ASME J. Appl. Mech., vol. 83, no. 11, pp. 111007-1-7, 2016.
    https://doi.org/10.1115/1.4034459
  10. N.E. Dowling, Mechanical behaviour of materials, Pearson, 2011.
  11. Z. Belabed, A. Tounsi, A.A. Bousahla, A. Tounsi, M. Yaylacı, “Accurate free and forced vibration behavior prediction of functionally graded sandwich beams with variable cross-section: A finite element assessment”, Mech. Based Des. Struct. Mach., vol, 52, no. 11, pp. 9144-9177, 2024.
    https://doi.org/10.1080/15397734.2024.2337914
  12. Z. Belabed, A. Tounsi, A.A. Bousahla, A. Tounsi, M. Bourada and M. A. Al-Osta, “Free vibration analysis of Bi-Directional Functionally Graded Beams using a simple and efficient finite element model”, Struct. Eng. Mech., vol. 90, no. 3, pp. 233-252, 2024.
    https://doi.org/10.12989/sem.2024.90.3.233
  13. Z. Lakhdar, S. M. Chorfi, S. A. Belalia, S.A. et al., “Free vibration and bending analysis of porous bi- directional FGM sandwich shell using a TSDT p-version finite element method”, Acta Mech, vol. 235, pp. 3657–3686, 2024.
    https://doi.org/10.1007/s00707-024-03909-y
  14. V. Rizov, “Non-linear fracture in bi-directional graded shafts in torsion,” Multidiscip. Model. Mater. Struct., vol. 15, no. 1, pp. 156-169, 2019.
    https://doi.org/10.1108/MMMS-12-2017-0163
  15. V. Rizov, “Viscoelastic inhomogeneous beam under time-dependent strains: A longitudinal crack analysis”, Advances in Computational Design, vol. 6, no. 2, pp. 153-168, 2021.
    https://doi.org/10.12989/acd.2021.6.2.153
  16. V. Rizov, “Analysis of Two Lengthwise Cracks in a Viscoelastic Inhomogeneous Beam Structure”, Eng Trans, vol. 68, no. 4, pp. 397-415, 2020.
    https://doi.org/10.24423/EngTrans.1214.20201125
  17. P. A. Lukash, Fundamentals of Non-linear Structural Mechanics, Stroiizdat, 1978.
Victor Rizov, "Twist velocity influence on lengthwise fracture of inhomogeneous bars under torsional loading", RAD Conf. Proc., vol. 8, 2024, pp. 20-23; https://doi.org/10.21175/RadProc.2024.05
Microwave, Laser, RF and UV radiations

DIELECTRIC SEALERS AS A SOURCE OF RF OVEREXPOSURE IN WORKING ENVIRONMENT

M. Israel, M. Ivanova, V. Zaryabova, Ts. Shalamanova

DOI: 10.21175/RadProc.2024.06

Received: 31 OCT 2024, Received revised: 16 JAN 2025, Accepted: 25 JAN 2025, Published online: 30 JAN 2025

Dielectric heaters/sealers are widely used in the industry for different purposes as: welding, sealing, or curing dielectric materials. They are amongst electromagnetic field (EMF) sources in the industry that may cause excessive exposure to radiofrequency (RF) fields. This is due to their high power and possible use of unshielded electrodes. The frequencies used for sealers operation are in the range 10-100 MHz (mainly 13.56, 27.12, 37.00 and 40.68 MHz). The paper presents study of the electric and magnetic fields in plastic industry in Bulgaria covering 98 dielectric sealers of different types: frequencies 27.12 MHz, 40.68 MHz, 42 MHz. Most of them emit at frequency 27.12 MHz with powers from 0.6 kW to 50 kW. The article discusses specificity of the dielectric sealers as sources of EMFs in working environment and related approaches for measurements and exposure assessment. The average values of the electric field strength measured at the working places were from 64.4 V/m to 143.3 V/m; the maximal values were in the range 130 - 170 V/m, as the highest ones were registered around the highest power sealers (50 kW). Higher values were registered in the working premises with several sealers as well. Maximal electric field strengths reached up to 10 times action levels according to Directive 2013/35/EU [1]. The measured magnetic flux densities were in the range 0.19 – 0.25 μT, exceeding the action levels according to Directive 2013/35/EU. The EMF exposure assessment corresponds to the results of the medical study of workers in plastic industry conducted in our country that has shown adverse health effects observed in 31 % of persons working with dielectric sealers.
  1. Directive 2013/35/EC of Junе 26 2013 of the European Parliament and of the Council on the minimum health and safety requirements regarding the exposure of workers to the risks arising from physical agents (electromagnetic fields). Retrieved from: https://eur- lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L: 2013:179:0001:0021:EN:PDF Retrieved on: October 28, 2024
  2. Safety in the use of radiofrequency dielectric heaters and sealers, A practical guide, Occupational safety and Health Series No. 71, 1998, Prepared by the ICNIRP in collaboration with the ILO and the WHO
  3. Electromagnetic Fields, vol. 1, Non-binding guide to good practice for implementing Directive 2013/35/EU, European Commission, Brussels, Belgium, 2015.
    Retrieved from:
    https://www.gla.ac.uk/media/Media_604615_smxx .pdf
  4. М. Израел, Изследване на радиочестотните електромагнитни полета като трудовохигиенен фактор и сравнение на методите на еластограмата и реограмата при електромагнитно въздействие върху човека, дисертационен труд, МА, София 1983(M. Israel, Investigation of radio frequency electromagnetic fields as a factor in different occupations and comparison of elastogram and rheogram methods in case of electromagnetic impact on humans, PhD Thesis, National Institute of Hygiene and professional diseases, Sofia, Bulgaria, 1983)
  5. B. Kolmodin-Hedman, K. Hansson Mild, M. Hagberg, E. Jönsson, M.C. Andersson, A. Eriksson, “Health problems among operators of plastic welding machines and exposure to radiofrequency electromagnetic fields”, Int Arch Occup Environ Health., vol. 60, pp. 243-247, 1988.
    https://doi.org/10.1007/BF00378471
  6. J. Wilén, R. Hörnsten, M. Sandström, P. Bjerle, U. Wiklund, O. Stensson, E. Lyskov, K. Mild, “Electromagnetic field exposure and health among RF plastic sealer operators”, Biolelectromagnetics, vol. 25, no. 1, pp. 5–15, 2004.
    https://doi.org/10.1002/bem.10154
  7. M. Israel, K. Vangelova, D. Velkova, M. Ivanova, “Cardiovascular risk under electromagnetic exposure in physiotherapy”, Environmentalist, vol. 27, pp. 539-543, 2007.
    https://doi.org/10.1007/s10669-007-9065-0
  8. K. Vangelova, M. Israel, D. Velkova, M. Ivanova, “Changes in excretion rate of stress hormones in medical staff exposed to electromagnetic radiation”, Environmentalist, pp. 552-555, 2007.
    https://doi.org/10.1007/s10669-007-9063-2
  9. The Council of European Union. (Jul. 12, 1999). Council Recommendation 1999/519/EC on the limitation of exposure of the general public to electromagnetic fields (0 Hz to 300 GHz). Retrieved from:
    https://op.europa.eu/en/publication-detail/- /publication/9509b04f-1df0-4221-bfa2- c7af77975556/language-en
    Retrieved on: Dec. 14, 2020
  10. Opinion on Potential health effects of exposure to electromagnetic fields (EMF), SCENIHR, European Commission, 2015.
    http://doi.org/10.2772/75635
  11. R. Stam, “Occupational exposure to radiofrequency electromagnetic fields”, Industrial Health, vol. 60, no. 3, pp. 201-215, 2022.
      http://doi.org/10.2486/indhealth.2021-0129
M. Israel, M. Ivanova, V. Zaryabova, Ts. Shalamanova, "Dielectric sealers as a source of RF overexposure in working environment", RAD Conf. Proc., vol. 8, 2024, pp. 24-27; http://doi.org/10.21175/RadProc.2024.06
Radiation Detectors

THE USE OF ORGANIC MATERIAL MAKROCLEAR FOR RADIOCHROMIC INTEGRATING DOSIMETRY OF HADRON BEAMS

David Zoul, Václav Zach, Jan Štursa

DOI: 10.21175/RadProc.2024.07

Received: 5 SEP 2024, Received revised: 25 NOV 2024, Accepted: 26 DEC 2024, Published online: 30 JAN 2025

The Laboratory of Cyclotrons and Fast Neutron Generators performed a series of experimental irradiations of MAKROCLEAR radiochromic integrating dosimeters by proton and deuteron beams accelerated on a U-120M cyclotron. These dosimeters have been developed at the Research Centre Rez. The dosimeters prepared in the form of small blocks were successively irradiated by protons and deuterons of various energies and in various doses. The results of the analyzes showed that MAKROCLEAR dosimeters are very useful as inexpensive and readily available integrating proton dosimeters in the dose range up to about 7.5 kGy, where their response in white light and monochromatic light with longer wavelenght (about 640 nm)is practically linear with a dose. An even higher measuring range was seen in the case of deuterons, where the response of dosimeters was linear with a dose up to 15 kGy.
  1. A. Shamshad, M. Rashid, A. Husain, "High gamma dose dosimetry by polycarbonates", Radiat. Phys. Chem., vol. 50, no. 3, pp. 307-311, 1997.
    https://doi.org/10.1016/S0969-806X(97)00038-8
  2. A.M.S. Galante, L.L. Campos, "Characterization of polycarbonate dosimeter for gamma-radiation dosimetry", P04-15, pp. 815-819, Helsinki, Finland, 2010.
    http://www.irpa2010europe.com/pdfs/proceedings/S 04-P04.pdf
  3. A.M.S. Galante, L.L. Campos, "Mapping radiation fields in containers for industrial -irradiation using polycarbonate dosimeters", Appl. Radiat. Isot., vol. 70, no. 7, pp. 1264-1266, 2012.
    https://doi.org/10.1016/j.apradiso.2011.12.046
  4. D. Zoul, M. Cabalka, M. Koplová, "A study of using polycarbonate as a reusable radiochromic integrating dosimeter for the determination of high doses of ionizing radiation", RAD Conference Proceedings, vol. 3, pp. 138-142, 2018.
    https://doi.org/10.21175/RadProc.2018.30
  5. D. Zoul, "Studie využití polykarbonátu pro integrující dozimetrii vysokých dávek ionizujícího záření (Study of the use of polycarbonate for integrating dosimetry of high doses of ionizing radiation)", Bezpečnost jaderné energie (Nuclear power safety), vol. 25, no. 6, pp. 141- 149, 2017.
  6. V. Serini, "Polycarbonates", Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2000.
    https://doi.org/10.1002/14356007.a21_207
  7. L. Zhao, I. J. Das. Gafchromik EBT film dosimetry in proton beams. Phys Med Biol., vol. 55, pp. 291-301, 2010.
    https://doi.org/10.1115/1.4049717
  8. S. Devic, N. Tomic, D. Lewis, “Reference radiochromic film dosimetry: Review of technical aspects”, Physical Media, vol. 32, issue 4, pp 541-556, 2016.
    https://doi.org/10.1016/j.ejmp.2016.02.008
  9. A. Niroomand-Rad, S.-T. Chiu-Tsao, M. P. Grams, D. F. Lewis, C. G. Soares, L, J. Van Battum, I. J. Das, S. Trichter, M. W. Kissick, G. Massillon-JL, P. E. Alvarez, M. F. Chan, “Report of AAPM Task Group 235 Radiochromic Film Dosimetry: An Update to TG-55”, Med. Phys., vol 47, pp. 5986-6025, 2020. https://doi.org/10.1002/mp.14497
  10. C.-M. Charlie Ma, T. Lomax“Proton and Carbon Ion Therapy”, Imaging in Medical Diagnosis and Therapy 1st Edition, 2012.
    https://doi.org/10.1201/b13070
  11. D. Zoul, Radiace která léčí – část čtvrtá (Radiation that Heals – Part Four), Aldebaran Bulletin, 27/2021, https://www.aldebaran.cz/bulletin/2021_27_rad.php
  12. Nuclear physics institute CAS http://www.ujf.cas.cz/en/
  13. D. Zoul, M. Koplová, V. Rosnecký, M. Košťál, M. Vinš, J. Šimon. M. Schulc, M. Cabalka, J. Kučera, V. Strunga, “The use of Polycarbonate as dosimeter of high dose”, ASME J. Nucl. Eng. Radiat. Sci., vol. 7, pp. 220031- 220035, 2021.
    https://doi.org/10.1115/1.4049717
  14. D. Zoul, M. Koplová, V. Rosnecký, H. Štěpánková, V. Římal, J. Štěpánek, P. Mojzeš, M. Procházka, "Studium molekulárních mechanismů radiochromického jevu v polykarbonátu (Study of molecular mechanisms of radiochromic effect in polycarbonate)", Bezpečnost jaderné energie (Nuclear power safety), vol. 26, no. 64, pp. 338-346, 2018.
  15. D. Zoul, "Studie tmavnutí polykarbonátových desek v poli ionizujícího záření, (A study of the changes in optical density of the polycarbonate plates in the field of ionizing radiation)", Bezpečnost jaderné energie (Nuclear power safety), vol. 24, no. 62, pp. 33-38, 2016.
  16. D. Zoul, M. Koplová, M. Zimina, O. Libera, V. Rosnecký, M. Košťál, J. Šimon, M. Schulc, M. Vinš, M. Cabalka, J. Kučera, V. Strunga, H. Štěpánková, V. Římal, J. Čížek, J. Štěpánek, M. Procházka, “Study of chemical processes in irradiated polycarbonate in the context of its applicability for integrating dosimetry of high doses”, Radiat. Phys. Chem., vol. 177, pp. 1-33, 2020.
    https://doi.org/10.1016/j.radphyschem.2020.109203
David Zoul, Václav Zach, Jan Štursa, "The use of organic material makroclear for radiochromic integrating dosimetry of hadron beams", RAD Conf. Proc., vol. 8, 2024, pp. 28-34; http://doi.org/10.21175/RadProc.2024.07
Radiobiology

EVALUATION OF THE ASSESSMENT DOSE WITH BIODOSIMETRY METHODS, APPLICABLE IN BULGARIA. USE OF DICENTRIC CHROMOSOMAL ASSAY (DCA) AND CYTOKINESIS-BLOCK MICRONUCLEUS ASSAY

Galina Racheva

DOI: 10.21175/RadProc.2024.08

Received: 24 SEP 2024, Received revised: 18 NOV 2024, Accepted: 17 DEC 2024, Published online: 30 JAN 2025

Radiation biodosimetry deals with the measurement of a biological response that serves as a surrogate for estimating the absorbed radiation dose in exposed humans. The biodosimetry methods include cytogenetic methods such as dicentric chromosomal assay (DCA), cytokinesis-block micronucleus assay (CBMN), Fluorescence in-situ hybridization (FISH) assay, Premature chromosome condensation (PCC), etc. All of them score the marking damages such dicentric chromosomes or centric rings to calculate the absorbed dose of ionizing radiation. As a part of the European union, Bulgarian radiobiology laboratories had to switch the direction of the mainly research activity to possibility for routine practice of analysis and diagnostic of the assessment dose after ionizing exposure. This possibility determines to use of more precise methods to diagnose cellular injuries accurately. For a short period of time Bulgarian laboratories had to choose method of analysis, to develop working protocols and their own calibration curves for them. The Research laboratory of Radiobiology and Radiation protection, Military Medical Academy-Sofia is in the process of integration of DCA as a main method of biodosimetry and CBMN as a supplementing method. The criteria to choose DCA as a main method is affordability and accuracy of the method. Next stage is to organize the whole process of integration as a routine diagnostic practice as additional source of information for the patients used by the clinical hematologists and oncologists. Aim of the study: The aim of the current study is to present and describe the selected biodosimetry methods, planned to be used in the Military Medical Academy-Sofia. Materials and methods:Dicentric chromosomal assay (DCA) and cytokinesis- block micronucleus assay (CBMN). Results: The review of the described methods, give the priority to the golden standard method (DCA). It is chosen as the most affordable, applicable and highly effective for the needs of the Scientific laboratory of Radiobiology and Radiation protection, Military Medical Academy-Sofia. Cytokinesis-block micronucleus assay (CBMN) is good supplementary method, but cannot be used as a main dosimetry method, because of its limitations. Conclusion: The biodosimetry assessment of the absorbed dose is a high skilled activity. It has involved team of professionals, correct selection of applicable methods and preliminary optimization of the process. Take into consideration of the advantages and disadvantages of the selected methods, the most affordable and effective method is DCA analysis.
  1. A.S. Balajee, H.C. Turner, R.C. Wilkins, “Radiation Biodosimetry: Current Status and Future Initiatives” Cytogenet. Genome Res., vol. 163, no. 3-4, pp. 85–88, 2023.
    https://doi.org/10.1159/000535488
  2. R. Havránková, “Biological effects of ionizing radiation”, Cas Lek Cesk, vol. 159. No. 7-8, pp. 258- 260, 2020.
    Retrieved from: www.europepmc.org/abstract/MED/33445930
  3. R. Mendelson, “Informed consent for stochastic effects of ionising radiation in diagnostic imaging”, Br. J. Radiol., vol. 95, no. 1132, pp. 2021126-1-3, 2022.
    https://doi.org/10.1259/bjr.20211265
  4. R. M’Kacher, B. Colicchio, C. Borie, S. Junker, V. Marquet, L. Heidingsfelder, K. Soehnlen, W. Najar, W.M. Hempel, N. Oudrhiri, et al., “Telomere and Centromere Staining Followed by M-FISH Improves Diagnosis of Chromosomal Instability and Its Clinical Utility”, Genes, vol. 1, no. 5, pp. 475-1-17, 2020
    https://doi.org/10.3390/genes11050475
  5. H. Romm, R.C. Wilkins, C.N. Coleman, et al., “Biological dosimetry by the triage dicentric chromosome assay: potential implications for treatment of acute radiation syndrome in radiological mass casualties”, Radiat. Res., vol. 175, no. 3, pp. 397- 404, 2011.
    https://doi.org/10.1667/rr2321.1
  6. H. Nobuyuki, F. Yuki, “Classification of radiation effects for dose limitation purposes: history, current situation and future prospects”, J. Radiat. Res., vol. 55, no. 4, pp. 629-640, 2014.
    https://doi.org/10.1093/jrr/rru019
  7. C. Herate, L. Sabatier, “Retrospective biodosimetry techniques: Focus on cytogenetics assays for individuals exposed to ionizing radiation”, Mutat. Res./Rev. Mutat. Res., vol. 783, 108287, 2020.
    https://doi.org/10.1016/j.mrrev.2019.108287
  8. International Atomic Energy Agency. Cytogenetic Analysis for Radiation Dose Assessment. Manual. Technical reports series, 2001, no. 405, Vienna, IAEA. Retrieved from: https://www.iaea.org/publications/6303/cytogenetic -analysis-for-radiation-dose-assessment
    Retrieved on: Sept. 24, 2024.
  9. International Organization for Standardization (ISO) Radiation protection—performance criteria for service laboratories performing biological dosimetry by cytogenetics ISO 19238, Geneva: ISO, 2014.
  10. S. Jang, J. Lee, S.H. Kim, S. Han, S.G. Shin, S. Lee, I. Kang, W.S. Jo, S. Jeong, S.J. Oh, C.G. Lee, “Radiation dose estimation with multiple artificial neural networks in dicentric chromosome assay”, Int. J. Radiat. Biol., vol. 100, no. 6, pp. 865-874, 2024.
    https://doi.org/10.1080/09553002.2024.2338531
  11. U. Oestreicher, D. Samaga, E. Ainsbury et al., “RENEB intercomparisons applying the conventional Dicentric Chromosome Assay (DCA)”, Int. J. Radiat. Biol., vol. 93, no. 1, pp. 20-29, 2017.
    https://doi.org/10.1080/09553002.2016.1233370
  12. F.N. Flegal, Y. Devantier, J.P. McNamee R.C. Wilkins, “Quick scan dicentric chromosome analysis for radiation biodosimetry”, Health Phys., vol. 98, no. 2, pp. 276-281, 2010.
    https://doi.org/10.1097/HP.0b013e3181aba9c7
  13. H. Thierens, A. Vral, “The micronucleus assay in radiation accidents”, Ann. Ist. Super Sanita, vol. 45, no. 3, pp. 260-264, 2009.
    Retrieved from: https://www.iss.it/documents/20126/45616/ANN_09_33_Thierens.pdf/16f376be-1fac-e656-3b4a- cc57c47691e7?t=1581100041525
  14. T. Rich, R.L. Allen, A.H. Wyllie, “Defying death after DNA damage”, Nature, vol. 407, pp. 777-783, 2000.
    https://doi.org/10.1038/35037717
  15. P.G. Prasanna, M. Moroni, T.C. Pellmar, “Triage dose assessment for partial-body exposure: Dicentric analysis”, Health Phys., vol. 98, no. 2, pp. 244–251, 2010.
    https://doi.org/10.1097/01.HP.0000348020.14969.4
  16. E.E. Manasanch, R.Z. Orlowski, “Proteasome inhibitors in cancer therapy”, Nat. Rev. Clin. Oncol., vol. 14, no. 7, pp. 417-433, 2017.
    https://doi.org/10.1038/nrclinonc.2016.206
  17. C. Beinke, M. Port, A. Riecke, C.G. Ruf, M. Abend, “Adaption of the Cytokinesis-Block Micronucleus Cytome Assay for Improved Triage Biodosimetry”, Radiation Research, vol. 185, no. 5, pp.461-472, 2016.
    https://doi.org/10.1667/rr14294.1
  18. M. Simonian, D. Shirasaki, V.S. Lee, D. Bervini, M. Grace, R.R.O. Loo, et al., “Proteomics identif ication of radiation-induced changes of membrane proteins in the rat model of arteriovenous malformation in pursuit of targets for brain AVM molecular therapy”, Clin. Proteomics, vol. 15, pp. 43-1-8, 2018.
    https://doi.org/10.1186/s12014-018-9217-x
  19. P. Voisin, “Standards in biological dosimetry: a requirement to perform an appropriate dose assessment”, Mutat. Res. Genet. Toxicol. Environ. Mutagen., vol. 793, pp. 115–122, 2015.
    https://doi.org/10.1016/j.mrgentox.2015.06.012
  20. K. Rothkamm, C. Beinke, H. Romm et al, “Comparison of established and emerging biodosimetry assays”, Radiat. Res., vol. 180, no. 2, pp. 111–119, 2013.
    https://doi.org/10.1667/RR3231.1
  21. B.L. Mahaney, K. Meek, S.P. Lees-Miller, “Repair of ionizing radiation-induced DNA double-strand breaks by non-homologous end-joining”, Biochem J., vol. 417, no. 3, pp. 639-650, 2009.
    https://doi.org/10.1042/BJ20080413
  22. A. Léonard, J. Rueff, G.B. Gerber, E.D. Léonard, “Usefulness and limits of biological dosimetry based on cytogenetic methods”, Radiat. Prot. Dosim., vol. 115, no. 1-4, pp. 448-454, 2005.
    https://doi.org/10.1093/rpd/nci061
  23. L.M. Odetti, E.V. Paravani, et al., “Micronucleus test in reptiles: Current and future perspectives”, Mutat. Res. Genet. Toxicol. Environ. Mutagen., vol. 897, p. 50377, 2024.
    https://doi.org/10.1016/j.mrgentox.2024.503772
  24. A. Shibai-Ogata, C. Kakinuma, T. Hioki, T. Kasahara, “Evaluation of high-throughput screening for in vitro micronucleus test using fluorescence-based cell imaging”, Mutagenesis, vol. 26, no. 6, pp. 709-719, 2011.
    https://doi.org/10.1093/mutage/ger037
  25. M. Repin, G. Garty, R.J. Garippa, D.J. Brenner, “RABiT-III: an Automated Micronucleus Assay at a Non-Specialized Biodosimetry Facility”, Radiat Res., vol. 201, no. 6, pp. 567-571, 2024.
    https://doi.org/10.1667/rade-23-00120.1
  26. A. Vral, M. Fenech, H. Thierens, “The micronucleus assay as a biological dosimeter of in vivo ionising radiation exposure”, Mutagenesis, vol. 26, no. 1, pp.11–17, 2011.
    https://doi.org/10.1093/mutage/geq078
  27. M.T. Sproull, K.A. Camphausen, G.D. Koblentz, “Biodosimetry: A Future Tool for Medical Management of Radiological Emergencies”, Health Security, vol. 15, no. 6, pp. 599-610, 2017.
    https://doi.org/10.1089/hs.2017.0050
Galina Racheva, "Evaluation of the assessment dose with biodosimetry methods, applicable in Bulgaria. Use of dicentric chromosomal assay (DCA) and cytokinesis-block micronucleus assay", RAD Conf. Proc., vol. 8, 2024, pp. 35-38; http://doi.org/10.21175/RadProc.2024.08