Volume 8, 2024

Table of contents

List of Reviewers

Neuroscience

USING MACHINE LEARNING FOR EARLY ALZHEIMER'S DETECTION IN COGNITIVE NEUROSCIENCE

Orrù Graziella, Piarulli Andrea, Ciro Conversano, Angelo Gemignani

DOI: 10.21175/RadProc.2024.01

Received: 2 AUG 2024, Received revised: 3 OCT 2024, Accepted: 10 OCT 2024, Published online: 2 NOV 2024

Alzheimer's disease (AD) is a leading cause of dementia, with early detection crucial for effective intervention. Machine learning (ML) has emerged as a promising tool for identifying AD-related biomarkers in neuroimaging and cognitive assessments. We reviewed literature from peer-reviewed journals and conference proceedings using PubMed, focusing on studies employing ML for early AD detection through neuroimaging and cognitive data. ML techniques show significant promise in early AD detection. Key studies demonstrate high accuracy in distinguishing between AD, mild cognitive impairment (MCI), and healthy controls. Notable, methods include MRI- based biomarkers, computer-aided diagnosis systems, and various ML algorithms. ML techniques can enhance early AD detection, leading to improved patient outcomes. Despite the promising results, this study did not conduct a systematic review, and further research is needed to address data availability and refine feature selection for better accuracy and generalizability.
  1. R. Brookmeyer, C. H. Kawas, N. Abdallah, A. Paganini-Hill, R. C. Kim, M. M. Corrada, “Impact of interventions to reduce Alzheimer's disease pathology on the prevalence of dementia in the oldest-old”, Alzheimer's & Dement., vol. 12, no. 3, pp. 225-232, 2016.
    https://doi.org/10.1016/j.jalz.2016.01.004
  2. G. Orrù, S. Sampietro, S. Catanzaro, A. Girardi, M. Najjar, V. Giantin, G Sergi, E. Manzato, G. Enzi, E.M. Inelmen, A Coin, “Serial position effect in a free recall task: differences between probable dementia of Alzheimer type (PDAT), vascular (VaD) and mixed etiology dementia (MED)”, Archives of Gerontology and Geriatrics, vol. 49, pp. 207-210, 2009.
    https://doi.org/10.1016/j.archger.2009.09.030
  3. A. Coin, M. Najjar, S. Catanzaro, G. Orru, S. Sampietro, G. Sergi, E. Manzato, E. Perissinotto, G. Rinaldi, S. Sarti, A. Imoscopi, E. Ruggiero, A. Girardi, “A retrospective pilot study on the development of cognitive, behavioral and functional disorders in a sample of patients with early dementia of Alzheimer type”, Archives of Gerontology and Geriatrics, vol. 49, pp. 35-38, 2009.
    https://doi.org/10.1212/wnl.34.7.939
  4. B. Dubois, A. Padovani, P. Scheltens, A. Rossi, G. Dell’Agnello, “Timely diagnosis for Alzheimer’s disease: a literature review on benefits and challenges”, J. Alzheimers Dis., vol. 49, no. 3, pp. 617-631, 2016.
    https://doi.org/10.3233/JAD-150692
  5. S. Vieira, W. H. Pinaya, A. Mechelli, “Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and applications”, Neurosci. Biobehav. Rev., vol. 74, pp. 58-75, 2017.
    https://doi.org/10.1016/j.neubiorev.2017.01.002
  6. D. B. Dwyer, P. Falkai, N. Koutsouleris, “Machine learning approaches for clinical psychology and psychiatry”, Annu. Rev. Clin. Psychol., vol. 14, pp. 91-118, 2018.
    https://doi.org/10.1146/annurev-clinpsy-032816- 045037
  7. R. Ferrucci, F. Mameli, F. Ruggiero, M. Reitano, M. Miccoli, A. Gemignani, C. Conversano, M. Dini, S. Zago, S. Piacentini, B. Poletti, A. Priori, G. Orrù, “Alternate fluency in Parkinson’s disease: A machine learning analysis”, PLOS ONE, vol. 17, no. 3, pp. e0265803-1-12, 2022.
    https://doi.org/10.1371/journal.pone.0265803
  8. G. Pace, G. Orrù, M. Monaro, F. Gnoato, R. Vitaliani, K. B. Boone, A. Gemignani, G. Sartori, “Malingering detection of cognitive impairment with the B test is boosted using machine learning”, Front. Psychol., vol. 10, pp. 1650-1-8, 2019.
    https://doi.org/10.3389/fpsyg.2019.01650
  9. A.B. Shatte, D.M. Hutchinson, S.J. Teague, “Machine learning in mental health: a scoping review of methods and applications”, Psychol. Med., vol. 49, no. 9, pp. 1426-1448, 2019.
    https://doi.org/10.1017/S0033291719000151
  10. A. Ferrarese, G. Sartori, G. Orrù, A. C. Frigo, F. Pelizzaro, P. Burra, M. Senzolo, “Machine learning in liver transplantation: a tool for some unsolved questions?”, Transplant Int., vol. 34, no. 3, pp. 398-411, 2021.
    https://doi.org/10.1111/tri.13818
  11. L. Nanni , M. Interlenghi, S. Brahnam, C. Salvatore, S. Papa, R. Nemni, I. Castiglioni and Alzheimer's Disease Neuroimaging Initiative, "Comparison of transfer learning and conventional machine learning applied to structural brain MRI for the early diagnosis and prognosis of Alzheimer's disease," Front. Neurol., vol. 11, p. 576194, 2020.
    https://doi.org/10.3389/fneur.2020.576194
  12. I. Bazarbekov, A. Razaque, M. Ipalakova, J. Yoo, Z. Assipova, A. Almisreb, “A review of artificial intelligence methods for Alzheimer's disease diagnosis: Insights from neuroimaging to sensor data analysis”, Biomed. Signal Process. Control, vol. 92, pp. 106023, 2024.
    https://doi.org/10.1016/j.bspc.2024.106023
  13. G. Orrù, M. Monaro, C. Conversano, A. Gemignani, G. Sartori, “Machine learning in psychometrics and psychological research”, Front. Psychol., vol. 10, pp. 2970-1-10, 2020.
    https://doi.org/10.3389/fpsyg.2019.02970
  14. E. Moradi, A. Pepe, C. Gaser, H. Huttunen, J. Tohka, and Alzheimer's Disease Neuroimaging Initiative, “Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects”, NeuroImage, vol. 104, pp. 398-412, 2015.
    https://doi.org/10.1016/j.neuroimage.2014.10.002
  15. L. Khedher, J. Ramírez, J. M. Górriz, A. Brahim, F. Segovia, and Alzheimer’s Disease Neuroimaging Initiative, “Early diagnosis of Alzheimer’s disease based on partial least squares, principal component analysis and support vector machine using segmented MRI images”, Neurocomputing, vol. 151, pp. 139-150, 2015.
    https://doi.org/10.1016/j.neucom.2014.09.072
  16. K.M.M. Uddin, M.J. Alam, M.A. Uddin, S. Aryal, “A novel approach utilizing machine learning for the early diagnosis of Alzheimer's disease”, Biomed. Mater. Devices, vol. 1, no. 2, pp. 882-898, 2023.
    https://doi.org/10.1007/s44174-023-00078-9
  17. C. Kavitha, V. Mani, S. R. Srividhya, O. I. Khalaf, C. A. Tavera Romero, “Early-stage Alzheimer's disease prediction using machine learning models”, Front. Public Health, vol. 10, p. 853294, 2022.
    https://doi.org/10.3389/fpubh.2022.853294
  18. C. Salvatore, A. Cerasa, P. Battista, M. C. Gilardi, A. Quattrone, I. Castiglioni, and Alzheimer's Disease Neuroimaging Initiative, “Magnetic resonance imaging biomarkers for the early diagnosis of Alzheimer's disease: a machine learning approach”, Front. Neurosci., vol. 9, p. 307, 2015.
    https://doi.org/10.3389/fnins.2015.00307
  19. J. Venugopalan, L. Tong, H. R. Hassanzadeh, M.D. Wang, “Multimodal deep learning models for early detection of Alzheimer’s disease stage”, Sci. Rep., vol. 11, no. 1, p. 3254, 2021.
    https://doi.org/10.1038/s41598-020-74399-w
  20. P. Chlap, et al., "A review of medical image data augmentation techniques for deep learning applications", J. Med. Imaging Radiat. Oncol, vol. 65, no. 5, pp. 545-563, 2021.
    https://doi:10.1111/1754-9485.13261
  21. R. Zebari, A. Abdulazeez, D. Zeebaree, D. Zebari, J. Saeed, “A comprehensive review of dimensionality reduction techniques for feature selection and feature extraction”, JASTT, vol. 1, no. 1, pp. 56-70, 2020.
    https://doi.org/10.38094/jastt1224
Orrù Graziella, Piarulli Andrea, Ciro Conversano, Angelo Gemignani, "Using machine learning for early Alzheimer's detection in cognitive neuroscience", RAD Conf. Proc., vol. 8, 2024, pp. 1-6; http://doi.org/10.21175/RadProc.2024.01
Radioecology

GROSS BETA-RADIOACTIVITY OF LEAVES OF THUJA PYRAMIDALIS IN CONDITIONS OF HYDROPONICS AND SOIL IN ARARAT VALLEY AND DILIJAN FOREST EXPERIMENTAL STATION

L.M. Ghalachyan, Kh.S. Mayrapetyan, A.H. Tadevosyan, A.A. Ghahramanyan, S.A. Eloyan, A.S. Yeghiazaryan, A.A. Hakobjanyan

DOI: 10.21175/RadProc.2024.02

Received: 13 SEPR 2024, Received revised: 3 NOV 2024, Accepted: 12 NOV 2024, Published online: 14 NOV 2024

Armenia is affected by the ecological disaster connected with the forest area reduction. It is a mountainous country with a dry subtropical climate and it has a nuclear power plant (NPP), located in the Ararat Valley. All these are not only the basis of the ecological disaster but also make it deeper. For its prevention, it is necessary to restore and expand green zones, and forests. The use of decorative trees and shrubs with the ability to filter the air from radionuclides (RN) is extremely important in green construction. In recent years, the decorative coniferous tree Thuja occidentalis “Pyramidalis” is one of the most demanded landscaping trees in Armenia. The characteristics of gross β-radioactivity of Thuja pyramidalis leaves were studied under outdoor hydroponic and soil cultivation conditions in the territory of the Institute of Hydroponics Problems (IHP) in the Ararat Valley (a zone with a radius of 30 km from the Armenian NPP) (ANPP) and the Dilijan Forest Experiment Station (DFES) (a zone with a radius of 90 km from the ANPP). This has a practical significance because the use of radio-ecologically favorable tree species and shrubs in green construction will have an important ecological significance. The gross β-radioactivity of the leaf samples was determined by radio-chemical methods using a small background UMF-1500 radiometer using sensor CTC-5. According to results, regardless of the growth zone, hydroponic trees exceeded soil ones in the amount of β-radiating technogenic and natural RN by 1.2-1.3 times. Leaves of the Thuja pyramidalis grown in the IHP territory exceeded those grown in DFES in gross β-radioactivity: in hydroponics - 1.6 times, in soil - 1.7 times. Thuja pyramidalis as a radio-ecologically beneficial tree species is proposed to be used for the creation of green zones. This will have important ecological significance as it will reduce the movement of RN in the biosphere.
  1. A. Mikhaylov, N. Moiseev, K. Aleshin, T. Burkhardt, “Global climate change and greenhouse effect”, Entrepreneurship and Sustainability Issues, vol. 7, no. 4, 2897, 2020.
    http://doi.org/10.9770/jesi.2020.7.4(21)
  2. Annual 2023 Global Climate Report. National Centers for Environmental Information Retrieved from: https://www.ncei.noaa.gov/access/monitoring/monthly- report/global/202313
    Retrieved on: Jan. 20, 2024
  3. 3. V. Knapp, D. Pevec, Promises and limitations of nuclear fission energy in combating climate change, Energy Policy, vol. 120, pp. 94-99, 2018.
    https://doi.org/10.1016/j.enpol.2018.05.027
  4. B.F. Myasoedov, S.N. Kalmykov, “Nuclear power industry and the environment”, Mendeleev Communications, vol. 25, no. 5, pp. 319-328, 2015.
    https://doi.org/10.1016/j.mencom.2015.09.001
  5. D. Todorovic, D. Popović, J. Ajtic, J. Nikolic, “Trace Elements and Radionuclides ( 137 Cs, 40 K, 210 Pb and 7 Be) in Urban Air Monitored by Moss and Tree Leaves”, Environmental Science and Pollution Research, vol. 20, pp. 525–532, 2013.
    http://doi.org/10.1007/s11356-012-0940-y
  6. 6. Г.Т. Бозшатаева, А.И. Касымбекова, Г.С. Оспанова, Г.К. Турабаева, М.Б. Кыдыралиева, “Использование биоиндикаторов для оценки состояния атмосферного воздуха”, Меж. ж. прикладных и фундаментальных исследований, т. 12, no. 2, стр. 302-306, 2017 (G.T. Bozshataeva, A.I. Kasymbekova, G.S. Ospanova, G.K. Turabaeva, M.B. Kydyralieva, “Use of bioindicators to assess the state of atmospheric air”, International Journal of Applied and Fundamental Research, vol. 12, no. 2, pp. 302-306, 2017.).
    Retrieved from: https://applied- research.ru/ru/article/view?id=12039
    Retrieved on: March 03, 2024
  7. О.Л. Воскресенская, А.В. Леухин, В.С. Воскресенский, А.Р. Сазонов, “Накопление и распределение радионуклидов в органах туи западной, произрастающей в условиях городской среды”, Вестник Марийского государственного университета, т. 8, cтр. 39-42, 2012 (O.L. Voskresenskaya, A.V. Leukhin, V.S. Voskresensky, A.R. Sazonov, “Accumulation and distribution of radionuclides in the organs of western thuja growing in urban environments”, Bulletin of the Mari State University, vol. 8, pp. 39-42, 2012.).
    Retrieved from: https://cyberleninka.ru/article/n/nakoplenie-i- raspredelenie-radionuklidov-v-organah-tui- zapadnoy-proizrastayuschey-v-usloviyah-gorodskoy- sredy/viewer
    Retrieved on: May 10, 2024
  8. А.Н. Переволоцкий, Е.А. Гончаров, Т.В. Переволоцкая, “К вопросу о моделировании распределения радионуклидов в лесных биогеоценозах”, Радиационная биология. Радиоэкология, том 6, cтр. 655-663, 2016 (A.N. Perevolotsky, E.A. Goncharov, T.V. Perevolotskaya, “On the issue of modeling the distribution of radionuclides in forest biogeocenoses”, Radiation biology. Radioecology, vol. 6, pp. 655-663, 2016.).
    Retrieved from: https://ecoradmod.narod.ru/rus/publication/perevolockij 16rbrehles_modeli.pdf
    Retrieved on: Feb 10, 2024
  9. P. Wang, S. Yu, H. Zou, X. Lou, H. Ren, L. Zhou, et al., “Levels, sources, variations, and human health risk assessment of 90 Sr and 137 Cs in water and food around Sanmen Nuclear Power Plant (China) from 2011 to 2020”, Front. Public Health, vol. 11, pp. 1136623-1-13, 2023.
    http://doi.org/10.3389/fpubh.2023.1136623
  10. C. Park, D. Lee, H.K. Heo, S. Ahn, “Increasing of Urban Radiation due to Climate Change and Reduction Strategy using Vegetation”, In AGU Fall Meeting Abstracts, vol. 2017, pp. PA21A-0336, 2017.
    Retrieved from: https://ui.adsabs.harvard.edu/abs/2017AGUFMPA21A03 36P/abstract
    Retrieved on: June 15, 2023
  11. I.A. Vlad, M. Vlad, I. Vlad, “Researches concerning the influence of cultivation and technology systems upon growth and development of Thuja occidentalis L. Pyramidalis and Thuja occidentalis L. Globosa cultivars”, Analele Universităţii din Oradea, Fascicula Protecţia Mediului, vol. 24, 119-130, 2015
    Retrieved from: http://protmed.uoradea.ro/facultate/publicatii/protectia_ mediului/2015A/hort/05.%20Vlad%20Ioana.pdf
    Retrieved on: July 30, 2023
  12. Ս.Ա. Կտրակյան, Երևանի կանաչ տնկարկների դենդրոֆլորայի հարստացման և գեղազարդության բարձրացման խնդիրները: Հայաստանի կենսաբանական հանդես, հատոր 72, համար 1-2, էջ 42-47, 2020 (S.A. Ktrakyan, “Tasks for enriching dendroflora and enhancing the decorativity of green stands in Yerevan”, Biological Journal of Armenia, vol. 72, no. 1-2, pp. 42-47, 2020.)
    Retrieved from: https://arar.sci.am/dlibra/publication/284232/edition/26 0887/content
    Retrieved on: Oct 25, 2023
  13. G. Tepanosyan, V. Muradyan, A. Hovsepyan, G. Pinigin, A. Medvedev, S. Asmaryan, “Studying spatial-temporal changes and relationship of land cover and surface Urban Heat Island derived through remote sensing in Yerevan”, Armenia. Building and Environment, vol. 187, pp. 107390. 2021. http://doi.org/10.1016/j.buildenv.2020.107390
  14. K. Mayrapetyan, A. Hakobjanyan, L. Ghalachyan, A. Karapetyan, A. Ghahramanyan, S. Eloyan, A. Yeghiazaryan, A. Tadevosyan, “Hydroponical growth and radionuclide accumulation specificities of Thuja occidentalis in Ararat Valley and Dilijan forest zone conditions”, RAD Conference Proceedings, vol. 6, pp. 38–42, 2022.
    http://doi.org/10.21175/RadProc.2022.07
  15. Լ. Վալեսյան, “Հայաստանի ազգային ատլաս”. Երևան, «Գեոդեզիայի և քարտեզագրության կենտրոն» ՊՈԱԿ, հատոր Ա, 2007, 230 էջ (L. Valesyan, National Atlas of Armenia. Editor, Yerevan, vol. A, 2007, 232 pages). Retrieved from: https://online.fliphtml5.com/qgxio/flkz/#p=1
    Retrieved on: Jan 12, 2022
  16. Г.Б. Бабаян, “Почвы и природные условия Дилижанкой лесной агрохимической станции (ДИЛАС),” Сообщения института Агрохимических проблем и гидропоники, том 21, стр. 21–25, 1980 (G.B. Babayan, “Soils and natural conditions of the Dilijan Forest Agrochemical Station (DILAS),” Communications of the Institute of Agrochemical Problems and Hydroponics, vol. 21, pp. 21–25, 1980).
    Retrieved from: https://arar.sci.am/dlibra/publication/282592/edition/25 9388/content
    Retrieved on: Feb. 20, 2022
  17. A. Vardanyan, L. Ghalachyan, A. Tadevosyan, V. Baghdasaryan, A. Stepanyan, M. Daryadar, “The phytochemical study of Eleutherococcus senticosus (Rupr. & Maxim) leaves in hydroponics and soil culture”, Functional Foods in Health and Disease, vol. 13, no. 11, pp. 574-583, 2023.
    https://www.doi.org/10.31989/ffhd.v13i11.1183
  18. Государственный стандарт ССС (ГОСТ 194113- 89). Государственный комитет СССП по стандартам, Москва (State Standard ССС (ГОСТ 194113-89). Gosudarstvenny committee SSSP on standards, Moscow.). Retrieved on: Feb. 25, 2024.
  19. Ф.И. Павлоцкая, “Методы определения 90Sr и других изотопов”, Физико-химические методы исследования почв, Москва, Россия: Изд-во “Наука”, 1966, 126 стр. (F. I. Pavlotskaya, “Methods of determining 90 Sr and other isotopes”, in Physiological-chemical methods of soil study, Moscow, Russia, 1966, 126 p.).
  20. L.M. Ghalachyan, A.H. Tadevosyan, “Acumulation of Artificial Radionuclides in Ecosystem of Irrigation Water-Soil-Herb in Anthropogenic Zones of Armenian NPP”, Bulletin, State Agrarian University of Armenia, vol. 4, pp. 5- 8, 2016.
    Retrieved from:
    https://library.anau.am/images/stories/grqer/Izwestiya/4 _2016/
    Retrieved on: Jan. 11, 2024
  21. O.A. Belyaeva, K.I. Pyuskyulyan, N.E. Movsisyan, L.V. Sahakyan, A.K. Saghatelyan, “Radioecological studies in Armenia: a review”, National Academy of Sciences of RA., Electronic Journal of natural sciences, Ecology, vol. 34, no.1, pp. 34-40, 2020.
    Retrieved from: https://www.globalgeochemicalbaselines.eu
    Retrieved on: June. 16, 2023
  22. Сельскохозяйственная радиоэкология, Под. ред. Р.М. Алексахина, Н.А. Корнеева. М., Экология, 400 стр., 1992 (Agricultural radioecology, Ed. by R.M. Aleksakhin, N.A. Korneev. Moscow, Ecology, 400 pp., 1992.).
  23. А.И. Щеглов, О.Б. Цветнова, “Биологический круговорот 137Cs и 40К в дубравах и агрофитоценозах на темно-серых лесных почвах Тульской области России”, Радиационная биология. Радиоэкология, том 57, no. 2, стр. 201- 209, 2017 (A.I. Shcheglov, O.B. Tsvetnova, “Biological cycle of 137Cs and 40K in oak groves and agrophytocenoses on dark gray forest soils of the Tula region of Russia”, Radiation biology. Radioecology, vol. 57, no. 2, pp. 201-209, 2017).
    https://doi.org/10.7868/S0869803117020138
  24. Y. Gu, “Analysis and Evaluation on Radioactivity of Common Building Materials”, Chemical Engineering Transactions, vol. 62, pp. 127-132, 2017.
    https://doi.org/10.3303/CET1762022
  25. M. Trautmannsheimer, P. Schramel, R. Winkler, K. Bunzl, “Chemical fractionation of some natural radionuclides in a soil contaminated by slags”, Environmental Science & Technology, vol. 32, no. 2, pp. 238-243, 1998.
    http://doi.org/10.1021/es970446o
  26. A. Hakobjanyan, A. Karapetyan, A. Ghahramanyan, A. Yeghiazaryan, A. Gasparyan, K. Mayrapetyan, Photosynthetic abilities and essential oil content of hydroponic and soil Thuja occidentalis, Bioactive Compounds in Health and Disease, vol. 7(10), pp. 550-557, 2024.
    https://doi.org/10.31989/bchd.v7i10.1457
  27. S. Jan, Z. Rashid, T.A. Ahngar, S. Iqbal, M.A. Naikoo, S. Majeed, T.A. Bhat, R. Gul, I. Nazir, “Hydroponics–A review”, International Journal of Current Microbiology and Applied Sciences, vol. 9, no. 8, 1779-1787, 2020.
    https://doi.org/10.20546/ijcmas.2020.908.206
L.M. Ghalachyan, Kh.S. Mayrapetyan, A.H. Tadevosyan, A.A. Ghahramanyan, S.A. Eloyan, A.S. Yeghiazaryan, A.A. Hakobjanyan, "Gross beta-radioactivity of leaves of thuja pyramidalis in conditions of hydroponics and soil in Ararat Valley and Dilijan forest experimental station", RAD Conf. Proc., vol. 8, 2024, pp. 7-11; https://doi.org/10.21175/RadProc.2024.02
Other topic

THEORETICAL ANALYSIS OF DELAMINATION IN A VISCOELASTIC MULTILAYERED BAR BUILT- UP AT BOTH ENDS

Victor Rizov

DOI: 10.21175/RadProc.2024.03

Received: 6 AUG 2024, Received revised: 29 SEP 2024, Accepted: 7 OCT 2024, Published online: 24 NOV 2024

This paper reports the results of a theoretical consideration of the delamination problem in a multilayered load- bearing bar of rectangular cross-section loaded in time-dependent torsion. The bar is built-up at both ends. Besides, the bar is supported by a spring and a dashpot. The bar has two portions with different thickness. There is a delamination near the border between the two portions of the bar. The viscoelastic behavior of the bar is treated by a model that is subjected to shear stresses which vary with time. The torsion moments in the bar portions are determined by analyzing the time-dependent equilibrium with taking into account the effects of the spring and dashpot supports. Then these torsion moments are used to find-out the time-dependent strain energy in the bar. The strain energy release rate (SERR) for the delamination is obtained by differentiating the time-dependent strain energy with respect to the delamination area. The time-dependent compliance of the bar is analyzed to verify the SERR. Effects of the external loading, locations of the spring and dashpot supports, bar geometry, material properties and other parameters on the SERR are evaluated and discussed. The results of the analysis are presented in forms of various graphs illustrating the change of the SERR.
  1. Y. Tokovyy , C. -C. Ma, “Three-Dimensional Temperature and Thermal Stress Analysis of an Inhomogeneous Layer”, J. Therm. Stresses, vol. 1, no. 3, pp. 790–808, 2013.
    https://doi.org/10.1080/01495739.2013.787853
  2. Y. Tokovyy, C.-C. Ma, “Axisymmetric Stresses in an Elastic Radially Inhomogeneous Cylinder Under Length-Varying Loadings”, ASME J. Appl. Mech., vol. 83, no. 11, pp. 111007, 2016.
    https://doi.org/10.1115/1.4034459
  3. L. Tokova, A. Yasinskyy, C.-C. Ma, “Effect of the layer inhomogeneity on the distribution of stresses and displacements in an elastic multilayer cylinder”, Acta Mech., vol. 228, no. 8, pp. 2865-2877, 2017.
    http://doi.org/10.1007/s00707-015-1519-8
  4. I. Dahan, U. Admon, J. Sarei, B. Yahav, M. Amar, N. Frage, M.P. Dariel, “Functionally graded Ti-TiC multilayers: the effect of a graded profile on adhesion to substrate”, Mater. Sci. Forum, vol. 308-311, no. 2, pp. 923-929, 1999.
    https://doi.org/10.4028/www.scientific.net/msf.308- 311.923
  5. N. Dolgov, “Determination of Stresses in a Two-Layer Coating”, Strength Mater., vol. 37, no. 2, pp. 422-431, 2005.
    https://doi.org/10.1007/s11223-005-0053-7
  6. J.-H. Yu, S. Guo, D.A. Gillard, “Bimaterial curvature measurements for CTE of adhesives: optimization and modelling”, J. Adhes. Sci. Technol., vol. 17, no. 2, pp. 149- 164, 2003.
    https://doi.org/10.1163/156856103762301970
  7. J.S. Kim, K.W. Paik, S.H. Oh, “The Multilayer-Modified Stoney’s Formula for Laminated Polymer Composites on a Silicon Substrate”, J. Appl. Phys., vol. 86, pp. 5474–5479, 1999.
    https://doi.org/10.1063/1.371548
  8. S-N. Nguyen, J. Lee, M. Cho, “Efficient higher-order zig- zag theory for viscoelastic laminated composite platesˮ, Int. J. Solids Struct., vol. 62, no. 2, pp. 174-185, 2015.
    http://doi.org/10.1016/j.ijsolstr.2015.02.027
  9. S.-N. Nguyen, J. Lee, J-W. Han, M. Cho, “A coupled hygrothermo-mechanical viscoelastic analysis of multilayered composite plates for long-term creep behaviorsˮ, Compos. Struct., vol. 242, 112030, 2020.
    https://doi.org/10.1016/j.compstruct.2020.112030
  10. L.B. Freund, “The stress distribution and curvature of a general compositionally graded semiconductor layer”, J. Cryst. Growth, vol. 132, no. 1-2, pp. 341-344, 1995.
    https://doi.org/10.1016/0022-0248(93)90280-A
  11. J.J. Moore, “Self-propagating high-temperature synthesis of functionally graded PVD targets with a ceramic working layer of TiB-TiN or TiSi-Tin”, J. Mater. Synth. Process., vol. 10, pp. 319-330, 2002.
    https://doi.org/10.1023/A:1023881718671
  12. I. Markov, D. Dinev, “Theoretical and experimental investigation of a beam strengthened by bonded composite strip”, Reports of International Scientific Conference VSU’2005, pp. 123-131, 2005.
  13. A. Attia, A.T. Berrabah, F. Bourada, et al., “Free Vibration Analysis of Thick Laminated Composite Shells Using Analytical and Finite Element Method”, J. Vib. Eng. Technol., 2024.
    https://doi.org/10.1007/s42417-024-01322-2
  14. F.Y. Addou, F. Bourada, A. Tounsi et al., “Effect of porosity distribution on flexural and free vibrational behaviors of laminated composite shell using a novel sinusoidal HSDT”, Archiv. Civ. Mech. Eng, vol. 24, no. 102, 2024.
    https://doi.org/10.1007/s43452-024-00894-w
  15. F. Bounouara, M. Sadoun, M.M. Selim Saleh, A. Chikh, A.A. Bousahla, A. Kaci, F. Bourada, A. Tounsi, A. Tounsi, “Effect of visco-Pasternak foundation on thermo- mechanical bending response of anisotropic thick laminated composite plates”, Steel and Composite Structures, vol. 47, pp. 693-707, 2023.
    https://doi.org/10.12989/scs.2023.47.6.693
  16. S.R. Choi, J.W. Hutchinson, A.G. Evans, “Delamination of multilayer thermal barrier coatings”, Mech. Mater., vol. 31, no. 2, pp. 431–447, 1999.
    https://doi.org/10.1016/S0167-6636(99)00016-2
  17. N.E. Dowling, “Mechanical behaviour of materialsˮ, Pearson, 2011.
  18. J.W. Hutchinson, Z. Suo, “Mixed mode cracking in layered materials”, Adv. Appl. Mech., vol. 64, pp. 804- 810, 1992.
    https://doi.org/10.1016/S0065-2156(08)70164-9
  19. multilayered functionally graded non-linear elastic circular shafts under combined loads”, Frattura ed Integrità Strutturale, vol. 46, no. 12, pp. 158–177, 2018.
    https://doi.org/10.3221/IGF-ESIS.46.16
  20. V. Rizov, H. Altenbach, “Multi-Layered Non-Linear Viscoelastic Beams Subjected to Torsion at a Constant Speed: A Delamination Analysis”, Eng. Trans., vol. 70, no. 1, pp. 53-66, 2022.
    https://doi.org/10.24423/EngTrans.1720.20220303
  21. V. Rizov, “Inhomogeneous beam structures of rectangular cross-section loaded in torsion: a delamination study with considering creep”, Procedia Struct. Integrity, vol. 41, pp. 94–102, 2022.
    https://doi.org/10.1016/j.prostr.2022.05.012
  22. V.I. Rizov, “Analysis of two lengthwise cracks in a viscoelastic inhomogeneous beamstructure”, Engineering Transactions, vol. 68, pp. 397-415, 2020.
    https://doi.org/10.24423/EngTrans.1214.20201125
  23. K.S. Chobanian, Stresses in combined elastic solids, Science, 1997.
Victor Rizov, "Theoretical analysis of delamination in a viscoelastic multilayered bar built-up at both ends", RAD Conf. Proc., vol. 8, 2024, pp. 12-15; https://doi.org/10.21175/RadProc.2024.03
Other topic

FUNCTIONALLY GRADED FRAMES UNDER SUPPORT DISPLACEMENTS: A LONGITUDINAL FRACTURE ANALYSIS WITH REFRENCE TO NON-LINEAR RELAXATION

Victor Rizov

DOI: 10.21175/RadProc.2024.04

Received: 6 AUG 2024, Received revised: 29 SEP 2024, Accepted: 3 OCT 2024, Published online: 24 NOV 2024

The current study deals with the problem of longitudinal fracture in functionally graded load-caring frame structures under support displacements in the conditions of non-linear relaxation behavior. The latter is taken in account by applying a non-linear stress-strain-time constitutive law that holds for viscoelastic engineering materials subjected to constant strains. The frame under consideration is functionally graded along its thickness (thus, the material properties vary continuously along the thickness of the frame members). The frame is statically undetermined. Therefore, the support displacements induce stresses in the frame. These stresses lead to longitudinal fracture in the frame that is analyzed theoretically. The time-dependent strain energy release rate (SERR) for a longitudinal crack in the frame is derived by considering the energy balance under non-linear relaxation. The time-dependent complementary strain energy in the frame is analyzed for verifying the solution of the SERR due to support displacements. Various graphs are plotted to illustrate the effects of different factors (magnitude of support displacements, time, etc.) on the longitudinal fracture behavior. Analyzing the combined effects of static indeterminacy, support displacements and non-linear relaxation behavior on longitudinal fracture of functionally graded frame structures is the main novelty and the added value of the current paper.
  1. E.K. Njim, M. Al-Waily, S.H. Bakhy, “A Critical Review of Recent Research of Free Vibration and Stability of Functionally Graded Materials of Sandwich Plate”, IOP Conf. Ser.: Mater. Sci. Eng. (INTCSET 2020), vol. 1094, pp. 012081-1-30, 2021.
    https://doi.org/10.1088/1757-899X/1094/1/012081
  2. I.M. El-Galy, B.I. Saleh, M.H. Ahmed, “Functionally graded materials classifications and development trends from industrial point of view”, SN Appl. Sci., vol. 1, pp. 1378-1-22, 2019.
    https://doi.org/10.1007/s42452-019-1413-4
  3. F.F. Calim, Y.C. Cuma, “Forced vibration analysis of viscoelastic helical rods with varying cross-section and functionally graded material”, Mech. Based Des. Struct. Mach., vol. 51, no. 7, pp. 3620-3631, 2023.
    https://doi.org/ 10.1080/15397734.2021.1931307
  4. T. Hirai, L. Chen, “Recent and prospective development of functionally graded materials in Japan”, Mater Sci. Forum, vol. 308-311, pp. 509-514, 1999.
    https://doi.org/10.4028/www.scientific.net/MSF.308- 311.509
  5. R.M. Mahamood, E.T. Akinlabi, Introduction to Functionally Graded Materials. In: Functionally Graded Materials. Topics in Mining, Metallurgy and Materials Engineering. Springer, Cham, 2017.
    https://doi.org/10.1007/978-3-319-53756-6_1
  6. Y. Miyamoto, W.A. Kaysser, B.H. Rabin, A. Kawasaki, R.G. Ford, Functionally Graded Materials: Design, Processing and Applications, Kluwer Academic Publishers, Dordrecht/London/Boston, 1999.
  7. M. Chitour, A. Bouhadra, F. Bourada, B. Mamen, A.A. Bousahla, A. Tounsi, A. Tounsi, M.A. Salem, K.M. Khedher, “Stability analysis of imperfect FG sandwich plates containing metallic foam cores under various boundary conditions”, Structures, vol. 61, p. 10621, 2024. https://doi.org/10.1016/j.istruc.2024.106021
  8. D.E. Lafi, A. Bouhadra, B. Mamen, A. Menasria, M. Bourada, A.A. Bousahla, F. Bourada, A. Tounsi, A. Tounsi, M. Yaylaci, “Combined influence of variable distribution models and boundary conditions on the thermodynamic behavior of FG sandwich plates lying on various elastic foundations”, Structural Engineering and Mechanics, vol. 89, no. 2, pp. 103-119, 2024.
    https://doi.org/10.12989/sem.2024.89.2.103
  9. A. Tounsi ,  A.A. Bousahla ,  S.I. Tahir ,  A.H. Mostefa ,  F. Bourada ,  M.A. Al-Osta ,  A. Tounsi , “Influences of Different Boundary Conditions and Hygro-Thermal Environment on the Free Vibration Responses of FGM Sandwich Plates Resting on Viscoelastic Foundation”, International Journal of Structural Stability and Dynamics, vol. 24, no. 11, p. 2450117,2024.
    https://doi.org/10.1142/S0219455424501177
  10. S. Shrikantha Rao, K.V. Gangadharan, “Functionally graded composite materials: an overview”, Procedia Mater. Sci., vol. 5, no. 1, pp. 1291- 1299, 2014.
    https://doi.org/10.1016/j.mspro.2014.07.442
  11. H.S. Hedia, S.M. Aldousari, A.K. Abdellatif, N.A. Fouda, “New design of cemented stem using functionally graded materials (FGM)”, Biomed. Mater. Eng., vol. 24, no. 3, pp. 1575-1588, 2014.
    http://doi: 10.3233/BME-140962
  12. S. Nikbakht , S. Kamarian , M.A. Shakeri, “A review on optimization of composite structures Part II: Functionally graded materials”, Compos. Struct., vol. 214, pp. 83-102, 2019.
    http://doi.org/10.1016/j.compstruct.2019.01.105
  13. R. Madan, K. Saha, S. Bhowmick, “ Limit speeds and stresses in power law functionally graded rotating disks”, Advances in Materials Research, vol. 9, no. 2, pp. 115-131, 2020.
    http://doi.org/10.12989/amr.2020.9.2.115
  14. E.K. Njim, S.H. Bakhy, M. Al-Waily, “Free vibration analysis of imperfect functionally graded sandwich plates: analytical and experimental investigation”, Arch. Mater. Sci. Eng., vol. 111, no 2, pp. 49-65, 2021.
    https://doi.org/10.5604/01.3001.0015.5805
  15. L. Tokova, A. Yasinskyy, C.-C. Ma, “Effect of the layer inhomogeneity on the distribution of stresses and displacements in an elastic multilayer cylinder”, Acta Mechanica, vol. 228, no. 8, pp. 2865-2877, 2017.
    https://doi.org/10.1007/s00707-015-1519-8
  16. N.E. Dowling, "Mechanical behaviour of materials", Pearson, 2011.
  17. V. Rizov, “Delamination analysis of inhomogeneous viscoelastic beam of rectangular section subjected to torsion”, Coupled Systems Mechanics, vol. 12, no. 1, pp. 69-81, 2023.
    https://doi.org/10.12989/csm.2023.12.1.069
  18. V. Rizov, H. Altenbach, “Fracture analysis of inhomogeneous arch with two longitudinal cracks under non-linear creep”, Adv. Mater. Res., vol. 12, no 1, pp. 15-29, 2023.
    https://doi.org/10.12989/amr.2023.12.1.015
  19. V. Rizov, “Effects of Periodic Loading on Longitudinal Fracture in Viscoelastic Functionally Graded Beam Structures”, J. Appl. Comput. Mech., vol. 8, no. 1, pp. 370–378,2022.
    https://doi.org/10.22055/JACM.2021.37953.3141
  20. Hr. Varbanov, A. Tepavicharov, T. Ganev, “Applied theory of elasticity and plasticity”, Sofia, 1992.
Victor Rizov, "Functionally graded frames under support displacements: a longitudinal fracture analysis with refrence to non-linear relaxation", RAD Conf. Proc., vol. 8, 2024, pp. 16-19; https://doi.org/10.21175/RadProc.2024.04
Other topic

TWIST VELOCITY INFLUENCE ON LENGTHWISE FRACTURE OF INHOMOGENEOUS BARS UNDER TORSIONAL LOADING

Victor Rizov

DOI: 10.21175/RadProc.2024.05

Received: 6 AUG 2024, Received revised: 29 SEP 2024, Accepted: 1 OCT 2024, Published online: 24 NOV 2024

This paper is concerned with studying the influence of the twist velocity on lengthwise fracture of inhomogeneous load-carrying bar subjected to torsional loading. The bar under consideration has non-linear elastic behavior. The cross-section of the bar is a circle. The bar has three portions with different radius of the cross-section. The bar is under angles of twist that are time-dependent. The material of the bar is continuously inhomogeneous in radial direction. The influence of the twist velocity is taken into account by applying a non-linear stress-strain constitutive law that includes a term with the first derivative of the shear strain with respect to time. This constitutive law is used to develop a theoretical analysis of lengthwise fracture in terms of the strain energy release rate (SERR) with considering the twist velocity. Actually, obtaining of the SERR with taking into account the twist velocity is the basic aim of this paper. The parameters of the stressed and strained state of the twisted bar that are needed for deriving the SERR are obtained by analyzing the equilibrium of the bar portions. The energy balance in the bar is investigated to verify the SERR. Numerical results are obtained and reported in form of graphs for clarifying the effect of various factors and parameters on the SERR in continuously inhomogeneous bars under time-dependent twist.
  1. F. Chen, M. Jia, Y. She, Y. Wu, Q. Shen, L. Zhang, “Mechanical behavior of AlN/Mo functionally graded materials with various compositional structures”, J Alloys Compd., vol. 816, 152512, 2020.
    https://doi.org/10.1016/j.jallcom.2019.152512
  2. M.M. Nemat-Allal, M.H. Ata, M.R. Bayoumi, W. Khair- Eldeen, “Powder metallurgical fabrication and microstructural investigations of Aluminum/Steel functionally graded material”, Materials Sciences and Applications, vol. 2, no. 12, pp. 1708-1718, 2011.
    https://doi.org/10.4236/msa.2011.212228
  3. M. Rezaiee-Pajand, M. Mokhtari, A.R. Masoodi, “Stability and free vibration analysis of tapered sandwich columns with functionally graded core and flexible connections”, CEAS Aeronaut J, vol. 9, pp. 629–648, 2018.
    https://doi.org/10.1007/s13272-018-0311-6
  4. M. Rezaiee-Pajand, A.R. Masoodi, “Stability Analysis of Frame Having FG Tapered Beam–Column”, Int J Steel Struct, vol. 19, p. 446–468, 2019.
    https://doi.org/10.1007/s13296-018-0133-8
  5. N. Radhika, J. Sasikumar, J.L. Sylesh, R. Kishore, “Dry reciprocating wear and frictional behaviour of B4C reinforced functionally graded and homogenous aluminium matrix composites”, J. Mater. Res. Technol., vol. 9, no. 2, pp. 1578-1592, 2020.
    https://doi.org/10.1016/j.jmrt.2019.11.084
  6. A.J. Markworth, K.S. Ramesh, Jr. W.P. Parks, “Review: modeling studies applied to functionally graded materials”, J. Mater. Sci., vol. 30, 2183-2193, 1995.
    https://doi.org/10.1007/BF01184560
  7. https://doi.org/10.1007/BF01184560 7. J. Toudehdehghan, W. Lim, K.E. Foo1, M.I.N. Ma’arof, J. Mathews, “A brief review of functionally graded materials”, MATEC Web of Conferences, vol. 131, pp. 03010-1-6, 2017.
    https://doi.org/10.1051/matecconf/201713103010
  8. R.A. Ahmed, R.M. Fenjan, L.B. Hamad, N.M. Faleh, “ A review of effects of partial dynamic loading on dynamic response of nonlocal functionally graded material beams”, Adv. Mater. Res., vol. 9, no. 1, pp. 33-48, 2020.
    https://doi.org/10.12989/amr.2020.9.1.033
  9. Y. Tokovyy, C.-C. Ma, “Axisymmetric Stresses in an Elastic Radially Inhomogeneous Cylinder Under Length-Varying Loadings”, ASME J. Appl. Mech., vol. 83, no. 11, pp. 111007-1-7, 2016.
    https://doi.org/10.1115/1.4034459
  10. N.E. Dowling, Mechanical behaviour of materials, Pearson, 2011.
  11. Z. Belabed, A. Tounsi, A.A. Bousahla, A. Tounsi, M. Yaylacı, “Accurate free and forced vibration behavior prediction of functionally graded sandwich beams with variable cross-section: A finite element assessment”, Mech. Based Des. Struct. Mach., vol, 52, no. 11, pp. 9144-9177, 2024.
    https://doi.org/10.1080/15397734.2024.2337914
  12. Z. Belabed, A. Tounsi, A.A. Bousahla, A. Tounsi, M. Bourada and M. A. Al-Osta, “Free vibration analysis of Bi-Directional Functionally Graded Beams using a simple and efficient finite element model”, Struct. Eng. Mech., vol. 90, no. 3, pp. 233-252, 2024.
    https://doi.org/10.12989/sem.2024.90.3.233
  13. Z. Lakhdar, S. M. Chorfi, S. A. Belalia, S.A. et al., “Free vibration and bending analysis of porous bi- directional FGM sandwich shell using a TSDT p-version finite element method”, Acta Mech, vol. 235, pp. 3657–3686, 2024.
    https://doi.org/10.1007/s00707-024-03909-y
  14. V. Rizov, “Non-linear fracture in bi-directional graded shafts in torsion,” Multidiscip. Model. Mater. Struct., vol. 15, no. 1, pp. 156-169, 2019.
    https://doi.org/10.1108/MMMS-12-2017-0163
  15. V. Rizov, “Viscoelastic inhomogeneous beam under time-dependent strains: A longitudinal crack analysis”, Advances in Computational Design, vol. 6, no. 2, pp. 153-168, 2021.
    https://doi.org/10.12989/acd.2021.6.2.153
  16. V. Rizov, “Analysis of Two Lengthwise Cracks in a Viscoelastic Inhomogeneous Beam Structure”, Eng Trans, vol. 68, no. 4, pp. 397-415, 2020.
    https://doi.org/10.24423/EngTrans.1214.20201125
  17. P. A. Lukash, Fundamentals of Non-linear Structural Mechanics, Stroiizdat, 1978.
Victor Rizov, "Twist velocity influence on lengthwise fracture of inhomogeneous bars under torsional loading", RAD Conf. Proc., vol. 8, 2024, pp. 20-23; https://doi.org/10.21175/RadProc.2024.05
Microwave, Laser, RF and UV radiations

DIELECTRIC SEALERS AS A SOURCE OF RF OVEREXPOSURE IN WORKING ENVIRONMENT

M. Israel, M. Ivanova, V. Zaryabova, Ts. Shalamanova

DOI: 10.21175/RadProc.2024.06

Received: 31 OCT 2024, Received revised: 16 JAN 2025, Accepted: 25 JAN 2025, Published online: 30 JAN 2025

Dielectric heaters/sealers are widely used in the industry for different purposes as: welding, sealing, or curing dielectric materials. They are amongst electromagnetic field (EMF) sources in the industry that may cause excessive exposure to radiofrequency (RF) fields. This is due to their high power and possible use of unshielded electrodes. The frequencies used for sealers operation are in the range 10-100 MHz (mainly 13.56, 27.12, 37.00 and 40.68 MHz). The paper presents study of the electric and magnetic fields in plastic industry in Bulgaria covering 98 dielectric sealers of different types: frequencies 27.12 MHz, 40.68 MHz, 42 MHz. Most of them emit at frequency 27.12 MHz with powers from 0.6 kW to 50 kW. The article discusses specificity of the dielectric sealers as sources of EMFs in working environment and related approaches for measurements and exposure assessment. The average values of the electric field strength measured at the working places were from 64.4 V/m to 143.3 V/m; the maximal values were in the range 130 - 170 V/m, as the highest ones were registered around the highest power sealers (50 kW). Higher values were registered in the working premises with several sealers as well. Maximal electric field strengths reached up to 10 times action levels according to Directive 2013/35/EU [1]. The measured magnetic flux densities were in the range 0.19 – 0.25 μT, exceeding the action levels according to Directive 2013/35/EU. The EMF exposure assessment corresponds to the results of the medical study of workers in plastic industry conducted in our country that has shown adverse health effects observed in 31 % of persons working with dielectric sealers.
  1. Directive 2013/35/EC of Junе 26 2013 of the European Parliament and of the Council on the minimum health and safety requirements regarding the exposure of workers to the risks arising from physical agents (electromagnetic fields). Retrieved from: https://eur- lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L: 2013:179:0001:0021:EN:PDF Retrieved on: October 28, 2024
  2. Safety in the use of radiofrequency dielectric heaters and sealers, A practical guide, Occupational safety and Health Series No. 71, 1998, Prepared by the ICNIRP in collaboration with the ILO and the WHO
  3. Electromagnetic Fields, vol. 1, Non-binding guide to good practice for implementing Directive 2013/35/EU, European Commission, Brussels, Belgium, 2015.
    Retrieved from:
    https://www.gla.ac.uk/media/Media_604615_smxx .pdf
  4. М. Израел, Изследване на радиочестотните електромагнитни полета като трудовохигиенен фактор и сравнение на методите на еластограмата и реограмата при електромагнитно въздействие върху човека, дисертационен труд, МА, София 1983(M. Israel, Investigation of radio frequency electromagnetic fields as a factor in different occupations and comparison of elastogram and rheogram methods in case of electromagnetic impact on humans, PhD Thesis, National Institute of Hygiene and professional diseases, Sofia, Bulgaria, 1983)
  5. B. Kolmodin-Hedman, K. Hansson Mild, M. Hagberg, E. Jönsson, M.C. Andersson, A. Eriksson, “Health problems among operators of plastic welding machines and exposure to radiofrequency electromagnetic fields”, Int Arch Occup Environ Health., vol. 60, pp. 243-247, 1988.
    https://doi.org/10.1007/BF00378471
  6. J. Wilén, R. Hörnsten, M. Sandström, P. Bjerle, U. Wiklund, O. Stensson, E. Lyskov, K. Mild, “Electromagnetic field exposure and health among RF plastic sealer operators”, Biolelectromagnetics, vol. 25, no. 1, pp. 5–15, 2004.
    https://doi.org/10.1002/bem.10154
  7. M. Israel, K. Vangelova, D. Velkova, M. Ivanova, “Cardiovascular risk under electromagnetic exposure in physiotherapy”, Environmentalist, vol. 27, pp. 539-543, 2007.
    https://doi.org/10.1007/s10669-007-9065-0
  8. K. Vangelova, M. Israel, D. Velkova, M. Ivanova, “Changes in excretion rate of stress hormones in medical staff exposed to electromagnetic radiation”, Environmentalist, pp. 552-555, 2007.
    https://doi.org/10.1007/s10669-007-9063-2
  9. The Council of European Union. (Jul. 12, 1999). Council Recommendation 1999/519/EC on the limitation of exposure of the general public to electromagnetic fields (0 Hz to 300 GHz). Retrieved from:
    https://op.europa.eu/en/publication-detail/- /publication/9509b04f-1df0-4221-bfa2- c7af77975556/language-en
    Retrieved on: Dec. 14, 2020
  10. Opinion on Potential health effects of exposure to electromagnetic fields (EMF), SCENIHR, European Commission, 2015.
    http://doi.org/10.2772/75635
  11. R. Stam, “Occupational exposure to radiofrequency electromagnetic fields”, Industrial Health, vol. 60, no. 3, pp. 201-215, 2022.
      http://doi.org/10.2486/indhealth.2021-0129
M. Israel, M. Ivanova, V. Zaryabova, Ts. Shalamanova, "Dielectric sealers as a source of RF overexposure in working environment", RAD Conf. Proc., vol. 8, 2024, pp. 24-27; http://doi.org/10.21175/RadProc.2024.06
Radiation Detectors

THE USE OF ORGANIC MATERIAL MAKROCLEAR FOR RADIOCHROMIC INTEGRATING DOSIMETRY OF HADRON BEAMS

David Zoul, Václav Zach, Jan Štursa

DOI: 10.21175/RadProc.2024.07

Received: 5 SEP 2024, Received revised: 25 NOV 2024, Accepted: 26 DEC 2024, Published online: 30 JAN 2025

The Laboratory of Cyclotrons and Fast Neutron Generators performed a series of experimental irradiations of MAKROCLEAR radiochromic integrating dosimeters by proton and deuteron beams accelerated on a U-120M cyclotron. These dosimeters have been developed at the Research Centre Rez. The dosimeters prepared in the form of small blocks were successively irradiated by protons and deuterons of various energies and in various doses. The results of the analyzes showed that MAKROCLEAR dosimeters are very useful as inexpensive and readily available integrating proton dosimeters in the dose range up to about 7.5 kGy, where their response in white light and monochromatic light with longer wavelenght (about 640 nm)is practically linear with a dose. An even higher measuring range was seen in the case of deuterons, where the response of dosimeters was linear with a dose up to 15 kGy.
  1. A. Shamshad, M. Rashid, A. Husain, "High gamma dose dosimetry by polycarbonates", Radiat. Phys. Chem., vol. 50, no. 3, pp. 307-311, 1997.
    https://doi.org/10.1016/S0969-806X(97)00038-8
  2. A.M.S. Galante, L.L. Campos, "Characterization of polycarbonate dosimeter for gamma-radiation dosimetry", P04-15, pp. 815-819, Helsinki, Finland, 2010.
    http://www.irpa2010europe.com/pdfs/proceedings/S 04-P04.pdf
  3. A.M.S. Galante, L.L. Campos, "Mapping radiation fields in containers for industrial -irradiation using polycarbonate dosimeters", Appl. Radiat. Isot., vol. 70, no. 7, pp. 1264-1266, 2012.
    https://doi.org/10.1016/j.apradiso.2011.12.046
  4. D. Zoul, M. Cabalka, M. Koplová, "A study of using polycarbonate as a reusable radiochromic integrating dosimeter for the determination of high doses of ionizing radiation", RAD Conference Proceedings, vol. 3, pp. 138-142, 2018.
    https://doi.org/10.21175/RadProc.2018.30
  5. D. Zoul, "Studie využití polykarbonátu pro integrující dozimetrii vysokých dávek ionizujícího záření (Study of the use of polycarbonate for integrating dosimetry of high doses of ionizing radiation)", Bezpečnost jaderné energie (Nuclear power safety), vol. 25, no. 6, pp. 141- 149, 2017.
  6. V. Serini, "Polycarbonates", Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2000.
    https://doi.org/10.1002/14356007.a21_207
  7. L. Zhao, I. J. Das. Gafchromik EBT film dosimetry in proton beams. Phys Med Biol., vol. 55, pp. 291-301, 2010.
    https://doi.org/10.1115/1.4049717
  8. S. Devic, N. Tomic, D. Lewis, “Reference radiochromic film dosimetry: Review of technical aspects”, Physical Media, vol. 32, issue 4, pp 541-556, 2016.
    https://doi.org/10.1016/j.ejmp.2016.02.008
  9. A. Niroomand-Rad, S.-T. Chiu-Tsao, M. P. Grams, D. F. Lewis, C. G. Soares, L, J. Van Battum, I. J. Das, S. Trichter, M. W. Kissick, G. Massillon-JL, P. E. Alvarez, M. F. Chan, “Report of AAPM Task Group 235 Radiochromic Film Dosimetry: An Update to TG-55”, Med. Phys., vol 47, pp. 5986-6025, 2020. https://doi.org/10.1002/mp.14497
  10. C.-M. Charlie Ma, T. Lomax“Proton and Carbon Ion Therapy”, Imaging in Medical Diagnosis and Therapy 1st Edition, 2012.
    https://doi.org/10.1201/b13070
  11. D. Zoul, Radiace která léčí – část čtvrtá (Radiation that Heals – Part Four), Aldebaran Bulletin, 27/2021, https://www.aldebaran.cz/bulletin/2021_27_rad.php
  12. Nuclear physics institute CAS http://www.ujf.cas.cz/en/
  13. D. Zoul, M. Koplová, V. Rosnecký, M. Košťál, M. Vinš, J. Šimon. M. Schulc, M. Cabalka, J. Kučera, V. Strunga, “The use of Polycarbonate as dosimeter of high dose”, ASME J. Nucl. Eng. Radiat. Sci., vol. 7, pp. 220031- 220035, 2021.
    https://doi.org/10.1115/1.4049717
  14. D. Zoul, M. Koplová, V. Rosnecký, H. Štěpánková, V. Římal, J. Štěpánek, P. Mojzeš, M. Procházka, "Studium molekulárních mechanismů radiochromického jevu v polykarbonátu (Study of molecular mechanisms of radiochromic effect in polycarbonate)", Bezpečnost jaderné energie (Nuclear power safety), vol. 26, no. 64, pp. 338-346, 2018.
  15. D. Zoul, "Studie tmavnutí polykarbonátových desek v poli ionizujícího záření, (A study of the changes in optical density of the polycarbonate plates in the field of ionizing radiation)", Bezpečnost jaderné energie (Nuclear power safety), vol. 24, no. 62, pp. 33-38, 2016.
  16. D. Zoul, M. Koplová, M. Zimina, O. Libera, V. Rosnecký, M. Košťál, J. Šimon, M. Schulc, M. Vinš, M. Cabalka, J. Kučera, V. Strunga, H. Štěpánková, V. Římal, J. Čížek, J. Štěpánek, M. Procházka, “Study of chemical processes in irradiated polycarbonate in the context of its applicability for integrating dosimetry of high doses”, Radiat. Phys. Chem., vol. 177, pp. 1-33, 2020.
    https://doi.org/10.1016/j.radphyschem.2020.109203
David Zoul, Václav Zach, Jan Štursa, "The use of organic material makroclear for radiochromic integrating dosimetry of hadron beams", RAD Conf. Proc., vol. 8, 2024, pp. 28-34; http://doi.org/10.21175/RadProc.2024.07
Radiobiology

EVALUATION OF THE ASSESSMENT DOSE WITH BIODOSIMETRY METHODS, APPLICABLE IN BULGARIA. USE OF DICENTRIC CHROMOSOMAL ASSAY (DCA) AND CYTOKINESIS-BLOCK MICRONUCLEUS ASSAY

Galina Racheva

DOI: 10.21175/RadProc.2024.08

Received: 24 SEP 2024, Received revised: 18 NOV 2024, Accepted: 17 DEC 2024, Published online: 30 JAN 2025

Radiation biodosimetry deals with the measurement of a biological response that serves as a surrogate for estimating the absorbed radiation dose in exposed humans. The biodosimetry methods include cytogenetic methods such as dicentric chromosomal assay (DCA), cytokinesis-block micronucleus assay (CBMN), Fluorescence in-situ hybridization (FISH) assay, Premature chromosome condensation (PCC), etc. All of them score the marking damages such dicentric chromosomes or centric rings to calculate the absorbed dose of ionizing radiation. As a part of the European union, Bulgarian radiobiology laboratories had to switch the direction of the mainly research activity to possibility for routine practice of analysis and diagnostic of the assessment dose after ionizing exposure. This possibility determines to use of more precise methods to diagnose cellular injuries accurately. For a short period of time Bulgarian laboratories had to choose method of analysis, to develop working protocols and their own calibration curves for them. The Research laboratory of Radiobiology and Radiation protection, Military Medical Academy-Sofia is in the process of integration of DCA as a main method of biodosimetry and CBMN as a supplementing method. The criteria to choose DCA as a main method is affordability and accuracy of the method. Next stage is to organize the whole process of integration as a routine diagnostic practice as additional source of information for the patients used by the clinical hematologists and oncologists. Aim of the study: The aim of the current study is to present and describe the selected biodosimetry methods, planned to be used in the Military Medical Academy-Sofia. Materials and methods:Dicentric chromosomal assay (DCA) and cytokinesis- block micronucleus assay (CBMN). Results: The review of the described methods, give the priority to the golden standard method (DCA). It is chosen as the most affordable, applicable and highly effective for the needs of the Scientific laboratory of Radiobiology and Radiation protection, Military Medical Academy-Sofia. Cytokinesis-block micronucleus assay (CBMN) is good supplementary method, but cannot be used as a main dosimetry method, because of its limitations. Conclusion: The biodosimetry assessment of the absorbed dose is a high skilled activity. It has involved team of professionals, correct selection of applicable methods and preliminary optimization of the process. Take into consideration of the advantages and disadvantages of the selected methods, the most affordable and effective method is DCA analysis.
  1. A.S. Balajee, H.C. Turner, R.C. Wilkins, “Radiation Biodosimetry: Current Status and Future Initiatives” Cytogenet. Genome Res., vol. 163, no. 3-4, pp. 85–88, 2023.
    https://doi.org/10.1159/000535488
  2. R. Havránková, “Biological effects of ionizing radiation”, Cas Lek Cesk, vol. 159. No. 7-8, pp. 258- 260, 2020.
    Retrieved from: www.europepmc.org/abstract/MED/33445930
  3. R. Mendelson, “Informed consent for stochastic effects of ionising radiation in diagnostic imaging”, Br. J. Radiol., vol. 95, no. 1132, pp. 2021126-1-3, 2022.
    https://doi.org/10.1259/bjr.20211265
  4. R. M’Kacher, B. Colicchio, C. Borie, S. Junker, V. Marquet, L. Heidingsfelder, K. Soehnlen, W. Najar, W.M. Hempel, N. Oudrhiri, et al., “Telomere and Centromere Staining Followed by M-FISH Improves Diagnosis of Chromosomal Instability and Its Clinical Utility”, Genes, vol. 1, no. 5, pp. 475-1-17, 2020
    https://doi.org/10.3390/genes11050475
  5. H. Romm, R.C. Wilkins, C.N. Coleman, et al., “Biological dosimetry by the triage dicentric chromosome assay: potential implications for treatment of acute radiation syndrome in radiological mass casualties”, Radiat. Res., vol. 175, no. 3, pp. 397- 404, 2011.
    https://doi.org/10.1667/rr2321.1
  6. H. Nobuyuki, F. Yuki, “Classification of radiation effects for dose limitation purposes: history, current situation and future prospects”, J. Radiat. Res., vol. 55, no. 4, pp. 629-640, 2014.
    https://doi.org/10.1093/jrr/rru019
  7. C. Herate, L. Sabatier, “Retrospective biodosimetry techniques: Focus on cytogenetics assays for individuals exposed to ionizing radiation”, Mutat. Res./Rev. Mutat. Res., vol. 783, 108287, 2020.
    https://doi.org/10.1016/j.mrrev.2019.108287
  8. International Atomic Energy Agency. Cytogenetic Analysis for Radiation Dose Assessment. Manual. Technical reports series, 2001, no. 405, Vienna, IAEA. Retrieved from: https://www.iaea.org/publications/6303/cytogenetic -analysis-for-radiation-dose-assessment
    Retrieved on: Sept. 24, 2024.
  9. International Organization for Standardization (ISO) Radiation protection—performance criteria for service laboratories performing biological dosimetry by cytogenetics ISO 19238, Geneva: ISO, 2014.
  10. S. Jang, J. Lee, S.H. Kim, S. Han, S.G. Shin, S. Lee, I. Kang, W.S. Jo, S. Jeong, S.J. Oh, C.G. Lee, “Radiation dose estimation with multiple artificial neural networks in dicentric chromosome assay”, Int. J. Radiat. Biol., vol. 100, no. 6, pp. 865-874, 2024.
    https://doi.org/10.1080/09553002.2024.2338531
  11. U. Oestreicher, D. Samaga, E. Ainsbury et al., “RENEB intercomparisons applying the conventional Dicentric Chromosome Assay (DCA)”, Int. J. Radiat. Biol., vol. 93, no. 1, pp. 20-29, 2017.
    https://doi.org/10.1080/09553002.2016.1233370
  12. F.N. Flegal, Y. Devantier, J.P. McNamee R.C. Wilkins, “Quick scan dicentric chromosome analysis for radiation biodosimetry”, Health Phys., vol. 98, no. 2, pp. 276-281, 2010.
    https://doi.org/10.1097/HP.0b013e3181aba9c7
  13. H. Thierens, A. Vral, “The micronucleus assay in radiation accidents”, Ann. Ist. Super Sanita, vol. 45, no. 3, pp. 260-264, 2009.
    Retrieved from: https://www.iss.it/documents/20126/45616/ANN_09_33_Thierens.pdf/16f376be-1fac-e656-3b4a- cc57c47691e7?t=1581100041525
  14. T. Rich, R.L. Allen, A.H. Wyllie, “Defying death after DNA damage”, Nature, vol. 407, pp. 777-783, 2000.
    https://doi.org/10.1038/35037717
  15. P.G. Prasanna, M. Moroni, T.C. Pellmar, “Triage dose assessment for partial-body exposure: Dicentric analysis”, Health Phys., vol. 98, no. 2, pp. 244–251, 2010.
    https://doi.org/10.1097/01.HP.0000348020.14969.4
  16. E.E. Manasanch, R.Z. Orlowski, “Proteasome inhibitors in cancer therapy”, Nat. Rev. Clin. Oncol., vol. 14, no. 7, pp. 417-433, 2017.
    https://doi.org/10.1038/nrclinonc.2016.206
  17. C. Beinke, M. Port, A. Riecke, C.G. Ruf, M. Abend, “Adaption of the Cytokinesis-Block Micronucleus Cytome Assay for Improved Triage Biodosimetry”, Radiation Research, vol. 185, no. 5, pp.461-472, 2016.
    https://doi.org/10.1667/rr14294.1
  18. M. Simonian, D. Shirasaki, V.S. Lee, D. Bervini, M. Grace, R.R.O. Loo, et al., “Proteomics identif ication of radiation-induced changes of membrane proteins in the rat model of arteriovenous malformation in pursuit of targets for brain AVM molecular therapy”, Clin. Proteomics, vol. 15, pp. 43-1-8, 2018.
    https://doi.org/10.1186/s12014-018-9217-x
  19. P. Voisin, “Standards in biological dosimetry: a requirement to perform an appropriate dose assessment”, Mutat. Res. Genet. Toxicol. Environ. Mutagen., vol. 793, pp. 115–122, 2015.
    https://doi.org/10.1016/j.mrgentox.2015.06.012
  20. K. Rothkamm, C. Beinke, H. Romm et al, “Comparison of established and emerging biodosimetry assays”, Radiat. Res., vol. 180, no. 2, pp. 111–119, 2013.
    https://doi.org/10.1667/RR3231.1
  21. B.L. Mahaney, K. Meek, S.P. Lees-Miller, “Repair of ionizing radiation-induced DNA double-strand breaks by non-homologous end-joining”, Biochem J., vol. 417, no. 3, pp. 639-650, 2009.
    https://doi.org/10.1042/BJ20080413
  22. A. Léonard, J. Rueff, G.B. Gerber, E.D. Léonard, “Usefulness and limits of biological dosimetry based on cytogenetic methods”, Radiat. Prot. Dosim., vol. 115, no. 1-4, pp. 448-454, 2005.
    https://doi.org/10.1093/rpd/nci061
  23. L.M. Odetti, E.V. Paravani, et al., “Micronucleus test in reptiles: Current and future perspectives”, Mutat. Res. Genet. Toxicol. Environ. Mutagen., vol. 897, p. 50377, 2024.
    https://doi.org/10.1016/j.mrgentox.2024.503772
  24. A. Shibai-Ogata, C. Kakinuma, T. Hioki, T. Kasahara, “Evaluation of high-throughput screening for in vitro micronucleus test using fluorescence-based cell imaging”, Mutagenesis, vol. 26, no. 6, pp. 709-719, 2011.
    https://doi.org/10.1093/mutage/ger037
  25. M. Repin, G. Garty, R.J. Garippa, D.J. Brenner, “RABiT-III: an Automated Micronucleus Assay at a Non-Specialized Biodosimetry Facility”, Radiat Res., vol. 201, no. 6, pp. 567-571, 2024.
    https://doi.org/10.1667/rade-23-00120.1
  26. A. Vral, M. Fenech, H. Thierens, “The micronucleus assay as a biological dosimeter of in vivo ionising radiation exposure”, Mutagenesis, vol. 26, no. 1, pp.11–17, 2011.
    https://doi.org/10.1093/mutage/geq078
  27. M.T. Sproull, K.A. Camphausen, G.D. Koblentz, “Biodosimetry: A Future Tool for Medical Management of Radiological Emergencies”, Health Security, vol. 15, no. 6, pp. 599-610, 2017.
    https://doi.org/10.1089/hs.2017.0050
Galina Racheva, "Evaluation of the assessment dose with biodosimetry methods, applicable in Bulgaria. Use of dicentric chromosomal assay (DCA) and cytokinesis-block micronucleus assay", RAD Conf. Proc., vol. 8, 2024, pp. 35-38; http://doi.org/10.21175/RadProc.2024.08
Radiation Detectors

IN SITU TESTING OF A PROTOTYPE OF A LASER DOSIMETRY PROBE WITH WIRELESS DATA TRANSMISSION BASED ON THE RADIOCHROMIC PHENOMENON IN AN ORGANIC DETECTION ELEMENT

David Zoul, Hana Vodičková, Jan Vít

DOI: 10.21175/RadProc.2024.09

Received: 5 SEP 2024, Received revised: 4 DEC 2024, Accepted: 9 JAN 2025, Published online: 12 FEB 2025

In 2023, the Radiochemistry II Department of the Research Centre Rez tested a prototype of a laser telescopic probe with wireless data transmission, based on the radiochromic phenomenon in an organic detection element. This article includes a detailed description of the entire device, documentation of the course of the performed experiments, and measurement results. The laser dosimetric probes known so far consist of optical fibers, at the end of which a small scintillation or radiochromic element sensitive to ionizing radiation is attached. The use of fiber optics makes sense only in cases where the fiber itself carrying the light signal receives such a low dose of ionizing radiation that it does not measurably affect its optical properties. This technology has therefore found application primarily in the field of radiation oncology, where it is necessary to measure doses in units of centigrays (cGy) to grays (Gy), which fiber optics can handle without any problems. The laser dosimetric probe according to our technical solution eliminates the aforementioned shortcomings. In contrast with the use of optical fibers, there is no Radiation-Induced Attenuation (RIA), nor Cerenkov signal, because the light pipe is filled with air. Despite the loss of flexibility, this constitutes a clear advantage over the use of optical fibers. The probe is designed and tested for measuring very high doses in the order of units to hundreds of kilograys (kGy) and the corresponding dose rates. It is intended for industrial applications, such as measuring dose rates inside the primary circuit of nuclear reactors, near the core of nuclear reactors, in the bowels of high-activity gamma irradiation plants, hot chambers, potentially also at the site of nuclear or general radiation accidents with difficult access to the source of ionizing radiation (fire, collapse, melting of the reactor core, loss of control over the source, etc.) The experiments performed have proven the functionality and temporal stability of the constructed device for dosimetry of high dose rates in hard-to-access spaces, such as the channels of a research nuclear reactor, etc. Pilot measurements of the dose rate directly at the edge of the core during the planned shutdown of the LVR-15 nuclear research reactor have already helped to provide some valuable information on the overall inventory of activity inside the core. From the rate of decline of activity in the active zone during a shutdown, it may be possible in the future to make inferences e.g. also the radioisotope spectrum.
  1. D. Zoul, M. Cabalka, M. Koplová, “A study of using polycarbonate as a reusable radiochromic integrating dosimeter for the determination of high doses of ionizing radiation”, RAD Conference Proceedings, vol. 3, pp. 138-142, 2018.
    https://doi.org/10.21175/RadProc.2018.30
  2. D. Zoul, M. Cabalka, M. Koplová, “Studie využití polykarbonátu pro integrující dozimetrii vysokých dávek ionizujícího záření (Study of the use of polycarbonate for integrating dosimetry of high doses of ionizing radiation)”, Bezpečnost jaderné energie (Nuclear power safety), vol. 25, no. 63, pp. 141-149, 2017.
  3. D. Zoul, “A study of the changes in optical density of the polycarbonate plates in the field of ionizing radiation”, Bezpečnost jaderné energie (Nuclear power safety), vol. 24, no. 62, pp. 33-38, 2016.
  4. D. Zoul, M. Koplová, V. Rosnecký, H. Štěpánková, V. Římal, J. Štěpánek, P. Mojzeš, M. Procházka, “A study of the molecular mechanisms of the radiochromic effect in the polycarbonate”, Nuclear power safety, vol. 26, no. 64, pp. 338-346, 2018.
  5. D. Zoul, M. Koplová, O. Libera, M. Zimina, V. Rosnecký, M. Košťál, M. Cabalka, J. Kučera, V. Strunga, H. Štěpánková, V. Římal, J. Čížek, J. Štěpánek, M. Procházka, “Study of chemical processes in irradiated polycarbonate in the context of applicability for integrating dosimetry of high doses”, Radiat. Phys. Chem., vol. 177, pp. 1-33, 2020.
    https://doi.org/10.1016/j.radphyschem.2020.109203
  6. D. Zoul, M. Koplová, V. Rosnecký, M. Košťál, M. Vinš, J. Šimon, M. Schulc, M. Cabalka, J. Kučera, V. Strunga, “The use of Polycarbonate as dosimeter of high doses”, J. Nucl. Eng. Radiat. Sci., vol. 7, pp. 220031-220035, 2021.
    https://doi.org/10.1115/1.4049717
  7. V. Serini, "Polycarbonates", Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2000.
    https://doi.org/10.1002/14356007.a21_207
  8. A. Shamshad, M. Rashid, A. Husain, "High gamma dose dosimetry by polycarbonates", Radiat. Phys. Chem., vol. 50, no. 3, pp. 307-311, 1997.
    https://doi.org/10.1016/S0969-806X(97)00038-8
  9. A.M.S. Galante, L.L. Campos, "Characterization of polycarbonate dosimeter for gamma-radiation dosimetry", Proceedings of 3rd Europian IRPA Congress, Session S04Dosimetry P04-15, pp. 815- 819, Helsinki, Finland, 2010.
    http://www.irpa2010europe.com/pdfs/proceedings/S04- P04.pdf
  10. A.M.S. Galante, L.L. Campos, "Mapping radiation fields in containers for industrial -irradiation using polycarbonate dosimeters", Appl. Radiat. Isot., vol. 70, no. 7, pp. 1264-1266, 2012.
    https://doi.org/10.1016/j.apradiso.2011.12.046
  11. A. Jančář, J. Čulen, B. Mikel, M. Jelínek, F. Mravec, V. Přenosil, Z Matěj. “Development of a high range gamma detector with optical fiber for long transmission”, International Conference on Radiation Applications (RAP 2022), Book of Abstracts, 2022.
David Zoul , Hana Vodičková, Jan Vít, "In situ testing of a prototype of a laser dosimetry probe with wireless data transmission based on the radiochromic phenomenon in an organic detection element", RAD Conf. Proc., vol. 8, 2024, pp. 39-45; http://doi.org/10.21175/RadProc.2024.09
High Intensity Laser-Plasma Particle Sources

RADIATION PROTECTION AT THE ELI BEAMLINES LASER FACILITY

Benoit Lefebvre, Anna Cimmino, Dávid Horváth, Roman Truneček, Roberto Versaci, Srimanta Maity, Mihail Miceski, Alexander Molodozhentsev, Uddhab Chaulagain, Veronika Olšovcová

DOI: 10.21175/RadProc.2024.10

Received: 31 OCT 2024, Received revised: 6 JAN 2025, Accepted: 20 JAN 2025, Published online: 23 FEB 2025

The ELI ERIC (Extreme Light Infrastructure European Research Infrastructure Consortium) aims at developing and operating the next generation of high-power laser systems in Europe. The Czech pillar of the consortium is the ELI Beamlines facility. It hosts world-class lasers with peak powers reaching 10 PW and repetition rates of up to 1 kHz. There, laser-driven beamlines deliver ultra-bright and ultra-short sources of X-rays, ions, and electrons for fundamental and applied research. Beam time is offered to users worldwide. The pulsed mixed radiation fields generated at the facility are challenging from a radiation protection standpoint. The facility beamlines feature cutoff energies reaching up to hundreds of MeV for ions and GeV for electrons. The beams are characterised by a broad spectrum with radiation delivered over an extremely short time structure, generally less than 1 ps. Furthermore, copious amounts of stray ionizing radiation are produced in reason of the intrinsic laser-matter interactions and beam scattering. An overview of radiation protection considerations at the facility is presented on the topics of radiation shielding and monitoring, and Monte Carlo simulation studies. Additionally, radiological case studies of beamlines under commissioning are presented.
  1. G. Korn et al., “ELI - Extreme Light Infrastructure Whitebook”, Science and Technology with Ultra- Intense Lasers, THOSS Media GmbH, 2011. https://eli-laser.eu/media/1019/eli-whitebook.pdf
  2. A. Cimmino et al., “Radiation Protection at Petawatt Laser-Driven Accelerator Facilities: The ELI Beamlines Case”, Nucl. Scienc. Eng., vol. 198, no. 2, 245–263, 2024.
    https://doi.org/10.1080/00295639.2023.2191585
  3. F. Batysta et al., “Pulse synchronization system for picosecond pulse-pumped OPCPA with femtosecond- level relative timing jitter”, Opt. Express, vol. 22, no. 2, pp. 106-30281-30286, 2014.
    https://doi.org/10.1364/OE.22.030281
  4. J. T. Green et al., “L2-DUHA 100 TW High Repetition Rate Laser System at ELI-Beamlines: Key Design Considerations”, Rev. Laser Eng., vol. 49, no. 2, pp. 106-109, 2021.
    https://doi.org/10.2184/lsj.49.2_106
  5. E. Sistrunk et al., “All Diode-Pumped, High-repetition- rate Advanced Petawatt Laser System (HAPLS)”, Conference on Lasers and Electro-Optics, OSA Technical Digest, 2017, paper STh1L.2.
    https://doi.org/10.1364/CLEO_SI.2017.STh1L.2
  6. F. Batysta et al., “Spectral pulse shaping of a 5 Hz, multi-joule, broadband optical parametric chirped pulse amplification frontend for a 10 PW laser system”, Opt. Lett., vol. 43, no. 16, pp. 3866-3869, 2018.
    https://doi.org/10.1364/OL.43.003866
  7. S. Weber et al., “P3: an installation for high-energy density plasma physics and ultra-high intensity laser- matter interaction at ELI-Beamlines”, Matter Radiat. Extremes, vol. 2, pp. 149-176, 2017.
    https://doi.org/10.1016/j.mre.2017.03.003
  8. F. Schillaci et al., “The ELIMAIA Laser–Plasma Ion Accelerator: Technological Commissioning and Perspectives”, Quantum Beam Sci., vol. 6, no. 4, pp. 30-1-23, 2022.
    https://doi.org/10.3390/qubs6040030
  9. G.A.P. Cirrone et al., “ELIMED-ELIMAIA: The First Open User Irradiation Beamline for Laser-Plasma- Accelerated Ion Beams”, Front. Phys., vol. 8, pp. 564907-1-8, 2020.
    https://doi.org/10.3389/fphy.2020.564907
  10. E. A. Vishnyakov et al., “Compact undulator- based soft x-ray radiation source at ELI Beamlines: user-oriented program”, Proc. SPIE 12582, Compact Radiation Sources from EUV to Gamma-rays: Development and Applications, 12582, pp. 1258209-1- 10, 2023.
    https://doi.org/10.1117/12.2665377
  11. G. Grittani et al., “ELI-ELBA: fundamental science investigations with high power lasers at ELI- Beamlines”, OSA High-brightness Sources and Light- driven Interactions Congress, Optica Publishing Group, JM3A.20, 2020.
    https://doi.org/10.1364/EUVXRAY.2020.JM3A.20
  12. U. Chaulagain et al., “ELI Gammatron Beamline: A Dawn of Ultrafast Hard X-ray Science”, Photonics, vol. 9, no. 11, pp. 853-1-23, 2022.
    https://doi.org/10.3390/photonics9110853
  13. C.M. Lazzarini et al., “Ultrarelativistic electron beams accelerated by terawatt scalable kHz laser”, Phys. Plasmas, vol. 31, no. 3, pp. 030703-1-6, 2024.
    https://doi.org/10.1063/5.0189051
  14. Extreme Light Infrastructure ERIC, “ELI User Portal”, Website (current as of Oct. 31, 2024) URL: https://up.eli-laser.eu
  15. Státní úřad pro jadernou bezpečnost, “Atomic Law”, (current as of Oct. 31, 2024) (in Czech). https://www.sujb.cz/legislativa/atomove-pravo
  16. Member States of the European Union, “Consolidated version of the Treaty establishing the European Atomic Energy Community”, OJ C 203, 7.6.2016, p. 1–112, 2016. http://data.europa.eu/eli/treaty/euratom_2016/oj
  17. C. Ahdida et al, “New Capabilities of the FLUKA Multi-Purpose Code”, Front. Phys., vol. 9, pp. 788253- 1-14, 2022.
    https://doi.org/10.3389/fphy.2021.788253
  18. G. Battistoni et al., “Overview of the FLUKA code”, Ann. Nucl. Energy, vol. 82, pp. 10-18, 2015.
    https://doi.org/10.1016/j.anucene.2014.11.007
  19. V. Vlachoudis, “FLAIR: A Powerful But User Friendly Graphical Interface For FLUKA”, in Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics, 2009.
    https://cds.cern.ch/record/2749540
  20. T.D. Arber et al., “Contemporary particle-in-cell approach to laser-plasma modeling”, Plasma Phys. Control. Fusion, vol. 57, no. 11, pp. 113001-1-26, 2015.
    https://doi.org/10.1088/0741-3335/57/11/113001
  21. C. Sneha, “ICRU report 95 - Operational quantities for external radiation exposure”, Rad. Prot. Env., vol. 44, no. 2, pp. 116-119, 2021.
    https://dx.doi.org/10.4103/rpe.rpe_38_21
Benoit Lefebvre, Anna Cimmino, Dávid Horváth, Roman Truneček, Roberto Versaci, Srimanta Maity, Mihail Miceski, Alexander Molodozhentsev, Uddhab Chaulagain, Veronika Olšovcová, "Radiation protection at the ELI Beamlines laser facility", RAD Conf. Proc., vol. 8, 2024, pp. 46-52; http://doi.org/10.21175/RadProc.2024.10
Radiopharmaceuticals

ASTATINE-211 AS AN EMERGING RADIOISOTOPE FOR TARGETED ALPHA THERAPY (TAT)

Paulina Apostolova, Jean Francois-Gestin, Sanja Vranjes-Djuric, Marija Arev, Emilija Janevik - Ivanovska

DOI: 10.21175/RadProc.2024.11

Received: 24 NOV 2024, Received revised: 6 FEB 2025, Accepted: 18 FEB 2025, Published online: 8 MARCH 2025

Cancer treatment presents complex challenges, necessitating the exploration of innovative approaches for diagnosis and therapy. Among emerging prospects, Radiopharmaceutical Therapy (RPT) using α- emitting radionuclides has gained notable attention. This article provides an overview of the literature on Targeted Alpha Therapy (TAT), explicitly focusing on astatine-211 ( 211At). It discusses methodologies for labeling 211At, along with the associated challenges, to contribute to a deeper understanding of its potential role in TAT. The physical properties of 211At make it a promising candidate for treating micrometastases and disseminated tumours. Its high linear energy transfer and limited tissue range minimize the damage to healthy cells. The review explores the implications of the ongoing research project NOAR- COST focused on Network for Optimized Astatine labeled Radiopharmaceuticals. Overall, the article underscores the growing significance of the α-emitting radionuclides in cancer therapy and provides an overview of the clinical studies, highlighting the potential for 211At to become a pivotal component of TAT.
  1. National Cancer Institute. “Types of cancer treatment.” U.S. Department of Health and Human Services.
    Retrieved from: https://www.cancer.gov/about- cancer/treatment/types
    Retrieved on: Aug. 20, 2024
  2. G. Sgouros, L. Bodei, M.R. McDevitt, J.R. Nedrow, ‘’Radiopharmaceutical therapy in cancer: clinical advances and challenges”, Nat. Rev.Drug Discov., vol. 19, pp. 589–608, 2020.
    https://doi.org/10.1038/s41573-020-0073-9
  3. S.M. Qaim, “Therapeutic radionuclides and nuclear data”, Radiochima Acta, vol. 89, no.4-5, pp. 297–304, 2001.
    https://doi.org/10.1524/ract.2001.89.4-5.297
  4. A. Yordanova, E. Eppard, S. Kürpig, R.A. Bundschuh, S. Schönberger, M. Gonzalez-Carmona, G. Feldmann, H. Ahmadzadehfar, M. Essler, “Theranostics in nuclear medicine practice” Onco Targets Ther., vol. 10, pp. 4821– 4828, 2017.
    https://doi.org/10.2147/OTT.S140671
  5. S. Salih, A. Alkatheeri, W. Alomaim, A. Elliyanti, “Radiopharmaceutical Treatments for Cancer Therapy, Radionuclides Characteristics, Applications, and Challenges”, Molecules, vol. 27, no. 16, p. 5231, 2022.
    https://doi.org/10.3390/molecules27165231
  6. Ø.S. Bruland, R.H. Larsen, R.P. Baum, A. Juzeniene, “Editorial: Targeted alpha particle therapy in oncology”. Front. Med., vol. 10, p. 1165747, 2023.
    https://doi.org/10.3389/fmed.2023.1165747
  7. G. Sgouros, A.M. Ballangrud, J.G. Jurcic, M.R. McDevitt, J.L. Humm, Y. E. Erdi, B.M. Mehta, R.D. Finn, S.M. Larson, D.A. Scheinberg, “Pharmacokinetics and dosimetry of an α-particle emitter antibody: 213Bi-HuM195 (anti-CD33) in patients with leukemia”, J.Nucl.Med., vol. 40, no. 11, pp 1935–1946, 1999.
  8. European Pharmaceutical Review, "The future of targeted alpha therapy: development and manufacture". Retrieved from:
    https://www.europeanpharmaceuticalreview.com/article/217962/the-future-of-targeted-alpha-therapy- development-and-manufacture/
    Retrieved on: Aug. 16, 2024.
  9. U.S. National Library of Medicine, ClinicalTrials.gov. "Search Results for 'Targeted Alpha Therapy and Cancer" Retrieved from: https://clinicaltrials.gov/search?cond=Cancer&intr=targe ted%20alpha%20therapy&sort=StudyFirstPostDate.
    Retrieved on: Aug. 31, 2024.
  10. F.D.C. Guerra Liberal, J.M. O'Sullivan, S.J. McMahon, K.M. Prise, “Targeted Alpha Therapy: Current Clinical Applications”, Cancer Biother. Radiopharm., vol. 35, no 6, pp. 404-417, 2020.
    https://doi.org/10.1089/cbr.2020.3576
  11. R. Eychenne, M. Chérel, F. Haddad, F. Guérard, J.F. Gestin, “Overview of the Most Promising Radionuclides for Targeted Alpha Therapy: The "Hopeful Eight", Pharmaceutics, vol. 13, no. 6, pp. 906-1-50, 2021.
    https://doi.org/10.3390/pharmaceutics13060906
  12. Y.S. Kim, M.W. Brechbie. “An overview of targeted alpha therapy”, Tumour Biol, vol. 33, no. 3, pp. 573-590, 2012.
    https://doi.org/10.1007/s13277-011-0286-y
  13. O. Couturier, S. Supiot, M. Degraef-Mougin, A. Alain Faivre-Chauvet, T. Carlier, J.-F. Chatal, F. Davodeau, M. Cherel, “Cancer radioimmunotherapy with alpha-emitting nuclides”, Eur J Nucl Med Mol Imaging, vol. 32, no. 5, pp. 601-614, 2005.
    https://doi.org/10.1007/s00259-005-1803-2
  14. T.G.A. Reuvers, R. Kanaar, J.Nonnekens, “DNA Damage- Inducing Anticancer Therapies: From Global to Precision Damage”, Cancers, vol. 12, pp. 2098-1-22, 2020.
    https://doi.org/10.3390/cancers12082098
  15. J. P. Pouget, J. Constanzo. “Revisiting the Radiobiology of Targeted Alpha Therapy”, Frontiers in medicine, vol. 8, 692436, 2021.
    https://doi.org/10.3389/fmed.2021.692436
  16. I.A. Kassis, S.J. Adelstein, “Radiobiologic principles of radionuclide therapy”, J. Nucl. Med, vol. 46, suppl. 1, pp. 4S–12S, 2005.
  17. T. Jabbar, S. Bashir, M. I. Babar, “Review of current status of targeted alpha therapy in cancer treatment”, Nuclear medicine review. Central & Eastern Europe, vol. 26, no. 0, pp. 54–67, 2023.
    https://doi.org/10.5603/NMR.2023.0003
  18. J. Elgqvist, S. Frost, J.P. Pouget, P. Albertsson, “The potential and hurdles of targeted alpha therapy - clinical trials and beyond”, Front Oncol., vol. 3, no. 324, 2014.
    https://doi.org/10.3389/fonc.2013.00324
  19. A. Jang, A.T. Kendi, G.B. Johnson, T.R. Halfdanarson, O. Sartor, “Targeted Alpha-Particle Therapy: A Review of Current Trials”, Int. J. Mol. Sci., vol. 24, no. 14, p. 11626- 1-15, 2023.
    https://doi.org/10.3390/ijms241411626
  20. M. Miederer, M. Benešová-Schäfer, C. Mamat, D. Kästner, M. Pretze, E. Michler, C. Brogsitter, J. Kotzerke, K. Kopka, D.A Scheinberg, M.R. McDevitt, “Alpha-Emitting Radionuclides: Current Status and Future Perspectives”, Pharmaceuticals, vol. 17, p. 76, 2024.
    https://doi.org/10.3390/ph17010076
  21. M.R. McDevitt, R.D. Finn, D. Ma, S.M. Larson, D.A. Scheinberg, “Preparation of alpha-emitting 213Bi-labeled antibody constructs for clinical use”, J. Nucl. Med., vol. 40, no. 10, pp. 1722–1727, 1999.
  22. S. Heeger, G. Moldenhauer, G. Egerer, T. Nikula, C. Apostolidis, M. Brechbiel, U. Haberkorn, A. D. Ho, R. Haas, “Alpha radioimmunotherapy of B-lineage non-Hodgkin’s lymphoma using 213Bi-labeled anti-CD19- and anti-CD20-CHX-A”-DTPA conjugates”, J. Clin. Oncol., vol. 22, no. S14, p. 2625, 2004.
    https://doi.org/10.1200/jco.2004.22.90140.2625
  23. B.J. Allen, A.A. Singla, S.M. Rizvi, P. Graham, F. Bruchertseifer, C. Apostolidis, A. Morgenstern, “Analysis of patient survival in a phase I trial of systemic targeted a- therapy for metastatic melanoma”, Immunotherapy, vol. 3, no. 9, pp. 1041-1050, 2011.
    https://doi.org/10.2217/imt.11.97
  24. M.E. Autenrieth, C. Seidl, F. Bruchertseifer, T. Horn, F. Kurtz, B. Feuerecker, C. D'Alessandria, C. Pfob , S. Nekolla, C. Apostolidis , S. Mirzadeh, J. E. Gschwend, M. Schwaiger , K. Scheidhauer , A. Morgenstern, “Treatment of carcinoma in situ of the urinary bladder with an alpha- emitter immunoconjugate targeting the epidermal growth factor receptor: A pilot study”, Eur. J. Nucl. Med. Mol. Imaging, vol. 45, pp. 1364-1371, 2018.
    https://doi.org/10.1007/s00259-018-4003-6
  25. D. Cordier, F. Forrer, F. Bruchertseifer, A. Morgenstern, C. Apostolidis, S. Good, J. Müller-Brand, H. Mäcke, J.C. Reubi, A. Merlo, “Targeted alpha-radionuclide therapy of functionally critically located gliomas with 213Bi- DOTA[Thi8,Met(O2)11]-substance P: A pilot trial”,Eur. J. Nucl. Med. Mol. Imaging, vol. 37, pp. 1335-1344, 2010.
    https://doi.org/10.1007/s00259-010-1385-5
  26. C. Kratochwil, F.L. Giesel, F. Bruchertseifer W. Mier, C. Apostolidis, R. Boll, K. Murphy, U. Haberkorn & A. Morgenstern, “ 213Bi-DOTATOC receptor-targeted alpha- radionuclide therapy induces remission in neuroendocrine tumours refractory to beta radiation: A first-in-human experience”, Eur. J. Nucl. Med. Mol. Imaging, vol. 41, pp. 2106-2119, 2014.
    https://doi.org/10.1007/s00259-014-2857-9
  27. U.S. National Library of Medicine, ClinicalTrials.gov. "Search Results for 212Pb".
    Retrieved from:
    https://clinicaltrials.gov/search?intr=212Pb&limit=50&p age=1
    Retrieved on: Sep. 02, 2024.
  28. Production and Quality control of Actinium-225 radiopharmaceuticals, IAEA-TECDOC-2057, IAEA, Vienna, Austria, 2024, pp. 1-62.
    https://doi.org/10.61092/iaea.95h3-2ji2
    Retrieved from:
    https://www.iaea.org/publications/15707/production- and-quality-control-of-actinium-225-radiopharmaceuticals
  29. U.S. National Library of Medicine, ClinicalTrials.gov. "Search Results for actinium-225 and Ac-225".
    https://clinicaltrials.gov/search?term=actinium-225
    Retrieved on: Jan. 23, 2025.
  30. P. G. Kluetz, W. Pierce, V. E. Maher, H. Zhang, S. Tang, P. Song, Q. Liu, M. T.,Haber, E. E. Leutzinger, A. Al-Hakim, W. Chen, T. Palmby, E. Alebachew, R. Sridhara, A. Ibrahim, R. Justice, R. Pazdur, “Radium Ra-223 dichloride injection: U.S. Food and Drug Administration drug approval summary”, Clin. Cancer Res., vol. 20, no. 1, pp. 9–14, 2014.
    https://doi.org/10.1158/1078-0432.CCR-13-2665
  31. C. Fry, M. Thoennessen, “Discovery of the astatine, radon, francium, and radium isotopes”, Atomic Data and Nuclear Data Tables, vol. 99, no. 5, pp. 497-519, 2013.
    https://doi.org/10.1016/j.adt.2012.05.003
  32. M.B.C. Sevenois, B.WM. Miller, H.J. Jensen, M.D'Huyvetter, P. Covens, “Optimized cyclotron production of 211At: The challenge of 210Po- characterization”, Radiat. Phys. Chem., vol. 212, 111155, 2023.
    https://doi.org/10.1016/j.radphyschem.2023.111155
  33. S. Lindegren, T. Bäck, H.J. Jensen, “Dry-distillation of astatine-211 from irradiated bismuth targets: a time- saving procedure with high recovery yields”,Appl. Radiat. Isot., vol. 55, no. 2, pp. 157-60, 2001.
    https://doi.org/10.1016/s0969-8043(01)00044-6
  34. E.R. Balkin, D.K. Hamlin, K. Gagnon, M.-K. Chyan, S. Pal, Watanabe, S.D.S. Wilbur, “Evaluation of a Wet Chemistry Method for Isolation of Cyclotron Produced [ 211At]Astatine”, Appl. Sci., vol. 3, no. 3, pp. 636-655, 2013 https://doi.org/10.3390/app3030636
  35. M.R. Zalutsky, D.A. Reardon, O.R. Pozzi, G. Vaidyanathan, D.D. Bigner, “Targeted alpha-particle radiotherapy with 211At-labeled monoclonal antibodies”, Nucl. Med. Biol., vol. 34, no. 7, pp. 779–785, 2007.
    https://doi.org/10.1016/j.nucmedbio.2007.03.007
  36. G. Sgouros et al., MIRD Pamphlet No. 22 (Abridged): Radiobiology and Dosimetry of α-Particle Emitters for Targeted Radionuclide Therapy, J. Nucl. Med., vol. 51, no.2, pp. 311-328, 2010.
    https://doi.org/10.2967/jnumed.108.058651
  37. F. Guérard, C. Maingueneau, L. Liu, R. Eychenne, J.F. Gestin, G. Montavon, N. Galland, “Advances in the Chemistry of Astatine and Implications for the Development of Radiopharmaceuticals”,Acc. Chem. Res., vol. 54, no. 16, pp. 3264–3275, 2021.
    https://doi.org/10.1021/acs.accounts.1c00327
  38. Y. Feng and M. R. Zalutsky, “Production, purification and availability of 211At: term steps towards global access”, Nucl. Med. Biol., vol. 100-101, pp. 12-23, 2021.
    https://doi.org/10.1016/j.nucmedbio.2021.05.007
  39. R. Eychenne, C. Alliot, J.-F Gestin, F. Guérard, “Radiolabeling Chemistry with Heavy Halogens Iodine and Astatine”, Biomedical Sciences, 2021.
    https://inserm.hal.science/inserm-03332003
  40. M. Vanermen, M. Ligeour, M.C. Oliveira, et al. “Astatine- 211 radiolabelling chemistry: from basics to advanced biological applications”, EJNMMI Radiopharm. Chem., vol. 9, no. 69, 2024.
    https://doi.org/10.1186/s41181-024-00298-4
  41. S. Hirata, K. Mishiro, K. Washiyama, M. Munekane, T. Fuchigami, Y. Arano, K. Takahashi, S. Kinuya, K. Ogawa,”In Vivo Stability Improvement of Astatobenzene Derivatives by Introducing Neighboring Substituents”, J of Med chem, Advance online publication, 2025.
    https://doi.org/10.1021/acs.jmedchem.4c02188
  42. F. Guérard, J.-F. Gestin, M.W. Brechbiel, “Production of [(211)At]-astatinated radiopharmaceuticals and applications in targeted α-particle therapy”, Cancer Biother Radiopharm. vol. 28, no.1, pp. 1-20, 2013.
    https://doi.org/10.1089/cbr.2012.1292
  43. Y.V. Norseev, “Synthesis of astatine-tagged methylene blue, a compound for fighting micrometastases and individual cells of melanoma”, J. Radioanal. Nucl. Chem, vol. 237, pp. 155–158, 1998.
    https://doi.org/10.1007/BF02386681
  44. G. Vaidyanathan, M.R. Zalutsky, “1-(m- [ 211At]astatobenzyl)guanidine: synthesis via astato demetalation and preliminary in vitro and in vivo evaluation”, Bioconjug. Chem., vol. 3, no. 6, pp. 499-503, 1992.
    https://doi.org/10.1021/bc00018a006
  45. F. Guérard, L. Navarro, Y.S. Lee, A. Roumesy, C. Alliot, M. Chérel, M.W. Brechbiel, J.-F. Gestin, “Bifunctional aryliodonium salts for highly efficient radioiodination and astatination of antibodies”, Bioorg. Med. Chem., vol. 25, no. 21, pp. 5975-5980, 2017.
    https://doi.org/10.1016/j.bmc.2017.09.022
  46. M. Berdal, S. Gouard, R. Eychenne et al., “Investigation on the reactivity of nucleophilic radiohalogens with arylboronic acids in water: access to an efficient single- step method for the radioiodination and astatination of antibodies”, Chem. Sci, vol. 12, no. 4, pp. 1458-1468, 2021.
    https://doi.org/10.1039/d0sc05191h
  47. S.W. Reilly, M. Makvandi, K. Xu, R.H. Mach, “Rapid Cu- Catalyzed [211At]Astatination and [125I]Iodination of Boronic Esters at Room Temperature” Org. Lett., vol. 20, no. 7, pp. 1752-1755, 2018.
    https://doi.org/10.1021/acs.orglett.8b00232
  48. G. Vaidyanathan, O.R. Pozzi, J. Choi, X.G. Zhao, S. Murphy, M.R. Zalutsky, “Labeling Monoclonal Antibody with α-emitting 211At at High Activity Levels via a Tin Precursor”, Cancer Biother. Radiopharm., vol. 35, no. 7, pp. 511-519, 2020.
    https://doi.org/10.1089/cbr.2019.3204
  49. M.R. Zalutsky, P.K. Garg, H.S. Friedman, D.D. Bigner, “Labeling monoclonal antibodies and F(ab')2 fragments with the alpha-particle-emitting nuclide astatine-211: preservation of immunoreactivity and in vivo localizing capacity”, Proc. Natl. Acad. Sci., vol. 86, no. 18, pp. 7149- 7153, 1989.
    https://doi.org/10.1073/pnas.86.18.7149
  50. S. Lindegren, S. Frost, T. Bäck, E. Haglund, J. Elgqvist, H. Jensen, “Direct Procedure for the Production of 211At- Labeled Antibodies with an ε-Lysyl-3-(Trimethylstannyl) Benzamide”, J. Nucl. Med., vol. 49, no. 9, pp. 1537–1545, 2008.
    https://doi.org/10.2967/jnumed.107.049833
  51. K. Fujiki, Y. Kanayama, S. Yano, N. Sato, T. Yokokita, et al., “211At-labeled immunoconjugate via a one-pot three- component double click strategy: practical access to a- emission cancer radiotherapeutics’’, Chem. Sci., vol. 10, no. 7, pp. 1936–1944, 2019.
    https://doi.org/10.1039/c8sc04747b
  52. U.S. National Library of Medicine, ClinicalTrials.gov. "Search Results for astatine-211 and At-211". https://clinicaltrials.gov/search?term=astatine
    Retrieved on: Jan. 23, 2025
  53. https://www.cancer.gov/research/participate/clinical- trials-search/v?id=NCI-2020-06835&r=1
    Retrieved on: Jan. 04, 2025
  54. P. Albertsson, T. Bäck, K. Bergmark, A. Hallqvist, M. Johansson, E. Aneheim, S. Lindegren, C. Timperanza, K. Smerud, S. Palm, “Astatine-211 based radionuclide therapy: Current clinical trial landscape” Front.Med., vol. 6, no. 9, p. 1076210-1-15, 2023.
    https://doi.org/10.3389/fmed.2022.1076210
  55. J.G. Hamilton, P.W. Durbin, M.W. Parrott.,” Accumulation of astatine211 by thyroid gland in man”, Proc. Soc. Exp. Biol. Med., vol. 86, no.2, pp. 366–9, 1954.
    https://doi.org/10.3181/00379727-86-21100
  56. https://www.cost.eu/actions/CA19114/
    Retrieved on: Sep. 01, 2024
  57. Y. Feng and M. R. Zalutsky, “Production, purification and availability of 211At: term steps towards global access”, Nucl. Med. Biol., vol. 100-101, pp. 12-23, 2021.
    https://doi.org/10.1016/j.nucmedbio.2021.05.007
  58. https://www.isotopes.gov/WAC
    Retrieved on: Sep. 03, 2024
Paulina Apostolova, Jean Francois-Gestin, Sanja Vranjes-Djuric, Marija Arev, Emilija Janevik-Ivanovska, "Astatine-211 as an emerging radioisotope for Targeted Alpha Therapy (TAT)", RAD Conf. Proc., vol. 8, 2024, pp. 53-58; http://doi.org/10.21175/RadProc.2024.11
Medical Imaging

OPTIMIZATION OF THE ACCURACY OF THE ELECTRICAL IMPEDANCE TOMOGRAPHY IMAGES OF THE LUNG

Ivaylo Minev, Vedran Jukic, Teodora Gogova, Nikoleta Traykova

DOI: 10.21175/RadProc.2024.12

Received: 5 DEC 2024, Received revised: 3 MARCH 2025, Accepted: 10 MARCH 2025, Published online: 21 MARCH 2024

Electrical impedance tomography (EIT) is a non-invasive method for monitoring of lung ventilation at the bedside. To improve the personalization and increase the information value of the method, optimization of the accuracy of the lung EIT images must be achieved. The main goal of the study was to develop a methodology for individualized reconstruction of the EIT images. The investigation includes computer tomography (CT) and electrical impedance tomography (EIT) data of two mechanically ventilated trauma patients with pulmonary contusion, admitted to the Department of Anesthesiology and Intensive care, University hospital “St. George” (Plovdiv, Bulgaria). Following a CT scan analysis, a fem mesh is used for determination of the contour of the patient’s thorax. Subsequently the raw EIT data is reconstructed in the resulting individualized contour. A protocolized approach to the individual patient is created. As a result of a comparative analysis between the lung areas on the CT image and the reconstructed EIT image taken at the corresponding thoracic level, the spatial morphological sensitivity of the EIT is determined (% of overlapping conformity > 82%). Thus, overcoming the limitations for placing the EIT electrodes at different than initially recommended positions, enables the clinical application of EIT in conditions characterized by heterogeneously disseminated or solitary lesions occur. The personalized approach reveals the EIT potential to provide sufficient spatial resolution and image accuracy to support the optimization of mechanical ventilation, especially in case of heterogeneously disseminated or solitary lesions. It enables EIT practical application as a hybrid method for image diagnostics and monitoring of the pathophysiological changes in ventilation and perfusion in pulmonary contusion.
  1. S. Leonhardt, B. Lachmann, “Electrical impedance tomography: The holy grail of ventilation and perfusion monitoring?”, vol. 38, pp. 1917–1929, 2012.
    https://doi.org/10.1007/s00134-012-2684-z
  2. T. Muders, H. Luepschen, C. Putensen, “Impedance tomography as a new monitoring technique”, Curr Opin Crit Care, vol. 16, no. 3, pp. 269–275, 2010.
    https://doi.org/10.1097/MCC.0B013E3283390CBF
  3. J. M. Constantin, S. Perbet, J. Delmas, E. Futier, “Electrical impedance tomography: So close to touching the holy grail”, Critical Care, vol. 18, no. 164, 2014.
    https://doi.org/10.1186/cc13979
  4. B. Vogt et al., “Spatial and temporal heterogeneity of regional lung ventilation determined by electrical impedance tomography during pulmonary function testing”, J Appl Physiol, vol. 113, no. 7, pp. 1154–1161, 2012.
    https://doi.org/10.1152/japplphysiol.01630.2011
  5. R. Bhatia, G.M. Schmölzer, P.G. Davis, D.G. Tingay, ‘Electrical impedance tomography can rapidly detect small pneumothoraces in surfactant-depleted piglets’, Intensive Care Med, vol. 38, no. 2, pp. 308–315, 2012.
    https://doi.org/10.1007/S00134-011-2421-Z
  6. S. Pulletz et al., “Dynamics of regional lung aeration determined by electrical impedance tomography in patients with acute respiratory distress syndrome”, Multidiscip Respir Med, vol. 7, no. 6, 2012.https://doi.org/10.1186/2049-6958-7-44
  7. B. Vogt, Z. Zhao, P. Zabel, N. Weiler, I. Frerichs, “Regional lung response to bronchodilator reversibility testing determined by electrical impedance tomography in chronic obstructive pulmonary disease”, Am J Physiol Lung Cell Mol Physiol, vol. 311, pp. 8–19, 2016.
    https://doi.org/10.1152/ajplung.00463.2015.-Patients
  8. R.E. Serrano et al., “Use of electrical impedance tomography (EIT) for the assessment of unilateral pulmonary function”, Physiol Meas, vol. 23, no. 1, p. 211, 2002.
    https://doi.org/10.1088/0967-3334/23/1/322
  9. Z. Zhao, U. Müller-Lisse, I. Frerichs, R. Fischer, K. Möller, “Regional airway obstruction in cystic fibrosis determined by electrical impedance tomography in comparison with high resolution CT”, Physiol Meas, vol. 34, no. 11, 2013.
    https://doi.org/10.1088/0967-3334/34/11/N107
  10. Z. Zhao, D. Steinmann, I. Frerichs, J. Guttmann, K. Möller, “PEEP titration guided by ventilation homogeneity: a feasibility study using electrical impedance tomography”, Crit Care, vol. 14, no. 1, 2010.
    https://doi.org/10.1186/CC8860
  11. P. Blankman, D. Hasan, G.J. Erik, D. Gommers, “Detection of “best” positive end-expiratory pressure derived from electrical impedance tomography parameters during a decremental positive end-expiratory pressure trial”, Crit Care, vol. 18, no. 3, 2014.
    https://doi.org/10.1186/CC13866
  12. W.R.B. Lionheart, “EIT reconstruction algorithms: pitfalls, challenges and recent developments”, Physiol Meas, vol. 25, no. 1, pp. 125–142, 2004.
    https://doi.org/10.1088/0967-3334/25/1/021
  13. J. Karsten, T. Stueber, N. Voigt, E. Teschner, H. Heinze, “Influence of different electrode belt positions on electrical impedance tomography imaging of regional ventilation: A prospective observational study”, Crit Care, vol. 20, no. 1, 2016.
    https://doi.org/10.1186/s13054-015-1161-9
  14. S. Krueger-Ziolek, B. Schullcke, J. Kretschmer, U. Müller- Lisse, K. Möller, Z. Zhao, “Positioning of electrode plane systematically influences EIT imaging”, Physiol Meas, vol. 36, no. 6, pp. 1109–1118, 2015.
    https://doi.org/10.1088/0967-3334/36/6/1109
  15. J. Gao, S. Yue, J. Chen, H. Wang, “Classification of normal and cancerous lung tissues by electrical impendence tomography”, Biomed Mater Eng, vol. 24, no. 6, pp. 2229–2241, 2014.
    https://doi.org/10.3233/BME-141035
  16. F. Reifferscheid et al., “Regional ventilation distribution determined by electrical impedance tomography: Reproducibility and effects of posture and chest plane”, Respirology, vol. 16, no. 3, pp. 523–531, 2011.
    https://doi.org/10.1111/J.1440-1843.2011.01929.X
  17. C.J.C. Trepte et al., “Electrical impedance tomography (EIT) for quantification of pulmonary edema in acute lung injury”, Crit Care, vol. 20, no. 1, p. 6, 2016.
    https://doi.org/10.1186/s13054-015-1173-5
  18. F. Fu et al., “Use of electrical impedance tomography to monitor regional cerebral edema during clinical dehydration treatment”, PLoS One, vol. 9, no. 12, p. e113202, 2014.
    https://doi.org/10.1371/JOURNAL.PONE.0113202
  19. S. Hannan, M. Faulkner, K. Aristovich, J. Avery, M.C. Walker, D.S. Holder, “In vivo imaging of deep neural activity from the cortical surface during hippocampal epileptiform events in the rat brain using electrical impedance tomography”, Neuroimage, vol. 209, p. 116525, 2020.
    https://doi.org/10.1016/J.NEUROIMAGE.2020.116525
  20. J.M. Porcel, M. Azzopardi, C.F. Koegelenberg, F. Maldonado, N.M. Rahman, Y.C.G. Lee, ‘The diagnosis of pleural effusions”, Expert Rev Respir Med, vol. 9, no. 6, pp. 801–815, 2015.
    https://doi.org/10.1586/17476348.2015.1098535
  21. S.A. Paul Chubb and R.A. Williams, “Biochemical Analysis of Pleural Fluid and Ascites”, Clin Biochem Rev, vol. 39, no. 2, pp. 39-50, 2018, 2024.
    [Online]. Available:
    https://pmc.ncbi.nlm.nih.gov/articles/PMC6223608/
  22. P.W.A. Kunst et al., “Electrical impedance tomography in the assessment of extravascular lung water in noncardiogenic acute respiratory failure”, Chest, vol. 116, no. 6, pp. 1695–1702, 1999.
    https://doi.org/10.1378/CHEST.116.6.1695
  23. “Increasing positive end-expiratory pressure (re-) improves intraoperative respiratory mechanics and lung ventilation after prone positioning”, Br J Anaesth, vol. 116, no. 6, pp. 838–846, 2016.
    https://doi.org/10.1093/BJA/AEW115
  24. T. Becher, B. Vogt, M. Kott, D. Schädler, N. Weiler, I. Frerichs, “Functional Regions of Interest in Electrical Impedance Tomography: A Secondary Analysis of Two Clinical Studies”, PLoS One, vol. 11, no. 3, 2016.
    https://doi.org/10.1371/JOURNAL.PONE.0152267
Ivaylo Minev, Vedran Jukic, Teodora Gogova, Nikoleta Traykova, "Optimization of the accuracy of the electrical impedance tomography images of the lung", RAD Conf. Proc., vol. 8, 2024, pp. 59-63; https://doi.org/10.21175/RadProc.2024.12
Covid 19

FEAR OF COVID-19 AMONG BULGARIAN HEALTHCARE WORKERS AND RECOVERED PATIENTS DURING THE COVID-19 PANDEMIC

Miroslava Petkova, Emil Nikolov

DOI: 10.21175/RadProc.2024.13

Received: 4 NOV 2024, Received revised: 21 FEB 2025, Accepted: 28 FEB 2025, Published online: 30 MARCH 2025

The COVID-19 pandemic made a significant impact on global psychological wellbeing. To investigate the impact of COVID-19 on different groups’ behavior, the current study assessed fear of COVID-19, anxiety, depression and sleep quality among medical professionals and patients. The study was proceeding during the period February- June 2021 following the highest number of pandemic-related deaths in Bulgaria. The fear predicted elevated levels of anxiety, depression, and sleep quality were assessed. Purpose: The aim of the study is to assess fear of COVID-19 among frontline healthcare workers in comparison with patients, recovered after the disease. Materials and Methods: The study was a questionnaire-based analytical incorporating four questionnaire-based tools. First questionnaire was used to assess fear of COVID-19. The second was for sleep disturbances assessment, the third questionnaire was used to assess general depression and the forth - anxiety. Results: In terms of sleep status, their average PSQI score was 7.6 (SD = 3.5) points, with a range from 0 to 16 points. According to the cut point of PSQI, 58(42.9%) of medical professionals were suffering from sleep disturbances. On the contrary - average PSQI score was 3.4 (SD = 2.6) points, with a range from 0 to 16 points. According to the cut point of PSQI, 43(41.2%) of recovered patients were suffering from sleep disturbances. Anxiety, depression and fear of COVID-19 were more common in healthcare workers than in patients. Conclusions: 81.9% of female nurses shared sleep disturbances comparing with 15.1% of male medical professionals and 41.2% of male and female patients. During the epidemic period, particular attention must be paid to the mental well-being and sleep quality
  1. S.A. Lee, “Coronavirus Anxiety Scale: A brief mental health screener for COVID-19 related anxiety”, Death Studies, vol. 44, no. 7, pp. 393–401, 2020.
    https://doi.org/10.1080/07481187.2020.1748481
  2. S. Cabarkapa, S.E. Nadjidai, J. Murgier, “The psychological impact of COVID-19 and other viral epidemics on frontline HWS and ways to address it: A rapid systematic review”, Brain, Behavior, & Immunity - Health, vol. 8, pp. 100144 – 1 -10, 2020.
    https://doi.org/10.1016/j.bbih.2020.100144
  3. K. Vanhaecht, D. Seys, L. Bruyneel., B. Cox, G. Kaesemans, M. Cloet, K. Van Den Broeck, O. Cools, A. De Witte, K. Lowet, et al., “COVID-19 is having a destructive impact on health-care workers’ mental well-being”, International Journal for Quality in Health Care, vol. 33, no. 1, pp. mzaa158-1-6, 2021.
    https://doi.org/10.1093/intqhc/mzaa158
  4. U. Jain, “Risk of COVID-19 due to Shortage of Personal Protective Equipment”, Cereus., vol. 12, no. 6, pp. e8837-1-5, 2020.
    https://doi.org/10.7759/cureus.8837
  5. A. Anand, A. Gupta, S. Sing, S. Pyakurel, R. Karkee, P. Pyakurel, “Knowledge and attitude regarding the COVID-19 pandemic among undergraduate health science students of Nepal: An online survey”, SAGE Open Med., vol. 11, pp. 1-14, 2023.
    https://doi.org/10.1177/20503121231196703
  6. S. Burrowe, S. Casey, N. Pierre-Josep, S. Talbot, T. Hall, N. Christian-Brathwaite, M. Del-Carmen, C. Garofalo, B. Lundberg, P. Mehta, J. Mottl-Santiago, E. Schechter-Perkins, A. Weber, C. Yarrington, R. Perkins. “COVID-19 pandemic impacts on mental health, burnout, and longevity in the workplace among healthcare workers: A mixed methods study”, J. Interprof. Educ. Pract., vol. 32, pp. 100661-1-9, 2023.
    https://doi.org/10.1016/j.xjep.2023.100661
  7. E. Nagle, S. Šuriņa, I. Griškēviča, “Healthcare Workers’ Moral Distress during the COVID-19 Pandemic: A Scoping Review”, Soc. Sci., vol. 12, no. 7, pp. 371-1-17, 2023.
    https://doi.org/10.3390/socsci12070371
  8. SeyedAhmad SeyedAlinaghi, et al., “Social stigma during COVID-19: A systematic review”, SAGE Open Med., vol. 11, p. 20503121231208273, 2023.
    https://doi.org/10.1177/20503121231208273
  9. D. Buysse, C. Reynolds 3rd, T. Monk, S. Berman, D. Kupfer, “The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research”, Psychiatry Res., vol. 28, no. 2, pp. 193-213, 1989.
    https://doi.org/10.1016/0165-1781(89)90047-4
  10. G.A. Palmer, A. Dahlstrom, A. Kingwell, J. Van Sickle, J. (2017). Beck Anxiety Inventory. In: Zeigler-Hill, V., Shackelford, T. (eds) Encyclopedia of Personality and Individual Differences. Springer, Cham.
    https://doi.org/10.1007/978-3-319-28099-8_5-1
  11. Z.E. García-Batista, K. Guerra-Peña, A. Cano-Vindel, S.X. Herrera-Martínez, L.A. Medrano “Validity and reliability of the Beck Depression Inventory (BDI-II) in general and hospital population of Dominican Republic”, PLOS One, vol. 13, no. 6, pp. e0199750-1- 12, 2018.
    https://doi.org/10.1371/journal.pone.0199750
  12. G. Mertens, S. Duijndam, T. Smeets, P. Lodder, “The latent and item structure of COVID-19 fear: A comparison of four COVID-19 fear questionnaires using SEM and network analyses”, Journal of Anxiety Disorders, vol. 81, pp. 102415-1-9, 2021.
    https://doi.org/10.1016/j.janxdis.2021.102415
  13. N.B. Elsharkawy, E.M. Abdelaziz “Levels of fear and uncertainty regarding the spread of coronavirus disease (COVID-19) among university students”, Perspect. Psychiatr. Care, vol. 57, pp. 1356–1364, 2020.
    https://doi.org/10.1111/ppc.12698
  14. A. Metin, E.S. Erbiçer, S. Şen, A. Çetinkaya, “Gender and COVID-19 related fear and anxiety: A meta- analysis”, J. Affect Disord., vol. 310, pp. 384-395, 2022.
    https://doi.org/10.1016/j.jad.2022.05.036
  15. Y. Zolotov, A. Reznik, S. Bender, et al., “COVID-19 Fear, Mental Health, and Substance Use Among Israeli University Students”, Int. J. Ment. Health Addiction, vol. 20, pp. 230–236, 2022.
    https://doi.org/10.1007/s11469-020-00351-8
  16. F. Bakioğlu, O. Korkmaz, H. Ercan, “Fear of COVID- 19 and Positivity: Mediating Role of Intolerance of Uncertainty, Depression, Anxiety, and Stress”, Int. J. Ment. Health Addiction, vol. 19, no. 6, pp. 2369-2382, 2021.
    https://doi.org/10.1007/s11469-020-00331-y
Miroslava Petkova, Emil Nikolov, "Fear of COVID-19 among Bulgarian healthcare workers and recovered patients during the COVID-19 pandemic", RAD Conf. Proc., vol. 8, 2024, pp. 64-67; http://doi.org/10.21175/RadProc.2024.13