Volume 4, 2020

Table of contents

List of Reviewers

Radiochemistry

NANODIAMONDS AND CARBON NANOTUBES AS PERSPECTIVE CARRIERS OF BISMUTH ISOTOPES FOR NUCLEAR MEDICINE

Andrey G. Kazakov, Bogdan L. Garashchenko, Julia S. Babenya, Milana K. Ivanova, Sergey E. Vinokurov, Boris F. Myasoedov

DOI: 10.21175/RadProc.2020.01

Currently, a wide range of nanomaterials, including carbon nanomaterials (CNMs), are being investigated as possible carriers of radionuclides for nuclear medicine as a part of radiopharmaceuticals (RPs). The present work considers the possibility of using nanodiamonds (ND) and multi-walled carbon nanotubes and their derivatives to act as a potential basis for RPs containing bismuth which have radioisotopes 212,213Bi for targeted alpha-therapy. To study this, the kinetics of Bi(III) sorption onto selected CNMs in aqueous media with different pH, as well as Bi(III) desorption from these samples by a solution of fetal bovine serum at 37 ˚C were investigated. The optimal conditions for the sorption of Bi(III) onto the studied CNMs were found; it was shown that oxidized ND was the most promising carrier for bismuth isotopes: sorption at pH 3 to 7 for this sample was close to quantitative, and desorption in 120 min does not exceed 5 %. The cytotoxicity of CNMs was investigated in the standard MTT test, it was shown that LC50 for all studied samples was > 200 μg/mL.
  1. L. Zhang, F.X. Gu, J.M. Chan, A.Z. Wang, R.S. Langer, O.C. Farokhzad, “Nanoparticles in medicine: therapeutic applications and developments,” Educ. Policy. Anal. Arch., vol. 8, no. 5, pp. 761–769, Oct. 2007.
    DOI: 10.1038/sj.clp
  2. S.J. Klaine, P.J.J. Alvarez, G.E. Batley, T.F. Fernandes, R.D. Handy, D.Y. Lyon, S.M.M.J. McLaughlin, J.R. Lead, “Nanomaterials in the environment: behavior, fate, bioavailability, and effects,” Environ. Toxicol. Chem., vol. 27, no. 9, pp. 1825-1851, Nov. 2008.
    DOI: 10.1897/08-090.1
  3. A. Albanese, P.S. Tang, W.C.W. Chan, “The Effect of nanoparticle size, shape, and surface chemistry on biological systems,” Annu. Rev. Biomed. Eng., vol. 14, pp. 1–16, Apr. 2012.
    DOI: 10.1146/annurev-bioeng-071811-150124
  4. E. Katz, I. Willner “Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications”, Angew. Chemie. Int. Ed., vol. 43, no. 45, pp. 6042–6108, Nov. 2004.
    DOI: 10.1002/anie.200400651
  5. F.E. Escorcia, M.R. McDevitt, C.H. Villa, D.A. Scheinberg, “Targeted nanomaterials for radiotherapy”, Nanomedicine, vol. 2, no. 3, pp. 805–815, Dec. 2007.
    DOI: 10.2217/17435889.2.6.805
  6. M.A. Elkodous, G.S. El-Sayyad, I.Y. Abdelrahman, H.S. El-Bastawisy, A.E. Mohamed, F.M. Mosallam, H.A. Nassere, M. Gobara, A. Baraka, M.A. Elsayed, A.I. El-Batal, “Therapeutic and diagnostic potential of nanomaterials for enhanced biomedical applications,” Colloids Surfaces B: Biointerfaces, vol. 180, pp. 411–428, Aug. 2019.
    DOI: 10.1016/j.colsurfb.2019.05.008
  7. G. Seeta Rama Raju, L. Benton, E. Pavitra, J.S. Yu, “Multifunctional nanoparticles: Recent progress in cancer therapeutics”, Chem. Commun., vol. 51, pp. 13248–13259, Jul. 2015.
    DOI: 10.1039/c5cc04643b
  8. D.-E. Lee, H. Koo, I.-C. Sun, J.H. Ryu, K. Kim, I.C. Kwon, “Multifunctional nanoparticles for multimodal imaging and theragnosis,” Chem. Soc. Rev., vol. 41, pp. 2656–2672, Dec. 2011.
    DOI: 10.1039/C2CS15261D
  9. M. Varani, F. Galli, S. Auletta, A. Signore, “Radiolabelled nanoparticles for cancer diagnosis,” Clin. Transl. Imag., vol. 6, pp. 271–292, May 2018.
    DOI: 10.1007/s40336-018-0283-x
  10. A.M. Grimaldi, M. Incoronato, M. Salvatore, A. Soricelli, “Nanoparticle-based strategies for cancer immunotherapy and immunodiagnostics,” Nanomedicine, vol. 12, pp. 2349–2365, Sep. 2017.
    DOI: 10.2217/nnm-2017-0208
  11. J. Ge, Q. Zhang, J. Zeng, Z. Gu, M. Gao, “Radiolabeling nanomaterials for multimodality imaging: New insights into nuclear medicine and cancer diagnosis,” Biomaterials, vol. 228, article no. 119553, (2020).
    DOI: 10.1016/j.biomaterials.2019.119553
  12. B. Kateb, K. Chiu, K.L. Black, V. Yamamoto, B. Khalsa, J.Y. Ljubimova, H. Ding, R.Patil, J. A. Portilla-Arias, M. Modo, D.F. Moore, K. Farahani, M.S. Okun, N. Prakash, J. Nemani, D. Ahdoot, W. Grundfest, S. Nikzad, J.D. Heiss, “Nanoplatforms for constructing new approaches to cancer treatment, imaging, and drug delivery: What should be the policy?,” Neuroimage, vol. 54, pp. S106–S124, Jan. 2011.
    DOI: 10.1016/j.neuroimage.2010.01.105
  13. S. Rojas, J.D. Gispert, R. Martín, S. Abad, C. Menchon, D. Pareto, V.M. Victor, M. Alvaro, H. Garcia, J.R. Herance, “Biodistribution of amino-functionalized diamond nanoparticles. In vivo studies based on 18F radionuclide emission”, ACS Nano, vol 5, no. 2, pp. 5552–5559, Jun 2011.
    DOI: 10.1021/nn200986z
  14. L. Chen, X. Zhong, X. Yia, M. Huang, P.Ning, T.Liu, C. Ge, Z. Chai, Z.Liu, K.Yang, “Radionuclide 131I labeled reduced graphene oxide for nuclear imaging guided combined radio- and photothermal therapy of cancer,” Biomaterials, vol. 66, pp. 21–28, Oct. 2015.
    DOI: 10.1016/j.biomaterials.2015.06.043
  15. G.S. Suri, A. Kaur, T. Sen, “A recent trend of drug-nanoparticles in suspension for the application in drug delivery,” Nanomedicine, vol. 11, no. 21, Oct. 2016.
    DOI: 10.2217/nnm-2016-0238
  16. S. Goel, C.G. England, F. Chen, W. Cai, “Positron emission tomography and nanotechnology: A dynamic duo for cancer theranostics,” Adv. Drug Deliv. Rev. vol. 113, pp. 157–176, Apr. 2017.
    DOI: 10.1016/j.addr.2016.08.001
  17. H. Hong, Y. Zhang, J.W. Engle, T.R. Nayak, C.P. Theuer, R.J. Nickles, T.E. Barnhart, W.Cai, “In vivo targeting and positron emission tomography imaging of tumor vasculature with 66Ga-labeled nano-graphene,” Biomaterials, vol. 33, pp. 4147–4156, Jun. 2012.
    DOI: 10.1016/j.biomaterials.2012.02.031
  18. K. Yang, L. Feng, H. Hong, W. Cai, Z. Liu, “Preparation and functionalization of graphene nanocomposites for biomedical applications,” Nat. Protoc., vol. 8, pp. 2392–2403, Nov. 2013.
    DOI: 10.1038/nprot.2013.146
  19. S. Shi, C. Xu, K. Yang, S. Goel, H. F. Valdovinos, H. Luo, E.B. Ehlerding, C.G. England, L. Cheng, F. Chen, R.J. Nickles, Z. Liu, W. Cai, “Chelator-free radiolabeling of nanographene: breaking the stereotype of chelation,” Angew. Chemie Int. Ed., vol. 56, no. 11, pp. 2889–2892, Feb. 2017.
    DOI: 10.1002/anie.201610649
  20. M.R. McDevitt, D. Chattopadhyay, B.J. Kappel, J.S. Jaggi, S.R. Schiffman, C. Antczak, J.T. Njardarson, R. Brentjens, D.A. Scheinberg, “Tumor targeting with antibody-functionalized, radiolabeled carbon nanotubes,” J. Nucl. Med., vol. 48, no. 7, pp.1180–1189, July 2007.
    DOI: 10.2967/jnumed.106.039131
  21. M. Swierczewska, K.Y. Choi, E.L. Mertz, X. Huang, F. Zhang, L. Zhu, H.Y. Yoon, J.H. Park, A. Bhirde, S. Lee, X. Cnen, “A facile, one-step nanocarbon functionalization for biomedical applications,” Nano Lett., vol. 12, no. 7, pp. 3613–3620, Jun 2012.
    DOI: 10.1021/nl301309g
  22. S.Y. Hong, G. Tobias, K.T. Al-Jamal, B. Ballesteros, H. Ali-Boucetta, S. Lozano-Perez, P.D. Nellist, R.B. Sim, C. Finucane, S. J. Mather, M.L.H. Green, K. Kostarelos, B.G. Davis, “Filled and glycosylated carbon nanotubes for in vivo radioemitter localization and imaging,” Nat. Mater., vol. 9, pp. 485–490, May 2010.
    DOI: 10.1038/nmat2766
  23. A. Ruggiero, C.H. Villa, J.P. Holland, S.R. Sprinkle, C. May, J.S. Lewis, D.A. Scheinberg, M. R. McDevitt, “Imaging and treating tumor vasculature with targeted radiolabeled carbon nanotubes,” Int. J. Nanomedicine, vol.5, pp. 783–802, Sep. 2010.
    DOI: target="_blank" 10.2147/IJN.S13300
  24. B.T. Cisneros, J.J. Law, M.L. Matson, A. Azhdarinia, E.M. Sevick-Muraca, L.J. Wilson, “Stable confinement of positron emission tomography and magnetic resonance agents within carbon nanotubes for bimodal imaging,” Nanomedicine, vol. 9, no. 16, pp. 2499–2509, Mar. 2014.
    DOI: 10.2217/nnm.14.26
  25. M.L. Matson, C.H. Villa, J.S. Ananta, J.J. Law, D.A. Scheinberg, L.J. Wilson, “Encapsulation of particle-emitting225Ac3+ ions within carbon nanotubes,” J. Nucl. Med., vol. 56, no.6, pp. 897–900, Jun. 2015.
    DOI: 10.2967/jnumed.115.158311
  26. H. Zhao, Y. Chao, J. Liu, J. Huang, J. Pan, W. Guo, J. Wu, M. Sheng, K. Yang, J. Wang, Z. Liu, “Polydopamine coated single-walled carbon nanotubes as a versatile platform with radionuclide labeling for multimodal tumor imaging and therapy,” Theranostics, vol. 6, no. 11, pp. 1833–1843, Jun 2015.
    DOI: 10.7150/thno.16047
  27. J. Elgqvist, S. Frost, J.-P. Pouget, P. Albertsson, “The potential and hurdles of targeted alpha therapy – clinical trials and beyond,” Front. Oncol., vol. 3, Jan. 2014.
    DOI: 10.3389/fonc.2013.00324
  28. Y-S Kim, M.W. Brechbiel, “An overview of targeted alpha therapy,” Tumor Biol., vol. 33, pp. 573–590, Dec. 2011.
    DOI: 10.1007/s13277-011-0286-y
  29. B.L. Garashchenko, V.A. Korsakova, R.Y. Yakovlev, “Radiopharmaceuticals based on alpha emitters: preparation, properties, and application,” Phys. At Nucl., vol. 81, pp. 1515–1525, Mar. 2019.
    DOI: 10.1134/S1063778818100071
  30. B.L. Garashchenko, N.N. Dogadkin, N.E. Borisova, R.Y. Yakovlev, “Sorption of 223Ra and 211Pb on modified nanodiamonds for potential application in radiotherapy,” J. Radioanal. Nucl. Chem., vol. 318, pp. 2415–2423, Nov. 2018.
    DOI: 10.1007/s10967-018-6330-2
  31. K.B. Hartman, D.K. Hamlin, D.S. Wilbur, L.J. Wilson, “211 AtCl@US-tube nanocapsules: A new concept in radiotherapeutic-agent design,” Small, vol. 3, no. 9, pp. 1496–1499, Sep. 2007.
    DOI: 10.1002/smll.200700153
  32. A. Ruggiero, C.H. Villa, J.P. Holland, S.R. Sprinkle, C. May, J. Lewis, D. Scheinberg, M.R. McDevitt, “Imaging and treating tumor vasculature with targeted radiolabeled carbon nanotubes,” Int. J. Nanomedicine, vol. 5, pp. 783–802, Sep. 2010.
    DOI: 10.2147/IJN.S13300
  33. S. Zhang, K. Yang, L. Feng, Z. Liu, “In vitro and in vivo behaviors of dextran functionalized grapheme,” Carbon, vol. 49, no. 12, pp. 4040–4049, Oct. 2011.
    DOI: 10.1016/j.carbon.2011.05.056
  34. A.G. Kazakov, B.L. Garashchenko, R.Y. Yakovlev, S.E. Vinokurov, S.N. Kalmykov, B.F. Myasoedov, “An experimental study of sorption/desorption of selected radionuclides on carbon nanomaterials: a quest for possible applications in future nuclear medicine,” Diam. Relat. Mater., vol. 104, no. 107752, Apr. 2020.
    DOI: 10.1016/j.diamond.2020.107752
  35. S. Hassfjell, M.W. Brechbiel, “The development of the α-particle emitting radionuclides 212Bi and 213Bi, and their decay chain related radionuclides, for therapeutic applications,” Chem. Rev., vol. 101, no 7, pp. 2019–2036, Jun. 2001.
    DOI: 10.1021/cr000118y
  36. A. Morgenstern, C. Apostolidis, C. Kratochwil, M. Sathekge, L. Krolicki, F. Bruchertseifer, “An overview of targeted alpha therapy with 225-actinium and 213-bismuth,” Curr. Radiopharm., vol. 11, no. 3, pp. 200–208, Mar. 2018.
    DOI: 10.2174/1874471011666180502104524
  37. M.G. Ferrier, V. Radchenko, D.S., “Radiochemical aspects of alpha emitting radionuclides for medical application”, Radiochim. Acta, vol. 107, no. 9–11, pp. 1065–1085, May 2019.
    DOI: 10.1515/ract-2019-0005
  38. A. Morgenstern, C. Apostolidis, F. Bruchertseifer, “Supply and clinical application of actinium-225 and bismuth-213,” Semin. Nucl. Med., vol. 50, pp. 119–123, Mar. 2020.
    DOI: 10.1053/j.semnuclmed.2020.02.003
  39. P.J. Blower, “A nuclear chocolate box: The periodic table of nuclear medicine,” Dalt. Trans., vol. 44 (11), pp. 4819–4844, Oct. 2015.
    DOI: 10.1039/c4dt02846e
  40. M. Makvandi, E. Dupis, J.W. Engle, F.M. Nortier, M.E. Fassbender, S. Simon, E.R. Birnbaum, R.W. Atcher, K.D. John, O. Rixe, J.P. Norenberg, “Alpha-emitters and targeted alpha therapy in oncology: from basic science to clinical investigations,” Target. Oncol., vol. 13, pp. 189–203, Feb. 2018.
    DOI: 10.1007/s11523-018-0550-9
  41. A.G. Kazakov, B.L. Garashchenko, M.K. Ivanova, S.E. Vinokurov, B.F. Myasoedov, “Carbon nanomaterials for sorption of 68Ga for potential using in positron emission tomography,” Nanomaterials, vol. 10, no. 6, pp.1090-1-13, Jun 2020.
    DOI: 10.3390/nano10061090
  42. A.G. Kazakov, B.L. Garashchenko, R.Yu. Yakovlev, S.E. Vinokurov, S.N. Kalmykov, B.F. Myasoedov, “Generator of Actinium-228 and a Study of the Sorption of Actinium by Carbon Nanomaterials,” Radiochemistry, vol. 62, no. 5, pp. 592–598, Oct. 2020.
    DOI: 10.1134/S1066362220050057
  43. M. Ibrahim, Y. Xue, M. Ostermann, A. Sauter, D. Steinmueller‐Nethl, S. Schweeberg, A. Krueger, M.R. Cimpan, K. Mustafa, “In vitro cytotoxicity assessment of nanodiamond particles and their osteogenic potential,” J. Biomed. Mater. Res. Part. A, vol. 106, pp. 1697–1707, Feb. 2018.
    DOI: 10.1002/jbm.a.36369
  44. L. Zhou, H.J. Forman, Y. Ge, J. Lunec “Multi-walled carbon nanotubes: A cytotoxicity study in relation to functionalization, dose and dispersion,” Toxicol. Vitr., vol. 42, no. 4, pp. 292–298, Aug. 2017.
    DOI: 10.1016/j.tiv.2017.04.027
A. G. Kazakov, B. L. Garashchenko, J. S. Babenya, M. K. Ivanova, S. E. Vinokurov, B. F. Myasoedov, "Nanodiamonds and carbon nanotubes as perspective carriers of bismuth isotopes for nuclear medicine," RAD Conf. Proc, vol. 4, 2020, pp. 1-6, http://doi.org/10.21175/RadProc.2020.01
Radiotherapy

FORECASTING THE KILOVOLTAGE THERAPY UNIT WITH THE MATHEMATICAL MODEL

Julya Zuenkova, Lev Izurov

DOI: 10.21175/RadProc.2020.02

Accessibility is an important part of quality of medical care and depends on the technical resources, infrastructure of a site, clinical stuff and work management. Clinical guidelines for the treatment of non-melanoma skin cancer (NMSC) which define the quality of processes influence work load. Purpose of the study was to determine the clinical and organizational changes in the technology of kilovoltage therapy for NMSC within the dayhospital department after implementation of new clinical guidelines and fraction regimes in compare with previously used schemes; derive a mathematical model of the work for the kilovoltage therapy unit. Materials and methods. Data from the kilovoltage therapy unit of the Sverdlovsk Regional Oncology Dispensary (SROD) were undertaken. Timekeeping was used for calculation the average duration of radiotherapy sessions per patient. The results were evaluated using correlation analysis. To forecast the need for material and human resources, an economic method of mathematical modeling was used. Results. The analysis of the kilovoltage therapy unit of radiotherapy department of the SROD for 3 years showed an increase from 10.4 to 17.3 in the average number of therapeutic fractions per patient after the implementation of the updated clinical guidelines. An increase in the average number of radiotherapy sessions leads to a doubling of the average bed-day of the patient's stay in the day-hospital. The formula was proposed for predicting the work of the unit. There is a clear correlation between the duration of treatment, the dynamics of hospitalization and the number of treated patients. The obtained results using a mathematical model fully correspond to the actual performance of the radiotherapy unit. Conclusion. To ensure optimal availability of medical care, it is necessary to match treatment technologies with available resources of the organization. The introduction of new treatment programs may require the expansion of staff, increase the quantity of medical equipment. The obtained mathematical model of the kilovoltage therapy unit allows to predict the optimal mode of work while maintaining the quality and accessibility of medical care.

  1. Order of the Ministry of Health of Russia dated 15.11.2012. No. 915н. «On approval of the Procedure for providing medical care to adults on the profile of «Oncology» (as amended on August 23, 2016, July 4, 2017), registered in the Ministry of Justice 17.04.2013 No. 28163). (In Russian).
  2. Clinical guidelines «Basal cell and squamous skin cancer» Ministry of Health of the Russian Federation, 2018. (In Russian).
  3. A.L. Lindenbraten, G.E. Ulumbekova Standardization and quality control of medical care [Obschestvennoe zdorovye i zdravookhranenie: Natsionalnoe rukovodstvo]. In: Starodubov V.I., Ed. Public Health and Health Care: National leadership. Moscow: GEOTAR-Media; 2014, 452—467. (In Russian).
  4. The status of cancer care of Russia in 2018. Ed. A.D. Kaprin, V.V. Starinsky, G.V. Petrova. Moscow: FGBU «MNIII P.A. Herzen» Ministry of Health of Russia, 2019, 236 p. (In Russian). Available at: http://www.oncology.ru/service/statistics/condition/2018.pdf
  5. V.N. Volgin, T.V. Sokolova, M.S. Kolbina, A.A. Sokolovskaya. Basalioma: epidemiology, etiology, pathogenesis and clinical picture (part 1). Vestnik Dermatologii i Venerologii. 2013; (2):6–14. (In Russian).
  6. S.K. Gantsev, A.S. Yusupov. Squamous cell carcinoma of the skin. Practical Oncology. 2012; 13(2):80–91. (In Russian).
  7. V.A. Solodkii, G.A. Panshin, V.M. Sotnikov, A.V. Ivashin. Economic and logistical problems of radiation oncology. Problems in oncology. 2014; 60(2):6–14. (In Russian).
  8. O.V. Morov, A.V. Chernichenko, R.S. Khasanov. Aссessibility of radiotherapy at the present conditions of specialized treatment in cancer patients. P.A. Herzen Journal of Oncology. 2016; 5(6):65–70.
    DOI: 10.17116/onkolog20165665-70 (In Russian).
  9. W-J. Koh, B.E. Greer, N.R. Abu-Rustum, S.M. Campos, K.R. Cho, H.S. Chon, et al. Vulvar Cancer, Version 1.2017, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2017; 15(1):92–120.
    DOI: 10.6004/jnccn.2017.0008
Julya Zuenkova, Lev Izurov, "Forecasting the kilovoltage therapy unit with the mathematical model," RAD Conf. Proc, vol. 4, 2020, pp. 7–10, http://doi.org/10.21175/RadProc.2020.02
Radiochemistry

MAGNESIUM POTASSIUM PHOSPHATE MATRIX FOR THE IMMOBILIZATION OF RADIOACTIVE WASTE GENERATED DURING THE REPROCESSING OF MIXED URANIUM PLUTONIUM NITRIDE SPENT NUCLEAR FUEL

S.E. Vinokurov, S.A. Kulikova

DOI: 10.21175/RadProc.2020.03

This article summarizes the results of our research on the possibility of using a magnesium potassium phosphate (MPP) matrix to solve the problem of immobilization of radioactive waste (RW) generated during reprocessing of mixed uranium plutonium nitride spent nuclear fuel. We used CaCO 3 as a surrogate of waste containing 14C, as well as an aqueous solution of 41.6% LiCl-52.9% KCl-5.5% CsCl as a surrogate of the spent electrolyte formed during the pyrochemical fuel reprocessing. The mechanical, radiation and hydrolytic stability of the obtained compounds were investigated. It was found that the compounds have a high compressive strength of 17–26 MPa. The minimum carryover of carbon dioxide into the atmosphere during the synthesis and keeping of the samples for 14 days was noted - no more than 3 wt%. It was found that the change of the matrix phase occurs during the irradiation by accelerated electrons during the accumulation of the absorbed dose of 108 Gy. In this case, the leaching rate of components of the compound including irradiated one corresponds to the current regulatory requirements for materials for RW immobilization. The differential leaching rate of Cs at 25 °C from monolithic samples containing LiCl-KCl-CsCl on the 91st day of samples contact with water was (5–11) × 10-5 g/(cm2 ·day) (according to GOST R 52126-2003 test), and was (4–29) × 10 −7 g/(cm2∙day) on the 7th day at 90 °C from crushed samples (in accordance with PCT standard). The thermal stability of the compound containing LiCl-KCl-CsCl up to 450 °C was shown.
  1. S.A. Kulikova, K.Y. Belova, E.A. Tyupina, S.E. Vinokurov, “Conditioning of spent electrolyte surrogate LiCl-KCl-CsCl using magnesium potassium phosphate Compound,” Energies, vol. 13, no. 8, 1963, 2020.
    DOI: 10.3390/en13081963
  2. A.Yu. Shadrin, K.N. Dvoeglazov, A.G. Maslennikov, V.A. Kashcheev, S.G. Tret’yakova, O.V. Shmidt, V.L. Vidanov, O.A. Ustinov, V.I. Volk, S.N. Veselov, V.S. Ishunin, “РH process as a technology for reprocessing mixed uranium-plutonium fuel from BREST-OD-300 reactor,” Radiochemistry, vol. 58, no. 3, pp. 271–279, 2016.
    DOI: 10.1134/S1066362216030085
  3. S.A. Yakunin, O.A. Ustinov, A.Yu. Shadrin, O.V. Shudegova, “Purification of gaseous emissions by 14C removal during reprocessing of spent uranium-plutonium nuclear fuel,” Atomic Energy, vol. 120, no. 3, pp. 229-232. Jul. 2016.
    DOI: 10.1007/s10512-016-0122-y
  4. A.V. Dmitrieva, M.Yu. Kalenova, S.A. Kulikova, I.V. Kuznetsov, A.M. Koshcheev, S.E. Vinokurov, “Magnesium-potassium phosphate matrix for immobilization of 14C,” Russ. J. Appl. Chem., vol. 91, no. 4, pp. 641-646, 2018.
    DOI: 10.1134/S107042721804016X
  5. A.A. Lizin, D.M. Yandaev, A.Yu. Shadrin, M.Yu. Kalenova, A.V. Dmitrieva, S.V. Tomilin, I.S. Golubenko, M.I. Khamdeev, V.N. Momotov, D.E. Tikhonova, O.S. Dmitrieva, A.A. Kolobova, S.S. Poglyad, M.V. Dodonova, S.E. Vinokurov, B.F. Myasoedov “Radiation and chemical stability of a magnesium-phosphate matrix for 14C immobilization,” Radiochemistry, vol. 62, no. 1, pp. 131–137, 2020.
    DOI: 10.1134/S1066362220010178
  6. A.A. Lizin, S.V. Tomilin, O.E. Gnevashov, A.N. Lukinykh, A.I. Orlova, “Orthophosphates of langbeinite structure for immobilization of alkali metal cations of salt wastes from pyrochemical processes,” Radiochemistry, vol. 54, no. 6, pp. 542–548, 2012.
    DOI: 10.1134/S1066362212060057
  7. P.P. Poluektov, O.V. Schmidt, V.A. Kascheev, M.I. Ojovan, “Modelling aqueous corrosion of nuclear waste phosphate glass,” J. Nucl. Mater., vol. 484, pp. 357–366, Feb. 2017.
    DOI: 10.1016/j.jnucmat.2016.10.033
  8. J. Choi, W. Um, S. Choung, “Development of iron phosphate ceramic waste form to immobilize radioactive waste solution,” J. Nucl. Mater., vol. 452, no. 1-3, pp. 16–23, Sep. 2014.
    DOI: 10.1016/j.jnucmat.2014.04.033
  9. Kohobhange S.P. Karunadasa, C.H. Manoratne, H.M.T.G.A. Pitawala, R.M.G. Rajapakse “Thermal decomposition of calcium carbonate (calcite polymorph) as examined by in-situ high-temperature X-ray powder diffraction,” J. Phys. Chem. Solids, vol. 134, pp. 21-28, Nov. 2019.
    DOI: 10.1016/j.jpcs.2019.05.023
  10. E.R. Vance, J. Davis, K. Olufson, I. Chironi, I. Karatchevtseva, I. Farnan, “Candidate waste forms for immobilisation of waste chloride salt from pyroprocessing of spent nuclear fuel,” J. Nucl. Mater., vol. 420, no. 1-3, pp. 396–404, Jan. 2012.
    DOI: 10.1016/j.jnucmat.2011.09.020
  11. A.S. Wagh, Chemically Bonded Phosphate Ceramics. Twenty-First Century Materials with Diverse Applications , Eds., 2nd ed., Amsterdam, The Netherlands: Elsevier, 2016, pp. 1–422.
    DOI: 10.1016/C2014-0-02562-2
  12. S.E. Vinokurov, Y.M. Kulyako, O.M. Slyunchev, S.I. Rovny, B.F. Myasoedov, “Low-temperature immobilization of actinides and other components of high-level waste in magnesium potassium phosphate matrices,” J. Nucl. Mater., vol. 385, no. 1, pp. 189–192, Mar. 2009.
    DOI: 10.1016/j.jnucmat.2008.09.053
  13. S.E. Vinokurov, S.A. Kulikova, V.V. Krupskaya, E.A. Tyupina, “Effect of characteristics of magnesium oxide powder on composition and strength of magnesium potassium phosphate compound for solidifying radioactive waste,” Russ. J. Appl. Chem., vol. 92, no. 4, pp. 490–497, 2019.
    DOI: 10.1134/S1070427219040049
  14. S.E. Vinokurov, S.A. Kulikova, V.V. Krupskaya, B.F. Myasoedov, “Magnesium potassium phosphate compound for radioactive waste immobilization: phase composition, structure, and physicochemical and hydrolytic durability,” Radiochemistry, vol. 60, no. 1, pp. 70–78, 2018.
    DOI: 10.1134/S1066362218010125
  15. S.E. Vinokurov, S.A. Kulikova, V.V. Krupskaya, S.S. Danilov, I.N. Gromyak, B.F. Myasoedov, “Investigation of the leaching behavior of components of the magnesium potassium phosphate matrix after high salt radioactive waste immobilization,” J. Radioanal. Nucl. Chem. , vol. 315, pp. 481–486, 2018.
    DOI: 10.1007/s10967-018-5698-3
  16. S.E. Vinokurov, S.A. Kulikova, B.F. Myasoedov, “Magnesium potassium phosphate compound for immobilization of radioactive waste containing actinide and rare earth elements,” Materials, vol. 11, no. 6, 976, Jun. 2018.
    DOI: 10.3390/ma11060976
  17. S.E. Vinokurov, S.A. Kulikova, B.F. Myasoedov, “Solidification of high level waste using magnesium potassium phosphate compound,” Nucl. Eng. Technol., vol. 51, no.3, pp. 755–760, Jun. 2019.
    DOI: 10.1016/j.net.2018.12.009
  18. V.A. Shkuropatenko, “High level wastes immobilization in ceramic and hydrated phosphate matrix,” East Eur. J. Phys., vol. 3, no. 1, pp. 49–60, 2016.
    DOI: 10.26565/2312-4334-2016-1-05
  19. L. Zhenyua, W. Hongtao, H. Yang, Ya. Tao, L. Zhongyuan, L. Shuzhen, Zh. Haibin, “Rapid solidification of highly loaded high‐level liquid wastes with magnesium phosphate cement,” Ceram. Int., vol. 45, no.4, pp. 5050–5057, Mar. 2019.
    DOI: 10.1016/j.ceramint.2018.11.206
  20. W.C. Lepry, B.J. Riley, J.V. Crum, C.P. Rodriguez, D.A. Pierce, “Solution-based approaches for making high-density sodalite waste forms to immobilize spent electrochemical salts,” J. Nucl. Mater., vol. 442, no. 1-3, pp. 350–359, Nov. 2013.
    DOI: 10.1016/j.jnucmat.2013.08
  21. S.A. Kulikova, S.E. Vinokurov, “The influence of zeolite (Sokyrnytsya deposit) on the physical and chemical resistance of a magnesium potassium phosphate compound for the immobilization of high-level waste,” Molecules, vol. 24, no. 19, 3421, Sep. 2019.
    DOI: 10.3390/molecules24193421
  22. Федеральные нормы и правила в области использования атомной энергии “Сбор, переработка, хранение и кондиционирование жидких радиоактивных отходов. Требования безопасности ,”НП-019-15, Ростехнадзор, Москва, Россия, стр. 1-22, 2015. (Federal Norms and Rules in the Field of Atomic Energy Use. In “Collection, Processing, Storage and Conditioning of Liquid Radioactive Waste. Safety Requirements,” NP-019-15, Rostekhnadzor, Moscow, Russia, 2015, pp. 1–22.)
    Retrieved from: https://www.secnrs.ru/en/science/development/normd/
    Retrieved on: Oct. 10, 2020
  23. Отходы радиоактивные. Определение химической устойчивости отвержденных высокоактивных отходов методом длительного выщелачивания , ГОСТ Р 52126-2003, Стандартинформ, Москва, Россия, 2003. стр. 1-8. ( Radioactive Waste. Long Time Leach Testing of Solidified Radioactive Waste Forms , GOST R 52126-2003, Standardinform, Moscow, Russia, 2003, pp. 1–8.)
    Retrieved from: https://www.russiangost.com/p-69117-gost-r-52126-2003.aspx
    Retrieved on: Oct. 10, 2020
  24. Standard Test Methods for Determining Chemical Durability of Nuclear, Hazardous, and Mixed Waste Glasses and Multiphase Glass Ceramics: The Product Consistency Test (PCT) , ASTM C1285-14, ASTM International, West Conshohocken, PA, 2014.
    Retrieved from: https://www.astm.org/Standards/C1285.htm
    Retrieved on: Oct. 10, 2020
  25. S. Graeser, W. Postl, H.-P. Bojar, P. Berlepsch, T. Armbruster, T. Raber, K. Ettinger, F. Walter, “Struvite-(K), KMgPO 4∙6H2O, the potassium equivalent of struvite – new mineral,” Eur. J. Mineralogy., vol. 20, pp. 629-633, May 2008.
    DOI: 10.1127/0935-1221/2008/0020-1810
  26. K. Kaboosi, Kh. Emami, “Interaction of treated industrial wastewater and zeolite on compressive strength of plain concrete in different cement contents and curing ages,” Case Studies in Construction Materials, vol. 11, e00308, Dec. 2019.
    DOI: 10.1016/j.cscm.2019.e00308
  27. F. Giacobbo, M. Da Ros, E. Macerata, M. Mariani, M. Giola, G. De Angelis, M. Capone, C. Fedeli, “An experimental study on Sodalite and SAP matrices for immobilization of spent chloride salt waste,” J. Nucl. Mater., vol. 499, pp. 512–527, Feb. 2018.
    DOI: 10.1016/j.jnucmat.2017.11.051
S.E. Vinokurov, S.A. Kulikova, "Magnesium potassium phosphate matrix for the immobilization of radioactive waste generated during the reprocessing of mixed uranium plutonium nitride spent nuclear fuel," RAD Conf. Proc, vol. 4, 2020, pp. 11–17, http://doi.org/10.21175/RadProc.2020.03
Radiation Protection

DOSE LOAD TO THE INTERVENTIONAL CARDIOLOGIST FOR DIFFERENT POSITIONS OF THE PATIENT TABLE - FIRST RESULTS

Natasha Ivanova, Javor Ivanov, Bistra Manusheva, Ismet Tahsinov, Hrisimir Todorov, Nikolai Aleksandrov

DOI: 10.21175/RadProc.2020.04

. In this article we present the first results of a study of the dose load received by a medical team working with an angiographic X-ray system in the Department of Invasive Cardiology. In the first stage, we made measurements of the equivalent dose received by an interventional cardiologist for the most commonly used projections of the С-arm, because we do not take into account the impact of the relevant tissue in the body that is irradiated. The measurements were made at three points of the cardiologist’s body: head, gonads and feet. The purpose of this first step is to determine at which position of the patient table the operating cardiologist receives the lowest dose load for the most commonly used С-arm projections. From the obtained results it is reasonable to conclude that the factory set zero position of the patient table gives the lowest dose load for most of the projections used.
  1. Von Schmilowski E., Swanton R. H., Essential Angioplasty 2012, Publisher:Wiley-Blackwell, ISBN 13:9781119950547
    Retrieved from: https://b-k.lat/book/2151973/6a2cba?regionChanged=&redirect=5046845
    Retrieved on: Sept. 21, 2020
  2. PHILIPS, History of X-ray.
    Retrieved from: https://www.philips.com/consumerfiles/newscenter/main/shared/assets/Downloadablefile/FACT_SHEET_X-ray_history.pdf
    Retrieved on: Sept. 21, 2020
  3. J.A.M. Hofman, Former Marketing Director, Universal RF Systems, Philips Healthcare, The art of medical imaging: Philips and the evolution of medical X-ray technology, Clinical applications, MEDICAMUNDI 54/1 2010
  4. Making the difference with Philips Live Image Guidance Philips Allura Xper FD10 system specifications © 2017 Koninklijke Philips N.V. 4522 991 18981 * Apr 2017 (The article was provided to me by Philips)
  5. Röntgen-GammaDosimeter 27091, Technical Description and Operating Instructions, September 02, 2008
    Retrieved from: http://www.step-sensor.de/media/main/rgd_27091___manual_.pdf
    Retrieved on: Sept. 21, 2020
Natasha Ivanova, Javor Ivanov, Bistra Manusheva, Ismet Tahsinov, Hrisimir Todorov, Nikolai Aleksandrov, "Dose load to the interventional cardiologist for different positions of the patient table - first results," RAD Conf. Proc, vol. 4, 2020, pp. 18–22, http://doi.org/10.21175/RadProc.2020.04
Radiobiology

THE IMPACT OF TARGET VOLUMES OF EHRLICH ASCITES CARCINOMA IRRADIATED WITH A PENCIL SCANNING BEAM OF PROTONS AT A TOTAL DOSE OF 60 Gy ON THE TUMOR GROWTH AND REMOTE EFFECTS IN MICE

T. A. Belyakova, V. E. Balakin, O. M. Rozanova, E. N. Smirnova, N. S. Strelnikova, A. E. Shemyakov, S. S. Sorokina, S. I. Zaichkina

DOI: 10.21175/RadProc.2020.05

The purpose of the work was to study the growth of solid Ehrlich ascites carcinoma (EAC) and the remote effects (duration of remission, relapse rate, and average lifespan) in tumor-bearing mice exposed to oligofractionated irradiation with the pencil beam scanning of protons (PBSP) at a total dose of 60 Gy depending on the volume of the tissue being irradiated. Experiments were carried out on eight-to nine-week-old SHK male mice. Mice were irradiated with two fractions, 30 Gy each. In order to determine the volume of irradiated tissue, a tomogram of a mouse in a water phantom was obtained, and a gross tumor volume (GTV) that is equal to the average size of 470 mm 3 from all mice was specified using a specially developed 3D planning system. In another group of animals, the irradiated tissue region was increased to the planning target volume (PTV), which was equal to 1500 mm 3 . An analysis of EAC growth dynamics during the first month showed higher irradiation efficiency in mice with a smaller irradiated volume (the GTV group) compared with the PTV group. In the group with GTV irradiation, survival was higher: the maximum life expectancy in mice without relapse was 5 months longer, and in mice with relapse it was 3 months longer than in the PTV group. The average lifespan (AL) of mice with EAC relapses in the group with GTV irradiation was higher compared to the group with PTV irradiation (96 and 77 days after irradiation or 58 and 31 days after the occurrence of a relapse, respectively; p ≤ 0.01). The AL of mice without tumors was also notably longer in the GTV group: 283 days compared to 228 days after PTV irradiation (p ≤ 0.01).
  1. H. Paganetti, T. Bortfeld, H. Kooy, “Proton Beam Radiotherapy — The State of the Art,” Medical Physics, vol. 32, no. 6, pp. 2048-2049, 2005.
    DOI: 10.1118/1.1999671
  2. M. Durante, “Proton beam therapy in Europe: more centres need more research,” Br J Cancer, vol. 120(8), pp. 777-778, 2019.
    DOI: 10.1038/s41416-018-0329-x
    PMid: 30531831
  3. F. Tommasino, M. Durante, “Proton radiobiology,” Cancers, vol. 7, no. 1, pp. 353-381, 2015.
    DOI: 10.3390/cancers7010353
    PMid: 25686476
  4. M. Mishra, R. Khairnar, S. Bentzen, “Proton beam therapy delivered using pencil beam scanning vs. passive scattering/uniform scanning for localized prostate cancer: Comparative toxicity analysis of PCG 001-09,” Clinical and translational radiation oncology, vol. 19, pp. 80-86, Aug. 2019.
    DOI: 10.1016/j.ctro.2019.08.006
    PMid: 31650043
  5. Е.В. Хмелевский, “Лучевая терапия рака простаты: фотоны, протоны или тяжелые ионы?” Рад. онкол. и ядерная медицина, no. 1, стр. 28-33, 2013. (E.V. Khmelevskii “Prostate cancer radiotherapy: photons, protons or heavy ions?” Radiat. Onkol. Yadern. Med., no. 1, pp. 28-33, 2013.)
  6. International Commission on Radiation Units and Measurement, Prescribing, recording, and reporting proton-beam therapy (ICRU Report 78), 2007.
  7. S. Mishra, A. Tamta, M. Sarikhani, “Subcutaneous Ehrlich Ascites Carcinoma mice model for studying cancer-induced cardiomyopathy,” Scientific reports, vol. 8, no.1, Apr. 2018.
    DOI: 10.1038/s41598-018-23669-9
    PMid: 29618792
  8. С.Е. Ульяненко, А.А. Лычагин, С.Н. Корякин, “Распределение дозы и ЛПЭ в биообъектах при облучении протонами,” Мед. физика, no.1, стр. 68-74, 2018. (S.E. Ulyanenko, A.A. Lychagin, S.N. Koryakin, “Simulation of dose and LET distributions within biological objects in proton fields,” Med. Physics, no. 1, pp. 68-74, 2018).
  9. International Commission on Radiation Units and Measurements (ICRU Report 62: Prescribing, Recording and Reporting Photon Beam Therapy) , 1999.
  10. V.E. Balakin, A.E. Shemyakov, S.I. Zaichkina, “Hypofractionated irradiation of the solid form of ehrlich ascites carcinoma in mice by a thin scanning proton beam,” Biophysics, vol. 61, no. 4, pp. 682-686, 2016.
    DOI: 10.1134/Sooo6350916040047
  11. B. Sorensen, M. Horsman, J. Alsner, et al., “Relative biological effectiveness of carbon ions for tumor control, acute skin damage and late radiation-induced fibrosis in a mouse model,” Acta Oncologica, vol. 54 (9), pp. 1623-1630, 2015.
    DOI: 10.3109/0284186X.2015.1069890
    PMid: 26271798.
  12. T. van de Water, H. Bijl, C. Schilstra, et al., “The potential benefit of radiotherapy with protons in head and neck cancer with respect to normal tissue sparing: a systematic review of literature,” Oncologist, vol. 16(3), pp. 366-377, 2011.
    DOI: 10.1634/theoncologist.2010-0171
    PMid: 21349950
  13. S. Rieken, D. Habermehl, T. Haberer, et al., “Proton and carbon ion radiotherapy for primary brain tumors delivered with active raster scanning at the Heidelberg Ion Therapy Center (HIT): early treatment results and study concepts,” Radiat Oncol., vol. 7(41), 2012.
    DOI: 10.1186/1748-717X-7-41
    PMid: 22436135
T. A. Belyakova, V. E. Balakin, O. M. Rozanova, E. N. Smirnova, N. S. Strelnikova, A. E. Shemyakov, S. S. Sorokina, S. I. Zaichkina, "The impact of target volumes of Ehrlich ascites carcinoma irradiated with a pencil scanning beam of protons at a total dose of 60 Gy on the tumor growth and remote effects in mice," RAD Conf. Proc, vol. 4, 2020, pp. 23–27, http://doi.org/10.21175/RadProc.2020.05
Medicinal Chemistry

COMPARATIVE ANALYSIS OF THE ANTI-PROLIFERATIVE EFFECT OF NATURAL PRODUCTS CATECHIN HYDRATE AND EPIGALLOCATECHIN (EXTRACT) APPLIED ON LEUKEMIA LYMPHOCYTES

Donika Ivanova, Zvezdelina Yaneva

DOI: 10.21175/RadProc.2020.06

Cancer diseases are a problem with worldwide importance. However, the the lack of selectivity and induction of toxic side effect during conventional cancer therapy continue to provoke the search of innovative treatment approaches. Recent scientific results have reported for synergistic effect between combination of natural products and chemotherapeutic drugs. In this aspect, flavonoids, which are widely distributed in nature, are well known to exhibit numerous biological activities, including antioxidant, antibacterial, anti inflammatory, anti viral and anti cancer effects and may also, play a role in cancer prevention. In the present study, the effects of low concentrations of catechin hydrate and epigallocatechin, Acacia Catechu spay-dried extract, on cell viability of leukemia lymphocytes were investigated and compared, in order to provide an experimental basis for their future incorporation into newly-synthesized biopolymer particles.
  1. P. Angsutararux, S. Luanpitpong, S. Issaragrisil, “Chemotherapy-induced cardiotoxicity: Overview of the role of oxidative stress,” Oxid. Med. Cell Longev., vol. 2015, art. ID 795602, pp. 1-13, Sep. 2015.
    DOI: 10.1155/2015/795602
    PMid: 26491536
  2. S. Jaiman, A.K. Sharma, K. Singh, D. Khanna. “Signaling mechanisms involved in renal pathological changes during cisplatin-induced nephropathy,” Eur. J. Clin. Pharmacol. vol. 69 no. 11, pp. 1863-1874, Nov. 2013.
    DOI: 10.1007/s00228-013-1568-7
    PMid: 23929259
  3. D. Ivanova, Zh. Zhelev, S. Semkova, I. Aoki, R. Bakalova, “Resveratrol modulates the redox-status and cytotoxicity of anticancer drugs by sensitizing leukemic lymphocytes and protecting normal lymphocytes,” Anticancer Res., vol. 39 no. 7, pp. 3745-3755, Jul 2019.
    DOI: 10.21873/anticanres.13523
    PMid: 31262901
  4. D. Ivanova, Zh. Zhelev, D. Lazarova, P. Getsov, R. Bakalova I. Aoki, “Vitamins C and K3: a powerful redox system for sensitizing leukemia lymphocytes to everolimus and barasertib,” Anticancer Res., vol. 38, no. 3, pp. 1407-1414, Mar. 2018.
    DOI: 10.21873/anticanres.12364
    PMid: 29491065
  5. Zh. Zhelev, D. Ivanova, D. Lazarova, I. Aoki, R. Bakalova, T. Saga, “Docosahexaenoic acid sensitizes leukemia lymphocytes to baraserib and everolimus by ROS-dependent mechanism without affecting the level of ROS and viability of normal lymphocytes, Anticancer Res., vol. 36, no. 4, pp. 1673-1682, Apr. 2016.
    PMid: 27069145
  6. Zh. Zhelev, D. Ivanova, R. Bakalova, I. Aoki, T. Higashi, “Synergistic Cytotoxicity of Melatonin and New-generation Anticancer Drugs Against Leukemia Lymphocytes but not Normal Lymphocytes,” Anticancer Res., vol. 37, no. 1, pp. 149-159, Jan. 2017.
    DOI: 10.21873/anticanres.11300
    PMid: 28011485
  7. C.R. da Silva, J.B. de Andrade Neto, R. de Sousa Campos, N.S. Figueiredo, L.S. Sampaio, H.I.F. Magalhгes, B.C. Cavalcanti, D.M. Gaspar, G.M. de Andrade, I.S.P. Lima, G.S. de Barros Viana, M.O. de Moraes, M.D.P. Lobo, T.B. Grangeiro, H.V.N. Júniora, “Synergistic effect of the flavonoid catechin, quercetin, or epigallocatechin gallate with fluconazole induces apoptosis in Candida tropicalis resistant to fluconazole,” Antimicrob. Agents and Chemother., vol. 58, no. 3, pp. 1468–1478, Mar. 2014.
    DOI: 10.1128/AAC.00651-13
    PMid: 24366745
  8. J.H. Jeong, J.Y. An, Y.T. Kwon, J.G. Rhee, Y.J. Lee, “Effects of low dose quercetin: Cancer cell-specific inhibition of cell cycle progression, J. Cell Biochem., vol. 106, no. 1, pp. 73-82, Jan. 2009.
    DOI: 10.1002/jcb.21977
    PMid: 19009557
  9. N.P. Bondonno, F. Dalgaard, C. Kyrꝋ, K. Murray, C.P. Bondonno, J.R. Lewis, K.D. Croft, G. Gislason, A.Scalbert, A. Cassidy, A. Tjꝋnneland, K. Overvad, J.M. Hodgson, “Flavonoid intake is associated with lower mortality in the danish diet cancer and health cohort, “ Nat Commun., vol. 10, no. 3651, pp. 1-10, Aug. 2019.
    DOI: 10.1038/s41467-019-11622-x
    PMid: 31409784
  10. C. Rodriguez-Garcia, C. Sánchez-Quesada, J.J. Gaforio, “Dietary flavonoids as cancer chemopreventive agemts: an update review of human studies,” MDPI Antioxidants, vol. 8, no. 137, pp. 1-23, May 2019.
    DOI: 10.3390/antiox8050137
    PMid: 31109072
  11. G.G. Mackenzie, F. Carrasquedo, J.M. Delfino, C.L. Keen, C.G. Fraga, P.I. Oteiza, “Epicatechin, catechin, and dimeric procyanidins inhibit PMA-induced NF-κB activation at multiple steps in Jurkat T cells,” FASEB J., vol. 18, no. 1, pp. 167-169, Jan. 2004.
    DOI: 10.1096/fj.03-0402fje
    PMid: 14630700
  12. S.B. Lotito, C.G. Fraga, “(+)-Catechin prevents human plasma oxidation,” Free Radic. Biol. Med., vol. 24, no. 3, pp. 435-441, Feb. 1998.
    DOI: 10.1016/s0891-5849(97)00276-1
    PMid: 9438556
  13. S. B. Lotito, L. Actis-Goretta, M.L. Renart, M. Caligiuri, D. Rein, H.H. Schmitz, F.M. Steinberg, C.L. Keen, C.G. Fraga, “Influence of oligomer chain length onthe antioxidant activity of procyanidins,” Biochem. Biophys. Res. Commun., vol. 276, no. 3, pp. 945-951, Oct. 2000.
    DOI: 10.1006/bbrc.2000.3571
    PMid: 11027573
  14. C. Sanbongi, N. Susuki, T. Sakane, “Polyphenols in chocolate, which have antioxidant activity, modulate immune functions in humans in vitro,” Cell. Immunol., vol. 177, no. 2, pp. 129-136, May 1997.
    DOI: 10.1006/cimm.1997.1109
    PMid: 9178639
  15. C. Kürbitz, D. Heise, T. Redmer, F. Goumas, A. Arlt, J. Lemke, G. Rimbach, H. Kalthoff, A. Trauzold, “Epicatechin gallate and catechin gallate are superior to epigallocatechin gallate in growth suppression and anti-inflammatory activities in pancreatic tumor cells,” Cancer Sci, vol. 102, no. 4 , 728–734, Apr. 2011.
    DOI: 10.1111/j.1349-7006.2011.01870.x
    PMid: 21241417
  16. E. Ramiro, A. Franch, C. Castellote, C.Andrès-Lacueva, M. Izquierdo-Pulido, M. Castell, “Effect of Theobroma cacao flavonoids on immune activation of a lymphoid cell line”, British J. of Nutrition, vol. 93, no 6, 859–866, Jun 2005.
    DOI: 10.1079/BJN20051443
    PMid: 16022755
  17. M. Suhail, A. Parveen, A. Husain, M. Rehan, “Exploring inhibitory mechanisms of green tea catechins as inhibitors of a cancer therapeutic target, Nuclear Factor-kB (NF-kB)”, Biosci. Biotech. Res. Asia, vol. 16, no 4, 515-723, December 2019.
    DOI: 10.13005/bbra/2787
  18. V.L. Rayen, P.E. Porporato, P. Danhier, T. Vazeille, M.C.N.M. Blackman, B.H. May, P. Niebes, P. Sonveaux, “(+)-Catechin in a 1:2 complex with lysine inhibits cancer cell migration and metastatic take in mice,” Front. Pharmacol., vol.8, Dec. 2017.
    DOI: 10.3389/fphar.2017.00869
    PMid: 29255416
Donika Ivanova, Zvezdelina Yaneva, "Comparative analysis of the anti-proliferative effect of natural products catechin hydrate and epigallocatechin (extract) applied on leukemia lymphocytes," RAD Conf. Proc, vol. 4, 2020, pp. 28–31, http://doi.org/10.21175/RadProc.2020.06
Health and Environment

PSYCHOLOGICAL ASPECTS OF IONIZING RADIATION EXPOSURE

Snežana Živković, Milan Veljković

DOI: 10.21175/RadProc.2020.07

All life on our planet is surrounded by radiation. Human life takes place with a certain level of radiation. The term psychologically is used primarily to explain the emotional reactions of the public, on issues in relation to which one should have a rational relationship because every story about radiation causes fear and rejection in an “unprofessional” and “conscientious” citizen. Over the past seventy years, a general opinion has been created through the mass media about the deadly effects of radiation. Apart from the real fear, which arises from the feeling of ecological endangerment, and which is based on the objective dangers of modern technologies, irrational fear is inevitably born. It is a generalization of all human subjective sufferings within the framework of “overestimated” reality. The feeling of fear that we are exposed to radiation can have far greater consequences than the actual harmful effects of physical radiation. The aim of this paper is to identify the psychological effects that radiation can cause in humans and how to overcome fear and stressful situations caused by radiation and the effect of psychosocial factors on human behavior, but also elements for prognosis and prediction for their behavior in similar situations. There is a justified concern when the risk of radiation appears, but the reality is far from the amount of panic that is spreading in the public and the media when it comes to these phenomena. We can conclude that people are generally afraid of radiation because their beliefs are dominated by misconceptions, delusions, or opinions that are the product of errors of judgment or are based on false premises.
  1. National Research Council, Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII Phase 2. Washington, DC: The National Academies Press, 2006.
    DOI: 10.17226/11340
  2. National Research Council (US) Committee on the Biological Effects of Ionizing Radiation (BEIR V), Health Effects of Exposure to Low Levels of Ionizing Radiation: Beir V, Washington (DC): National Academies Press (US), 1990, pp. 22-45.
    Retrieved from: http://www.ncbi.nlm.nih.gov/books/NBK218704/
    DOI: 10.17226/1224
  3. P. Slovic, Perception of risk. Science, vol. 236, pp. 280-285, Apr. 1987.
    DOI: 10.1126/science.3563507
  4. Y. Kim, “The radiation problem and its solution from a health communication perspective,” J. Korean Med. Sci., vol. 31(Suppl 1), pp. S88-S98, Jan. 2016.
    DOI: 10.3346/jkms.2016.31.S1.S88
  5. R. Michel, B. Lorenz, H. Völkle, Radiation protection today – success, problems, recommendation for the future. Statement paper of the “Club of the Philosophers” of the German-Swiss Association for Radiation Protection, 2018.
    Retrieved from: https://fs-ev.org/fileadmin/user_upload/09_Themen/Philosophen/Future_of_Radia tion_Protection_20180921.pdf
  6. B. Popović, “Uticaj γ-zračenja na antioksidativni sistem odabranih genotipova soje i pojava oksidativnog stresa,” Doktorska disertacija, Univerzitet u Novom Sadu, Prirodno-matematički fakultet , Novi Sad, Srbija, 2006. (B. Popović, “Influence of γ-radiation on antioxidant system of selected genotypes of soybean and oxidative stress appearance,” Ph.D. thesis, University of Novi Sad, Faculty of Science, Novi Sad, Serbia, 2006)
    Retrieved from: http://nardus.mpn.gov.rs/handle/123456789/5925
  7. A. Perić, „Spektralne karakteristike veštačkih izvora UV zračenja–solarijumi,” diplomski rad, Univerzitet u Novom Sadu, Prirodno-matematički fakultet, Novi Sad, Srbija, 2007.
  8. (A. Perić, “Spectral characteristics of artificial sources of UV radiation - solariums,” Diploma work, University of Novi Sad, Faculty of Science, Novi Sad, Serbia, 2006)
    Retrieved from: https://www.df.uns.ac.rs/publikacije/diplomski-radovi/
  9. B.M. Drottz-Sjöberg, L. Persson, Public reaction to radiation: fear, anxiety, or phobia?. Health Physics, vol. 64, no. 3, pp. 223-231, Mar. 1993.
    DOI: 10.1097/00004032-199303000-00001
  10. Н. Коупленд, Психология и солдат / Пер. с англ., Москва, Россия: Воениздат, 1991. (N. Copeland, “Psychology and the Soldier,” Translation of English, Moscow, Russia: Voenizdat, 1991.)
  11. К.Э. Изард, Эмоции человека, Психологический этюд, Москва, Россия: МГУ, 1980. (C.E. Izard, The psychology of emotions. Moscow, Russia: MGU, 1991.)
  12. C.E. Izard, The psychology of emotions. New York, USA: Springer Science & Business Media, 1991.
  13. Ž. Trebješanin, Rečnik psihologije. Beograd: Stubovi kulture. 2000.
  14. Т. Ш. Нагимов, Э.С. Русаев, Г.Г. Нигаматуллина, Психология человека в местах массового пребывания населения. Паника и её предотвращение. Уфа: ГУ МЧС России по Республике Башкортостан, 2005. (T. Sh. Nagimov, E. S. Rusaev, G.G. Nigamatullina, Human psychology in places of mass presence of the population. Panic and its prevention. Ufa: GU EMERCOM of Russia in the Republic of Bashkortostan, 2005.)
  15. D. Ropeik, “Fear vs. radiation: the mismatch.” The New York Times, Oct. 21, 2013.
    Retrieved from: https://www.nytimes.com/2013/10/22/opinion/fear-vs-radiation-the-mismatch.html
  16. M. Zvonarević, Đ. Matošić, I. Mišković, P. Sekulić, Čovjek u zaštiti i spašavanju, Zagreb, Jugoslavija: Školska knjiga, 1986. (M. Zvonarević, Đ. Matošić, I. Mišković, P. Sekulić, Man in Protection and Rescue, Zagreb, Yugoslavia: Školska knjiga, 1986.)
  17. J.R. Croft, P. Zuniga-Bello, A. Kenneke, “The radiological accident in San Salvador.” In Recovery operations in the event of a nuclear accident or radiological emergency: Proceedings Series , Vienna, Austria: IAEA, 1990.
  18. B.R. Jordan, “The Hiroshima/Nagasaki survivor studies: discrepancies between results and general perception,” Genetics, vol. 203, no. 4, pp. 1505-1512, Aug. 2016.
    DOI: 10.1534/genetics.116.191759
  19. M. Durigon, T. Kosatsky, “Calls managed by the BC Drug and Poison Information Centre following the 2011 nuclear reactor incident at Fukushima, Japan.” Canad. Pharm. J., vol. 145, no. 6, pp. 256-258, Nov. 2012.
    DOI: 10.3821/145.6.cpj256
  20. Y. Tsfati, J. Cohen, J. Perceptions of media and media effects: The third person effect, trust in media and hostile media perceptions. In The international encyclopedia of media studies: media effects/media psychology, 1st ed.., A.N. Valdivia, E. Scharrer. Eds., Oxford, UK: Willey-Blackwell, 2013, ch. 5, pp. 1-19.
  21. C.C. Chow, R.K. Sarin, Known, unknown, and unknowable uncertainties, Theory Decision, vol. 52, no. 2, pp. 127-138, Mar. 2002.
    DOI: 10.1023/A:1015544715608
  22. C.J. Martin, “The LNT model provides the best approach for practical implementation of radiation protection,” Br. J. Radiol., vol. 78, no. 925, pp. 14-16, Jan. 2014.
    DOI: 10.1259/bjr/31745335
  23. C. Streffer, “The ICRP 2007 recommendations,” Radiat. Prot. Dosimetry., vol. 127, no. 1-4, pp. 1-7, Oct. 2007.
    DOI: 10.1093/rpd/ncm246
  24. R. Bertell, “First Assessment of the actual death toll attributable to the Chernobyl disaster based upon conventional risk methodology,” In Chernobyl: 20 years on health effects of the Chernobyl accident, C.C. Busby, A.V. Yablokov, European Committee on Radiation Risk (ECRR), Aberystwyth, UK: Green Audit, 2006, pp. 245-248.
  25. A. Petryna, Life exposed: biological citizens after Chernobyl. Princeton; Oxford, UK: Princeton University Press, 2013.
    DOI: 10.2307/j.ctt7rtb3.6
  26. W. Huda, “Radiation doses and risks in chest computed tomography examinations,” Proc. Am. Thorac. Soc., vol. 4, pp. 316–320, Aug. 2007.
    DOI: 10.1513/pats.200611-172HT
  27. D.J. Brenner, R.K. Sachs, “Do low dose-rate bystander effects influence domestic radon risks?” Int. J. Rad. Biol., vol. 78, no. 7, pp. 593-604, Aug. 2002.
    DOI: 10.1513/pats.200611-172HT
  28. G. Lawler, “Knowledge and awareness of radiation therapy in the general Irish population and a population of health professionals,” Radiother. Oncol., vol. 92, S157, Aug. 2009.
    DOI: 10.1016/S0167-8140(12)72998-5
  29. A. Turner, “Be wary of granite that glows,” Houston Chronicle, Jul. 25, 2008.
    Retrieved from: http://rhic22.physics.wayne.edu/SaxumSubluceo/Stories/HoustonChronicle_GraniteCountertopsMayCauseYouHarm.pdf
  30. A. Ubysz, M. Maj, M. Musiał, J. Ubysz, “Radon-occurrence and health risks in civil engineering” Proc. Eng., vol. 172, pp. 1184-1189, 2017.
    DOI: 10.1016/j.proeng.2017.02.138
  31. S. Živković, “Psihologija grupa,” Niš: Fakultet zaštite na radu, Srbija, 2012. (S. Živković, “Group Psychology,” Niš: Faculty of Occupational Safety, Serbia, 2012.)
  32. T. Perko, “Radiation risk perception: a discrepancy between the experts and the general population,” J. Environ. Radioact ., vol. 133, pp. 86-91, Jul. 2014.
    DOI: 10.1016/j.jenvrad.2013.04.005
  33. Y. Kim, “The radiation problem and its solution from a health communication perspective,” J. Korean Med. Sci., vol. 31 (Suppl 1), pp. S88-S98, Jan. 2016.
    DOI: 10.3346/jkms.2016.31.S1.S88
Snežana Živković, Milan Veljković, "Psychological aspects of ionizing radiation exposure," RAD Conf. Proc, vol. 4, 2020, pp. 32–38, http://doi.org/10.21175/RadProc.2020.07
Radiation Effects

INDUCTION OF MICRONUCLEI AFTER PROLONGED UV IRRADIATION OF POACEAE SPECIES CULTIVATED IN LABORATORY CONDITIONS AND WILD-GROWING IN RILA MOUNTAIN

Tsveta Angelova, Nikolai Tyutyundzhiev, Christo Angelov, Svetla Gateva, Gabriele Jovtchev

DOI: 10.21175/RadProc.2020.08

The aim of this study is to assess the potential of prolonged UV irradiation to induce genotoxic alteration in Poaceae species cultivated in laboratory and in mountain conditions. Changes in natural environment increase to a great extent with altitude. In natural ecosystems plants are exposed to UV and other environmental factors for more than one period of time of 10, 20, 30 or 43 days. Four wild species: Poa alpina L., Sesleria coerulans Friv., Festuca valida (R. Uechtr.) Pénzes, Dactylis glomerata L., characteristic of the ecosystems in Rila Mountain at three different altitudes (1500m, 1782m, and 2925m) were collected in three successive growing seasons (2017, 2018, 2019). Five-days old model plant Hordeum vulgare L. was cultivated and exposed to UV irradiation in laboratory conditions for periods of 10, 20, 30 and 43 days. Induction of micronuclei was applied as endpoint. We propose that: i) prolonged irradiation as well as its increase with altitude could induce higher genotoxic injuries in plants; ii) wild plants in mountainous and alpine biotopes are well adapted to the environmental conditions where a combination of abiotic stress factors can occur. Our results show variability in the response to UV irradiation between plant species cultivated in laboratory conditions and wild plants in natural environment where UV is combined with other abiotic stress factors. Micronuclei induced in H. vulgare in laboratory conditions were with higher frequency than those in plants growing in mountain conditions. It could be due to the fact that in laboratory conditions we studied the effect of a single factor and for a limited period of time, while in the natural environment the effect of prolonged UV irradiation is combined with other abiotic stress factors. Plant species at the highest altitude of 2925 m had a well pronounced low level of damage, despite expected high level of damage. It is well known that plants’ response is modified when the effect of UV irradiation is combined with other factors. Further studies are needed for better understanding the mechanisms of interaction between factors and plant responses to the changing environmental conditions. Based on this and on future monitoring studies it could be possible to select sensitive monitor/model Poaceae species for the following comparative environmental impact assessments in laboratory and in mountain conditions.
  1. S. W. Mpoloka, “Effects of prolonged UV-B exposure in plants“, African Journal of Biotechnology, vol. 7, no. 25, pp. 4874-4883, 2008.
    Retrieved from: http://www.academicjournals.org/AJB
  2. G. Kumar, A. Pandey, “Effect of UV-B radiation on chromosomal organisation and biochemical constituents of Coriandrum sativum L.”, Jordan Journal of Biological Sciences, vol. 10, no. 2, pp. 85-93, 2017.
  3. A. G. Roro, M. T. Terfa, K.A. Solhaug, A. Tsegaye, E. Olsen, S. Torre, “The impact of UV radiation at high altitudes close to the equator on morphology and productivity of pea (Pisum sativum) in different season”, South African Journal of Botany, vol. 106, pp. 119–128, 2016.
    DOI: 10.1016/j.sajb.2016.05.011
  4. L. F. Suárez Salas, J. L. Flores Rojas, A. J. Pereira Filho, H. A. Karam, “Ultraviolet solar radiation in the tropical central Andes (12.0°S)”, Photochem. Photobiol. Sci., vol. 16, pp. 954–971, 2017.
    DOI: 10.1039/C6PP00161K
  5. G. Jovtchev, A. Stankov, I. Ravnachka, S. Gateva, D. Dimitrov, N. Tyutyundzhiev, N. Nikolova, Ch. Angelov, “How can the natural radiation background affect DNA integrity in angiosperm plant species at different altitudes in Rila Mountain (Southwest Bulgaria)?”, Environmental Science and Pollution Research, vol. 26, pp. 13592–13601, 2019.
    DOI: 10.1007/s11356-019-04872-1
  6. Y. Sola, J. Lorente, E. Campmany, X. de Cabo, J. Bech, A. Redano, J. A. Martinez-Lozano, M. P. Utrillas, L. Alados-Arboledas, F. J. Olmo, J. P. Diaz, F. J. Exposito, V. Cachorro, M. Sorribas, A. Labajo, J. M. Vilaplana, A. M. Silva, J. Badosa, “Altitude effect in UV radiation during the evaluation of the effects of elevation and aerosols on the ultraviolet radiation 2002 (VELETA-2002) field campaign”. J Geophys Res, vol. 113: D23202, 2008.
    DOI: 10.1029/2007JD009742
  7. C. Körner, “The use of ‘altitude’ in ecological research”, Trends Ecol. Evol., vol. 22, no. 11, pp. 569-574, 2007.
    DOI: 10.1016/j.tree.2007.09.006
  8. O. Aknazarov, “Effect of ultraviolet radiation on the growth, morphogenesis, and hormone level of alpine plants”, Extended Abstract of Dr. Sci. (Biol.) Dissertation, Dushanbe, 1991.
  9. M. M. Caldwell, “Solar ultraviolet radiation as an ecological factor for alpine plants”, Ecol. Monographs, vol. 38, pp. 243–268, 1968.
    DOI: 10.2307/1942430
  10. M. M. Caldwell, C. L. Ballare, J. F. Bornman, S. D. Flint, L. O. Bjorn, A. H. Teramura, G. Kulandaivelu, M. Tevini, “Terrestrial ecosystems, increased solar ultraviolet radiation and interactions with other climatic change factors”, Photochem. Photobiol. Sci., vol. 2, no. 1, pp. 29–38, 2003.
    DOI: 10.1039/B211159B
  11. J. H. Sullivan, A. H. Teramura, “Field study of the interaction between solar ultraviolet-B radiation and drought on photosynthesis and growth in soybean”, Plant Physiol., vol. 92, no. 1, pp. 141–146, 1990.
  12. S. Koti, K. R. Reddy, V. R. Reddy, V. G. Kakani, D. Zhou, “Interactive effects of carbon dioxide, temperature, and ultraviolet-B radiation on soybean (Glycine max) flower and pollen morphology, production, germination and tube lengths”, J. Exp. Bot ., vol. 56, no. 412, pp. 725–736, 2004.
    DOI: 10.1016/j.envpol.2005.01.030
  13. Á. Ferrero-Serrano, S.M. Assmann, “Phenotypic and genome-wide association with the local environment of Arabidopsis”, Nat. Ecol. Evol. vol. 3, 274–285, 2019.
    DOI: 10.1038/s41559-018-0754-5
  14. E.V. Kanash, Influence of UV-B Radiation on Agroeconomic Systems, Dokl. Vseross. Akad. Sel’skokhoz. Nauk, vol. 3, pp. 17–20, 2002.
    Retrieved from: https://scholar.google.com/citations?user=JJ1nLq8AAAAJ&hl=en&oi=sra
  15. B.R. Jordan. The Effect of Ultraviolet-B Radiation on Plants: A Molecular Perspective, Adv. Bot. Res., vol. 122, pp. 97–162, 1996.
    Retrieved from: https://scholar.google.com/scholar_lookup?title=The%20Effect%20of%20Ultraviolet-B%20Radiation%20on%20Plants%3A%20A%20Molecular%20Perspective&journal=Adv.%20Bot.%20Res.&volume=122&pages=97-162&publication_year=1996&author=Jordan%2CB.R
  16. R. Rai, S. Singh, S. Yadav, A. Chatterjee, S. Rai, A. Shankar, L. C. Rai, “Impact of UV-B radiation on photosynthesis and productivity of crop. Environment and photosynthesis a future prospect” inV. P. Singh, S. Singh, R. Singh, P. K. Srivastava, S. M. Prasad, Eds., Environment and photosynthesis: a future prospect. Studium Press, New Delhi, 2018, pp. 336–346.
  17. C.S. Campbell, Poaceae, Website Name: Encyclopaedia Britannica, Publisher: Encyclopaedia Britannica, Inc., Date Published: 07 October 2016.
    Retrieved from: https://www.britannica.com/plant/Poaceae
  18. Rila National Park, Management Plan 2001–2010, published 2001, p. 289.
    Retrieved from: http://rilanationalpark.bg/assets/userfiles/Rila%20NP-en.pdf
  19. N. Tyutyundzhiev, Ch. Angelov, K. Lovchino, Hr. Nitchev, M. Petrov, T. Arsov, “Modeling the natural UV irradiation and comparative UV measurements at Moussala BEO (BG)”. IOP Publishing, J Phys: Conf. Ser. 992 (012022): pp. 1–7, 2018.
    DOI: 10.1088/1742-6596/992/1/012022
  20. Ts. Angelova, A. Stankov, N. Tyutyundzhiev, Ch. Ivanov, S. Gateva, G. Jovtchev, “Does prolonged UV irradiation induce genotoxic effect on Hordeum vulgare L.?,” in 23rd International Eco-conference of environmental protection of urban and suburban settlements, Proc., 25th-27th September, Novi Sad, Serbia , 2019, pp. 137-143, ISBN 978-86-83177-55-4.
  21. G. Jovtchev, M. Stergios, I. Schubert, “A comparison of N-methyl-N-nitrosourea-induced chromatid aberrations and micronuclei in barley meristems using FISH techniques”, Mutation Research, vol. 517, pp. 47–51, 2002.
    DOI: 10.1016/s1383-5718(02)00038-4
  22. G. Jovtchev, M. Menke, I. Schubert, “The comet assay detects adaptation to MNU-induced DNA damage in barley”, Mutation Research, vol. 493, pp. 95–100, 2001.
    DOI: 10.1016/S1383-5718(01)00166-8
  23. G. Jovtchev, S. Gateva, Ts. Angelova, K. Katrandzhiev, N. Nikolova, D. Dimitrov, Ch. Angelov, “Impact of UV radiation on the DNA of plants at different altitudes in Rila Mountain, Bulgaria-a three years study”, in 24 International Eco-conference, 11 Safe Food, Proc., 23–25th September, Novi Sad, Serbia, 2020, pp. 59-67. ISBN 978-86-83117-56-1.
Tsveta Angelova, Nikolai Tyutyundzhiev, Christo Angelov, Svetla Gateva, Gabriele Jovtchev, "Induction of micronuclei after prolonged UV irradiation of Poaceae species cultivated in laboratory conditions and wild-growing in Rila mountain," RAD Conf. Proc, vol. 4, 2020, pp. 39–44, http://doi.org/10.21175/RadProc.2020.08
Cancer Research

RADIOPROTECTIVE EFFECT OF HUMAN LACTOFERRIN AGAINST GAMMA-IRRADIATION WITH SUBLETHAL DOSE

Marina Yu. Kopaeva, Irina B. Alchinova, Mikhail V. Nesterenko, Anton B. Cherepov, Marina S. Demorzhi, Irina Yu. Zarayskaya, Mikhail Yu. Karganov

DOI: 10.21175/RadProc.2020.09

The aim of this study was to investigate the effects of human lactoferrin (hLf) in mice exposed to acute sublethal gamma-irradiation. C57Вl/6 male mice were used for the experiments. Animals from experimental groups were exposed to whole-body gamma-radiation at a dose of 7.5 Gy. Some animals received an intraperitoneal injection of lactoferrin (Lf) immediately and then at 24 hours after the irradiation. The effect of Lf on survival rate and life span was studied. Changes in the physiological parameters were evaluated by laser correlation spectroscopy of blood serum, histological examination of the liver, and blood leukocyte shift index count on day 30 after irradiation. The Lf administration increased the survival rate and life span of irradiated mice during the experiment. In addition, Lf had a compensatory effect on the white blood formula, serum composition and liver condition of irradiated animals.
  1. N. Orsi, “The antimicrobial activity of lactoferrin: Current status and perspectives,” BioMetals, vol. 17, no. 3, pp. 189–196, Jun. 2004.
    DOI: 10.1023/B:BIOM.0000027691.86757.e2
  2. I. A. García-Montoya, T. S. Cendón, S. Arévalo-Gallegos, and Q. Rascón-Cruz, “Lactoferrin a multiple bioactive protein: An overview,” Biochim. Biophys. Acta BBA - Gen. Subj., vol. 1820, no. 3, pp. 226–236, Mar. 2012.
    DOI: 10.1016/j.bbagen.2011.06.018
  3. Y. Nishimura, S. Homma-Takeda, H.-S. Kim, and I. Kakuta, “Radioprotection of mice by lactoferrin against irradiation with sublethal X-rays,” J. Radiat. Res. (Tokyo), vol. 55, no. 2, pp. 277–282, Mar. 2014.
    DOI: 10.1093/jrr/rrt117
  4. L. Feng, J. Li, L. Qin, D. Guo, H. Ding, and D. Deng, “Radioprotective effect of lactoferrin in mice exposed to sublethal X‑ray irradiation,” Exp. Ther. Med., Aug. 2018.
    DOI: 10.3892/etm.2018.6570
  5. N. Faraji, Y. Zhang, and A. K. Ray, “Determination of adsorption isotherm parameters for minor whey proteins by gradient elution preparative liquid chromatography,” J. Chromatogr. A, vol. 1412, pp. 67–74, Sep. 2015.
    DOI: 10.1016/j.chroma.2015.08.004
  6. V. Kumar, Md. I. Hassan, T. Kashav, T. P. Singh, and S. Yadav, “Heparin-binding proteins of human seminal plasma: purification and characterization,” Mol. Reprod. Dev., vol. 75, no. 12, pp. 1767–1774, Dec. 2008.
    DOI: 10.1002/mrd.20910
  7. M. Yu. Kopaeva, A. B. Cherepov, I. Yu. Zarayskaya, and M. V. Nesterenko, “Transport of Human Lactoferrin into Mouse Brain: Administration Routes and Distribution,” Bull. Exp. Biol. Med., vol. 167, no. 4, pp. 561–567, Aug. 2019.
    DOI: 10.1007/s10517-019-04572-3
  8. M. Yu. Kopaeva, I. B. Alchinova, M. V. Nesterenko, A. B. Cherepov, I. Yu. Zarayskaya, and M. Yu. Karganov, “Lactoferrin beneficially influences the recovery of physiological and behavioral indexes in mice exposed to acute gamma-irradiation,” Nauchno-Prakt. Zhurnal «Patogenez» [Pathogenesis], vol. 18, no. 1, pp. 29–33, Mar. 2020.
    DOI: 10.25557/2310-0435.2020.01.29-33
  9. M. Karganov, I. Alchinova, E. Arkhipova, and A. V. Skalny, “Laser Correlation Spectroscopy: Nutritional, Ecological and Toxic Aspects,” Biophysics ed. A N Misra (InTech), pp. 1-16, 2012. ISBN 978-953-51-0376-9
    DOI: https://doi.org/10.5772/35254
  10. I. Alchinova, E. Arkhipova, Yu. Medvedeva, A. Cherepov, A. Antipov, N. Lysenko, L. Noskin, and M. Karganov, “The Complex of Tests for the Quantitative Evaluation of the Effects of Radiation on Laboratory Animals,” Am. J. Life Sci., vol. 3, no. 1, pp. 5-12, 2015.
    DOI: 10.11648/j.ajls.s.2015030102.12
  11. A. A. Ivanov, A. M. Ulanova, N. M. Stavrakova, Iu. B. Deshevoĭ, T. A. Nasonova, A. N. Koterov, K. K. Gutsenko, V. N. Mal’tsev, ["Antiradiation effects of Lactoferrin"]. Radiatsionnaia biologiia. Radioecologiia [Radiation biology. Radioecology] , vol. 49, no. 4, pp. 456-461, 2009. (in Russian)
  12. I. B. Alchinova, M. V. Polyakova, E. N. Yakovenko, Y. S. Medvedeva, I. N. Saburina, and M. Y. Karganov, “Effect of Extracellular Vesicles Formed by Multipotent Mesenchymal Stromal Cells on Irradiated Animals,” Bull. Exp. Biol. Med., vol. 166, no. 4, pp. 574-579, 2019.
    DOI: 10.1007/s10517-019-04394-3
Marina Yu. Kopaeva, Irina B. Alchinova, Mikhail V. Nesterenko, Anton B. Cherepov, Marina S. Demorzhi, Irina Yu. Zarayskaya, Mikhail Yu. Karganov, "Radioprotective effect of human lactoferrin against gamma-irradiation with sublethal dose," RAD Conf. Proc http://doi.org/10.21175/RadProc.2020.09
Cancer Research

LOCALIZATION AND SHAPE OF STENOSES IN PERIPHERAL LUNG CARCINOMA DIAGNOSED BY METHODS OF VB AND FB

Mitko Mitev, Evelin Obretenov

DOI: 10.21175/RadProc.2020.10

Introduction . The study aim to present the diagnostic capabilities of virtual bronchoscopy (VB) and fiberoptic bronchoscopy (FB) for determining the localization and shape of stenoses in patients with peripheral lung carcinoma. Materials and methods. A systemic study was performed on 90 patients, 61 patients of them (67.78%) are men and 29 (32.23%) are women, 44-85 years of age, with endobronchial disease, using the FB and VB methods, over the period 2013-2020. Results. As a result of the study of 220 patients aged 11-83 years (54.36 ± 17.24), in 90 patients after VB (40.91%; 61 men - 67.78% and 29 women - 32.23%) and in 86 patients after FB (39.09%; 61 men - 70.93% and 25 women - 29.07%) peripheral lung carcinoma was found. Cases of men diagnosed with VB and FB with peripheral left carcinoma predominate (65.38% and 71.43%, respectively) compared to those in women (34.62% and 28.57%, respectively) and as well as with regard to cases with peripheral right carcinoma. Significant differences in the size of the stenoses were found in both sexes with peripheral carcinoma (U = 4.112, P = 0.0000). Conclusion. VB allows high-quality visualization of stenoses and poststenotic areas that cannot be achieved with FB in peripherally located processes. Through VB peripheral branches of 5-6 order can be reached. VB makes it possible to examine the areas located after the tumour formation.
  1. М. А. Митев, Виртуална бронхоскопия с мултидетекторен компютърен томограф, Дисертация ОНС Доктор, Тракийски университет – Стара Загора, Катедра Мед. физика, биоф., рентг., рад., Стара Загора, Бг, 2017 (M. A. Mitev, “Virtual bronchoscopy with Multidetector computed tomography,” Ph.D. dissertation, Trakia University-Stara Zagora, Dept. of Med. Physics, Biophysics, Roentg, Rad., Stara Zagora, BG, 2017).
  2. P.M. Kotlyarov, “Virtual bronchoscopy for tumors and Traumatic Lesions of the Aitways,” Open access peer-reviewed chapter, in Intervent. Pulm. Pulm. Hypert. – Upd. Sp. Top., UK: IntechOpen, 2020, ch. 4, pp. 189-254.
    DOI: 10.5772/intechopen.78454
  3. М. Mitev, N. Trajkova, D. Arabadzhiev, S. Valkanov, N. Georgieva, E. Obretenov, “Virtual bronchoscopy importance of the method application and prospects for tumors of the trachea and bronchi,” Trakia J. Sci., vol. 15, no. 3, pp. 269-273, 2017.
    DOI: 10.15547/tjs.2017.03.018
  4. M. Mitev, E. Obretenov, D. Valchev, “Localization and shape of stenoses in central lung carcinoma – sensitivity and precision of MDCT VB and FB,” Acta Clin. Croat., vol. 59, no. 2, pp. 252-259, Sep. 2020
    DOI: 10.20471/acc.2020.59.02.08
  5. Т. Fleiter, Е.M. Merkle, A.J. Aschoff, G. Lang, M. Stein, J. Görich, F. Liewald, N. Rilinger, R. Sokiranski, „Comparison of Real-Time Virtual and Fiberoptic Bronchoscopy in Patients with Bronchial Carcinoma: Opportunities and Limitations,” A. J. R., vol. 169, no. 6, pp. 1591-1595, Dec. 1997
    DOI: https://www.ajronline.org/doi/pdfplus/10.2214/ajr.169.6.9393172
    PMid: 9393172
  6. F. Liewald, G. Lang, T.H. Fleiter, R. Sokiranski, G. Halter, K.H. Orend, “Comparison of virtual and fiberoptic bronchoscopy,” Thor. Cardio-vasc. Sur., vol. 46, no. 6, pp. 361-364, 1998.
    DOI: 10.1055/s-2007-1010254
    PMid: 9928859
  7. H.P. McAdams, Ph.C. Goodman, P. Kussin, “Virtual Bronchoscopy for Directing Transbronchial Needle Aspiration of Hilar and Mediastinal Lymph Nodes: A Pilot Study,” A. J. R., vol. 170, no. 5, pp. 1361-1364, May 1998.
    DOI: https://www.ajronline.org/doi/pdfplus/10.2214/ajr.170.5.9574616
    PMid: 9574616
  8. A.J. Burke, D.J. Vining, W.F.Jr. McGuirt, G. Postma, J.D. Browne, “Evaluation of airway obstruction using virtual endoscopy,” Laryngoscope, no. 110, pp. 23–29, Jan. 2000.
    DOI: https://onlinelibrary.wiley.com/doi/pdf/10.1097/00005537-200001000-00005
    PMid: 10646710
  9. П. М. Котляров, С. З. Темирханов, К. Е. Флеров, В. А. Гомболевский, Н. В. Черниченко, Н. В. Нуднов, В. А. Солобкий, Виртуальная бронхоскопия в диагностике рака легкого и его распространенности, мониторинге послеоперационных изменений, Вестника РНЦРР МЗ РФ N13, 2013 (P. M. Kotlayrov, S. Z. Temirhanov, K. E. Flerov, V. A. Gombolevskii, N. V. Chernychenko, N. V. Nudnov, V. A. Solodkiy, “Virtual bronchoscopy in the diagnosis of lung cancer, in the assessment of its spread and in monitoring of post-operative changes,” Newspaper RSCX-RR МH RF N13 , 2013.)
    Retrieved from: http://vestnik.rncrr.ru/vestnik/v13/papers/flerov_v13.htm
  10. F. Asano, R. Eberhardt, F. Herth, “Virtual Bronchoscopic Navigation for peripheral Pulmonary Lesions,” Respiration, no. 88, pp. 430-440, Oct. 2014.
    DOI: 10.1159/000367900
    PMid: 25402610
  11. N. McAleece, J. D. G., Lambshead, G. L. J. Peterson, “BioDiversity professional statistics analysis software,” UK (London): Natural History Museum and Scottish Association for Marine Science, 1997.
    Retrieved from: http://www.sams.ac.uk/peter-lamont/biodiversity-pro
    Retrieved on: Feb. 1, 2016
  12. StatSoft Inc., 2011. Statistica (data analysis software system),version 10. www.statsoft.com.
    Retrieved from: https://statistica.software.informer.com/10.0/
    Retrieved on: Jan. 20, 2011
  13. F. Li, Sh. Sone, H. Abe, H. MacMahon, K. Doi, “Malignant versus Benign Nodules at CT Screening for Lung Cancer: Comparison of Thun-Section CT Findings,” Radiology, vol. 233, no. 3, pp. 793-798, Dec. 2004.
    DOI: 10.1148/radiol.2333031018
    PMid: 15498895
  14. T. Schlathölter, C. Lorenz, I. Carlsena, S. Renischa, T. Deschamps, “Simultaneous Segmentation and Tree Reconstruction of the Airways for Virtual Bronchoscopy,” Proceedings of SPIE, vol. 4684, no. 02, pp. 103-113, 2002.
    Retrieved from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.19.9064&rep=rep1&type=pdf
    Retrieved on: May 9, 2002
  15. W. De Wever, J. Bogaert, J. A. Verschakelen, “Virtual Bronchoscopy: Accuracy and Usefulness — An Overview,” Semin Ultrasound CT MRI, vol. 26, no. 5, pp. 364-373, Oct. 2005.
    DOI: 10.1053/j.sult.2005.07.005
    PMid: 16274005
  16. 16. St. Leong, T. Shaipanich, St. Lam, K. Yasufuku, “Diagnostic bronchoscopy – current and future perspectives,” J Thorac Dis, vol. 5, suppl. 5, pp. S498-S510, Sep. 2013.
    DOI: 10.3978/j.issn.2072-1439.2013.09.08
    PMid: 24163743
  17. M. Luo, C. Duan, L. Qiu, W. Li, D. Zhu, W. Cai, “Diagnostic Value of Multidetector CT and Its Multiplanar Reformation, Volume Rendering and Virtual Bronchoscopy Postprocessing Techniques for Primary Trachea and Main Bronchus Tumors,” PLoS One, vol. 10, no. 9, pp. e0137329, Sep. 2015.
    DOI: 10.1371/journal.pone.0137329
    PMid: 26332466
  18. T. Ishiwata, A. Gregor, T. Inage, K. Yasufuku, “Advances in interventional diagnostic bronchoscopy for peripheral pulmonary lesions,” Expert Review of Respiratory Medicine, vol. 13, no. 9, Jul. 2019.
    DOI: 10.1080/17476348.2019.1645600
    PMid: 31322455
  19. T. Ishida, F. Asano, K. Yamazaki, N. Shinagawa, S. Oizumi, H. Moriya, M. Munakata, M. Nishimura, “Virtual bronchoscopic navigation combined with endobronchial ultrasound to diagnose small peripheral pulmonary lesions: a randomised trial,” Thorax, vol. 66, no. 12, pp. 1072-1077, Dec. 2011.
    DOI: 10.1136/thx.2010.14.54.90
    PMid: 21749984
  20. Sh. Li, W. Yan, M. Chen, Zh. Li, Y. Zhu, Q. Wu, “Virtual bronchoscopic navigation without fluoroscopy guidance for peripheral pulmonary lesions in inexperienced pulmonologist,” Chin. J. Cancer Res., vol. 32, no. 4, pp. 530-539, Aug. 2020.
    DOI: 10.21147/j.issn.1000-9604.2020.04.10
    PMid: 32963465
  21. T. Adachi, H. Machida, M. Nishikawa, T. Arai, T. Kariyasu, M. Koyanagi, K. Yokoyama, “Improved delineation of CT virtual bronchoscopy by ultrahigh resolution CT: comparison among different reconstruction parameters”, Jpn J Radiol., vol. 38, no. 9, pp. 884-889, Apr. 2020.
    DOI: 10.1007/s11604-020-00972-y
    PMid: 32297061
Mitko Mitev, Evelin Obretenov, "Localization and shape of stenoses in peripheral lung carcinoma diagnosed by methods of VB and FB," RAD Conf. Proc, vol. 4, 2020, pp. 50–54, http://doi.org/10.21175/RadProc.2020.10
Radiation Protection

DOSE LOAD TO DIFFERENT PARTS OF THE BODY OF THE INTERVENTIONAL CARDIOLOGIST - FIRST RESULTS

Natasha Ivanova, Javor Ivanov, Bistra Manusheva, Ismet Tahsinov, Hrisimir Todorov, Nikolai Aleksandrov

DOI: 10.21175/RadProc.2020.11

In this article, we present some first results of the study of the dose load on a medical team working with an angiographic X-ray system in the Department of Invasive Cardiology. In the first stage, we made measurements of the dose received by an interventional cardiologist for the most commonly used projections of the C-arm. The measurements were made at three different points of the body of the cardiologist: head, gonads and feet. The aim of this article is to determine, based on the measurements, how the dose load is distributed at different points of the body of the cardiologist when various projections of the C-arm of the angiographic system and at different positions of the patient’s table are used. The obtained results indicate the point “Gonads” to receive the highest dose load and “Head” as the point with the lowest dose load.
  1. PHILIPS, History of X-ray.
    Retrieved from: https://www.philips.com/consumerfiles/newscenter/main/shared/assets/Downloadablefile/FACT_SHEET_X-ray_history.pdf
    Retrieved on: Sept. 21, 2020
  2. Werner Otto Theodor Forsman (in Bulg. Вернер Ото Теодор Форсман)
    Retrieved from: https://bg.pmtctdonations.org/forssmann-5637
    Retrieved on: Sept. 21, 2020
  3. J.A.M. Hofman, Former Marketing Director, Universal RF Systems, Philips Healthcare, The art of medical imaging: Philips and the evolution of medical X-ray technology, Clinical applications, MEDICAMUNDI 54/1 2010.
    Retrieved from: http://incenter.medical.philips.com/doclib/enc/fetch/2000/4504/577242/577256/588821/5050628/5313460/6391861/%5B04%5D_MM_54-1_Hofman.pdf%3Fnodeid=6391873&vernum=-2
    Retrieved on: Sept. 21, 2020
  4. Making the difference with Philips Live Image Guidance Philips Allura Xper FD10 system specifications © 2017 Koninklijke Philips N.V. 4522 991 18981 * Apr 2017 (the article was provided by Philips)
  5. Röntgen-GammaDosimeter 27091, Technical Description and Operating Instructions, September 02, 2008.
    Retrieved from: http://www.step-sensor.de/media/main/rgd_27091__manual_.pdf
    Retrieved on: Sept. 21, 2020
  6. M. Osanai, K. Kudo, M. Hosoda, H. Tazoe, N. Akata, M. Kitajima, M. Tsushima, N. Komiya, M. Kudo, T. Tsujiguchi, M. Takagi, Y. Hosokawa, Y. Saito, “The impact on the eye lens of radiation emitted by natural radionuclides (lead-210) present in radiation protection glasses,” Radiat. Prot. Dosimetry, vol. 188, no. 1, pp. 13- 21, Jan. 2020.
    DOI: 10.1093/rpd/ncz252
    PMid: 31711199
    Retrieved from: https://pubmed.ncbi.nlm.nih.gov/31711199/
    Retrieved on: November 26, 2020
  7. Y. Haga, K. Chida, Y. Kaga, M. Sota, T. Meguro, M. Zuguchi “Occupational eye dose in interventional cardiology procedures,” Sci. Rep. 7, p. 569, Apr. 2017.
    DOI: 10.1038/s41598-017-00556-3
Natasha Ivanova, Javor Ivanov, Bistra Manusheva, Ismet Tahsinov, Hrisimir Todorov, Nikolai Aleksandrov, "Dose load to different parts of the body of the interventional cardiologist - first results," RAD Conf. Proc, vol. 4, 2020, pp. 55–59, http://doi.org/10.21175/RadProc.2020.11
Radiobiology

RADIOSENSITIZING EFFECT OF BORON ENHANCES THE EFFECTIVENESS OF PROTON THERAPY IN VITRO

Dmitry Lebedev, Luiza Garaeva, Vladimir Burdakov, Andrey Volnitskiy, Natalya Razgildina, Alina Garina, Dmitry Amerkanov, Fedor Pack, Konstantin Shabalin, Evgeniy Ivanov, Victor Ezhov, Andrey Konevega, Tatiana Shtam

DOI: 10.21175/RadProc.2020.12

Proton therapy is used today to treat many cancers and is particularly appropriate in situations where surgery options are limited, and conventional radiotherapy presents unacceptable risks to patients. A few years ago, it was suggested that an increase of up to a factor of two of the doses at the proton Bragg peak could be achieved if boron is accumulated in the tumor tissues. The mechanism responsible for a higher dose was suggested to be related to proton-boron fusion reactions, leading to the production of high Linear Energy Transfer (LET) α-particles. Nowadays there are single works showing the effectiveness of proton beam irradiation boron-11-containing cancer cells. A limited number of the studies devoted to the application of 11B(p,3a) nuclear reaction in proton therapy and lack of consistency in their results do not allow to judge about the prospects of the boron-containing drugs utilization in proton therapy to increase its antitumor efficacy. In this work, we experimentally test the possibility to enhance proton biological effectiveness in boron-11-containing cancer cells in vitro. Human glioblastoma cells were pre-incubated with boron compound (Na2B 4O7, sodium tetraborate) and irradiated with increasing doses 2-8 Gy at the proton Bragg peak. To test whether the physical nuclear reaction 11B(p,3a) results in an enhancement of the cancer cell death by high-energy proton beam irradiation, cell lines were also irradiated with graded doses 2-8 Gy using
γ-ray source. The ability of boron compound to activate the cancer cell death with protons at the Bragg peak irradiation was shown in vitro. At the same time, weaker similar effect was determined for gamma-irradiation that may indicate not only the physical nature of influence boron at irradiated cancer cell viability but a specific biological effect. The data suggest that the combined effect of proton therapy with 11B on glioma cells increases their sensitivity to proton irradiation with low toxicity of the boron compound for cells of normal morphology.
  1. R. Mohan, D. Grosshans, “Proton therapy – present and future,” Adv. Drug Delivery Rev., vol. 109, pp. 26–44, Jan. 2017.
    DOI: 10.1016/j.addr.2016.11.006
  2. X. Tian, K. Liu, Y. Hou, J Cheng, J. Zhang, “The evolution of proton beam therapy: Current and future status,” Mol. Clin. Oncol., vol. 8, no. 1, pp. 15-21, Jan. 2018.
    DOI: 10.3892/mco.2017.1499
  3. A. C. Begg, F. A. Stewart, C. Vens, “Strategies to improve radiotherapy with targeted drugs,” Nat. Rev. Cancer, vol. 11, no. 4, pp. 239-253, Apr. 2011.
    DOI: 10.1038/nrc3007
    PMid: 21430696
  4. F. Tranquart, “Radiosensitizers and radiochemotherapy in the treatment of cancer,” Ultrasound in Medicine & Biology, vol. 42, no. 2, Nov. 2015.
    DOI: 10.1016/j.ultrasmedbio.2015.10.004
  5. A. A. Lipengol’ts, A. A. Cherepanov, V. N. Kulakov, E. Yu. Grigor’eva, I. B. Merkulova, I. N. Sheino, “Comparison of the antitumor efficacy of bismuth and gadolinium as dose-enhancing agents in formulations for photon capture therapy,” Pharm. Chem., vol. 51, pp. 783–786, Dec. 2017.
    DOI: 10.1007/s11094-017-1693-1
  6. I. N. Sheino, P. V. Izhevskij, A. A. Lipengolts, V. N. Kulakov, A. A. Wagner, E. S. Sukhikh et al., “Development of binary technologies of radiotherapy of malignant neoplasms: condition and problems,” Bulletin of Siberian Medicine, vol. 16, no. 3, pp. 192-209, 2017.
    DOI: 10.20538/1682-0363-2017-3-192-209
  7. S. Miyatake, M. Wanibuchi, N. Hu, K. Ono, “Boron neutron capture therapy for malignant brain tumors,” J. Neurooncol., vol. 149, no. 1, pp. 1–11, Aug. 2020.
    DOI: 10.1007/s11060-020-03586-6
  8. D. Yoon, J. Jung, T. Suh, “Application of proton boron fusion reaction to radiation therapy: A Monte Carlo simulation study,” Appl. Phys. Lett., vol. 105, p. 223507, Dec. 2014.
    DOI: 10.1063/1.4903345
  9. J. Y. Jung, D. K. Yoon, B. Barraclough, H. C. Lee, T. S. Suh, B. Lu, “Comparison between proton boron fusion therapy (PBFT) and boron neutron capture therapy (BNCT): Monte Carlo study,” Oncotarget., vol. 8, no. 24, pp. 39774-39781, Feb. 2017.
    DOI: 10.18632/oncotarget.15700
  10. G. A. P. Cirrone, L. Manti, D. Margarone, G. Petringa, L. Giuffrida, A. Minopoli et al., “First experimental proof of proton boron capture therapy (PBCT) to enhance proton therapy effectiveness,” Sci. Rep., vol. 8, no. 1, p. 1141, Jan. 2018.
    DOI: 10.1038/s41598-018-19258-5
  11. A. Mazzone, P. Finocchiaro, S. Lo Meo, N. Colonna, “On the (un) effectiveness of proton boron capture in proton therapy,” Eur. Phys. J. Plus, vol. 134, p. 361, Jul. 2019.
    DOI: 10.1140/epjp/i2019-12725-8
  12. A. Volnitskiy, T. Shtam, V. Burdakov, R. Kovalev, A. Konev, M. Filatov, “Abnormal activity of transcription factors gli in high-grade gliomas,” PLoS One, vol. 14, no. 2, pp. e0211980, Feb. 2019.
    DOI: 10.1371/journal.pone.0211980
    PMid: 30730955
    PMCid: PMC6366868
  13. S.A. Artamonov, E.M. Ivanov, N.A. Ivanov, J.S. Lebedeva, G. A. Riabov. “Numerical simulation and optimization of the variable energy 60–1000 MeV proton beams at PNPI synchrocyclotron for testing the radiation resistance of electronics,” Phys. Part. Nuclei Lett., vol. 14, pp. 188–200, Jan. 2017.
    DOI: 10.1134/S1547477117010046
  14. A. Yu. Bushmanov, I. N. Sheino, A. A. Lipengolts, A. N. Solovev, S. N. Koryakin, “Prospects of proton therapy combined technologies in the treatment of cancer,” Medical Radiology and Radiation Safety, vol. 64, no. 3, pp. 8-11, 2019.
    DOI: 10.1371/journal.pone.0211980
Dmitry Lebedev, Luiza Garaeva, Vladimir Burdakov, Andrey Volnitskiy, Natalya Razgildina, Alina Garina, Dmitry Amerkanov, Fedor Pack, Konstantin Shabalin, Evgeniy Ivanov, Victor Ezhov, Andrey Konevega, Tatiana Shtam,"Radiosensitizing effect of boron enhances the effectiveness of proton therapy in vitro," RAD Conf. Proc, vol. 4, 2020, pp. 60–65, http://doi.org/10.21175/RadProc.2020.12