Volume 4, 2020

Table of contents

List of Reviewers



Andrey G. Kazakov, Bogdan L. Garashchenko, Julia S. Babenya, Milana K. Ivanova, Sergey E. Vinokurov, Boris F. Myasoedov

DOI: 10.21175/RadProc.2020.01

Currently, a wide range of nanomaterials, including carbon nanomaterials (CNMs), are being investigated as possible carriers of radionuclides for nuclear medicine as a part of radiopharmaceuticals (RPs). The present work considers the possibility of using nanodiamonds (ND) and multi-walled carbon nanotubes and their derivatives to act as a potential basis for RPs containing bismuth which have radioisotopes 212,213Bi for targeted alpha-therapy. To study this, the kinetics of Bi(III) sorption onto selected CNMs in aqueous media with different pH, as well as Bi(III) desorption from these samples by a solution of fetal bovine serum at 37 ˚C were investigated. The optimal conditions for the sorption of Bi(III) onto the studied CNMs were found; it was shown that oxidized ND was the most promising carrier for bismuth isotopes: sorption at pH 3 to 7 for this sample was close to quantitative, and desorption in 120 min does not exceed 5 %. The cytotoxicity of CNMs was investigated in the standard MTT test, it was shown that LC50 for all studied samples was > 200 μg/mL.
  1. L. Zhang, F.X. Gu, J.M. Chan, A.Z. Wang, R.S. Langer, O.C. Farokhzad, “Nanoparticles in medicine: therapeutic applications and developments,” Educ. Policy. Anal. Arch., vol. 8, no. 5, pp. 761–769, Oct. 2007.
    DOI: 10.1038/sj.clp
  2. S.J. Klaine, P.J.J. Alvarez, G.E. Batley, T.F. Fernandes, R.D. Handy, D.Y. Lyon, S.M.M.J. McLaughlin, J.R. Lead, “Nanomaterials in the environment: behavior, fate, bioavailability, and effects,” Environ. Toxicol. Chem., vol. 27, no. 9, pp. 1825-1851, Nov. 2008.
    DOI: 10.1897/08-090.1
  3. A. Albanese, P.S. Tang, W.C.W. Chan, “The Effect of nanoparticle size, shape, and surface chemistry on biological systems,” Annu. Rev. Biomed. Eng., vol. 14, pp. 1–16, Apr. 2012.
    DOI: 10.1146/annurev-bioeng-071811-150124
  4. E. Katz, I. Willner “Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications”, Angew. Chemie. Int. Ed., vol. 43, no. 45, pp. 6042–6108, Nov. 2004.
    DOI: 10.1002/anie.200400651
  5. F.E. Escorcia, M.R. McDevitt, C.H. Villa, D.A. Scheinberg, “Targeted nanomaterials for radiotherapy”, Nanomedicine, vol. 2, no. 3, pp. 805–815, Dec. 2007.
    DOI: 10.2217/17435889.2.6.805
  6. M.A. Elkodous, G.S. El-Sayyad, I.Y. Abdelrahman, H.S. El-Bastawisy, A.E. Mohamed, F.M. Mosallam, H.A. Nassere, M. Gobara, A. Baraka, M.A. Elsayed, A.I. El-Batal, “Therapeutic and diagnostic potential of nanomaterials for enhanced biomedical applications,” Colloids Surfaces B: Biointerfaces, vol. 180, pp. 411–428, Aug. 2019.
    DOI: 10.1016/j.colsurfb.2019.05.008
  7. G. Seeta Rama Raju, L. Benton, E. Pavitra, J.S. Yu, “Multifunctional nanoparticles: Recent progress in cancer therapeutics”, Chem. Commun., vol. 51, pp. 13248–13259, Jul. 2015.
    DOI: 10.1039/c5cc04643b
  8. D.-E. Lee, H. Koo, I.-C. Sun, J.H. Ryu, K. Kim, I.C. Kwon, “Multifunctional nanoparticles for multimodal imaging and theragnosis,” Chem. Soc. Rev., vol. 41, pp. 2656–2672, Dec. 2011.
    DOI: 10.1039/C2CS15261D
  9. M. Varani, F. Galli, S. Auletta, A. Signore, “Radiolabelled nanoparticles for cancer diagnosis,” Clin. Transl. Imag., vol. 6, pp. 271–292, May 2018.
    DOI: 10.1007/s40336-018-0283-x
  10. A.M. Grimaldi, M. Incoronato, M. Salvatore, A. Soricelli, “Nanoparticle-based strategies for cancer immunotherapy and immunodiagnostics,” Nanomedicine, vol. 12, pp. 2349–2365, Sep. 2017.
    DOI: 10.2217/nnm-2017-0208
  11. J. Ge, Q. Zhang, J. Zeng, Z. Gu, M. Gao, “Radiolabeling nanomaterials for multimodality imaging: New insights into nuclear medicine and cancer diagnosis,” Biomaterials, vol. 228, article no. 119553, (2020).
    DOI: 10.1016/j.biomaterials.2019.119553
  12. B. Kateb, K. Chiu, K.L. Black, V. Yamamoto, B. Khalsa, J.Y. Ljubimova, H. Ding, R.Patil, J. A. Portilla-Arias, M. Modo, D.F. Moore, K. Farahani, M.S. Okun, N. Prakash, J. Nemani, D. Ahdoot, W. Grundfest, S. Nikzad, J.D. Heiss, “Nanoplatforms for constructing new approaches to cancer treatment, imaging, and drug delivery: What should be the policy?,” Neuroimage, vol. 54, pp. S106–S124, Jan. 2011.
    DOI: 10.1016/j.neuroimage.2010.01.105
  13. S. Rojas, J.D. Gispert, R. Martín, S. Abad, C. Menchon, D. Pareto, V.M. Victor, M. Alvaro, H. Garcia, J.R. Herance, “Biodistribution of amino-functionalized diamond nanoparticles. In vivo studies based on 18F radionuclide emission”, ACS Nano, vol 5, no. 2, pp. 5552–5559, Jun 2011.
    DOI: 10.1021/nn200986z
  14. L. Chen, X. Zhong, X. Yia, M. Huang, P.Ning, T.Liu, C. Ge, Z. Chai, Z.Liu, K.Yang, “Radionuclide 131I labeled reduced graphene oxide for nuclear imaging guided combined radio- and photothermal therapy of cancer,” Biomaterials, vol. 66, pp. 21–28, Oct. 2015.
    DOI: 10.1016/j.biomaterials.2015.06.043
  15. G.S. Suri, A. Kaur, T. Sen, “A recent trend of drug-nanoparticles in suspension for the application in drug delivery,” Nanomedicine, vol. 11, no. 21, Oct. 2016.
    DOI: 10.2217/nnm-2016-0238
  16. S. Goel, C.G. England, F. Chen, W. Cai, “Positron emission tomography and nanotechnology: A dynamic duo for cancer theranostics,” Adv. Drug Deliv. Rev. vol. 113, pp. 157–176, Apr. 2017.
    DOI: 10.1016/j.addr.2016.08.001
  17. H. Hong, Y. Zhang, J.W. Engle, T.R. Nayak, C.P. Theuer, R.J. Nickles, T.E. Barnhart, W.Cai, “In vivo targeting and positron emission tomography imaging of tumor vasculature with 66Ga-labeled nano-graphene,” Biomaterials, vol. 33, pp. 4147–4156, Jun. 2012.
    DOI: 10.1016/j.biomaterials.2012.02.031
  18. K. Yang, L. Feng, H. Hong, W. Cai, Z. Liu, “Preparation and functionalization of graphene nanocomposites for biomedical applications,” Nat. Protoc., vol. 8, pp. 2392–2403, Nov. 2013.
    DOI: 10.1038/nprot.2013.146
  19. S. Shi, C. Xu, K. Yang, S. Goel, H. F. Valdovinos, H. Luo, E.B. Ehlerding, C.G. England, L. Cheng, F. Chen, R.J. Nickles, Z. Liu, W. Cai, “Chelator-free radiolabeling of nanographene: breaking the stereotype of chelation,” Angew. Chemie Int. Ed., vol. 56, no. 11, pp. 2889–2892, Feb. 2017.
    DOI: 10.1002/anie.201610649
  20. M.R. McDevitt, D. Chattopadhyay, B.J. Kappel, J.S. Jaggi, S.R. Schiffman, C. Antczak, J.T. Njardarson, R. Brentjens, D.A. Scheinberg, “Tumor targeting with antibody-functionalized, radiolabeled carbon nanotubes,” J. Nucl. Med., vol. 48, no. 7, pp.1180–1189, July 2007.
    DOI: 10.2967/jnumed.106.039131
  21. M. Swierczewska, K.Y. Choi, E.L. Mertz, X. Huang, F. Zhang, L. Zhu, H.Y. Yoon, J.H. Park, A. Bhirde, S. Lee, X. Cnen, “A facile, one-step nanocarbon functionalization for biomedical applications,” Nano Lett., vol. 12, no. 7, pp. 3613–3620, Jun 2012.
    DOI: 10.1021/nl301309g
  22. S.Y. Hong, G. Tobias, K.T. Al-Jamal, B. Ballesteros, H. Ali-Boucetta, S. Lozano-Perez, P.D. Nellist, R.B. Sim, C. Finucane, S. J. Mather, M.L.H. Green, K. Kostarelos, B.G. Davis, “Filled and glycosylated carbon nanotubes for in vivo radioemitter localization and imaging,” Nat. Mater., vol. 9, pp. 485–490, May 2010.
    DOI: 10.1038/nmat2766
  23. A. Ruggiero, C.H. Villa, J.P. Holland, S.R. Sprinkle, C. May, J.S. Lewis, D.A. Scheinberg, M. R. McDevitt, “Imaging and treating tumor vasculature with targeted radiolabeled carbon nanotubes,” Int. J. Nanomedicine, vol.5, pp. 783–802, Sep. 2010.
    DOI: target="_blank" 10.2147/IJN.S13300
  24. B.T. Cisneros, J.J. Law, M.L. Matson, A. Azhdarinia, E.M. Sevick-Muraca, L.J. Wilson, “Stable confinement of positron emission tomography and magnetic resonance agents within carbon nanotubes for bimodal imaging,” Nanomedicine, vol. 9, no. 16, pp. 2499–2509, Mar. 2014.
    DOI: 10.2217/nnm.14.26
  25. M.L. Matson, C.H. Villa, J.S. Ananta, J.J. Law, D.A. Scheinberg, L.J. Wilson, “Encapsulation of particle-emitting225Ac3+ ions within carbon nanotubes,” J. Nucl. Med., vol. 56, no.6, pp. 897–900, Jun. 2015.
    DOI: 10.2967/jnumed.115.158311
  26. H. Zhao, Y. Chao, J. Liu, J. Huang, J. Pan, W. Guo, J. Wu, M. Sheng, K. Yang, J. Wang, Z. Liu, “Polydopamine coated single-walled carbon nanotubes as a versatile platform with radionuclide labeling for multimodal tumor imaging and therapy,” Theranostics, vol. 6, no. 11, pp. 1833–1843, Jun 2015.
    DOI: 10.7150/thno.16047
  27. J. Elgqvist, S. Frost, J.-P. Pouget, P. Albertsson, “The potential and hurdles of targeted alpha therapy – clinical trials and beyond,” Front. Oncol., vol. 3, Jan. 2014.
    DOI: 10.3389/fonc.2013.00324
  28. Y-S Kim, M.W. Brechbiel, “An overview of targeted alpha therapy,” Tumor Biol., vol. 33, pp. 573–590, Dec. 2011.
    DOI: 10.1007/s13277-011-0286-y
  29. B.L. Garashchenko, V.A. Korsakova, R.Y. Yakovlev, “Radiopharmaceuticals based on alpha emitters: preparation, properties, and application,” Phys. At Nucl., vol. 81, pp. 1515–1525, Mar. 2019.
    DOI: 10.1134/S1063778818100071
  30. B.L. Garashchenko, N.N. Dogadkin, N.E. Borisova, R.Y. Yakovlev, “Sorption of 223Ra and 211Pb on modified nanodiamonds for potential application in radiotherapy,” J. Radioanal. Nucl. Chem., vol. 318, pp. 2415–2423, Nov. 2018.
    DOI: 10.1007/s10967-018-6330-2
  31. K.B. Hartman, D.K. Hamlin, D.S. Wilbur, L.J. Wilson, “211 AtCl@US-tube nanocapsules: A new concept in radiotherapeutic-agent design,” Small, vol. 3, no. 9, pp. 1496–1499, Sep. 2007.
    DOI: 10.1002/smll.200700153
  32. A. Ruggiero, C.H. Villa, J.P. Holland, S.R. Sprinkle, C. May, J. Lewis, D. Scheinberg, M.R. McDevitt, “Imaging and treating tumor vasculature with targeted radiolabeled carbon nanotubes,” Int. J. Nanomedicine, vol. 5, pp. 783–802, Sep. 2010.
    DOI: 10.2147/IJN.S13300
  33. S. Zhang, K. Yang, L. Feng, Z. Liu, “In vitro and in vivo behaviors of dextran functionalized grapheme,” Carbon, vol. 49, no. 12, pp. 4040–4049, Oct. 2011.
    DOI: 10.1016/j.carbon.2011.05.056
  34. A.G. Kazakov, B.L. Garashchenko, R.Y. Yakovlev, S.E. Vinokurov, S.N. Kalmykov, B.F. Myasoedov, “An experimental study of sorption/desorption of selected radionuclides on carbon nanomaterials: a quest for possible applications in future nuclear medicine,” Diam. Relat. Mater., vol. 104, no. 107752, Apr. 2020.
    DOI: 10.1016/j.diamond.2020.107752
  35. S. Hassfjell, M.W. Brechbiel, “The development of the α-particle emitting radionuclides 212Bi and 213Bi, and their decay chain related radionuclides, for therapeutic applications,” Chem. Rev., vol. 101, no 7, pp. 2019–2036, Jun. 2001.
    DOI: 10.1021/cr000118y
  36. A. Morgenstern, C. Apostolidis, C. Kratochwil, M. Sathekge, L. Krolicki, F. Bruchertseifer, “An overview of targeted alpha therapy with 225-actinium and 213-bismuth,” Curr. Radiopharm., vol. 11, no. 3, pp. 200–208, Mar. 2018.
    DOI: 10.2174/1874471011666180502104524
  37. M.G. Ferrier, V. Radchenko, D.S., “Radiochemical aspects of alpha emitting radionuclides for medical application”, Radiochim. Acta, vol. 107, no. 9–11, pp. 1065–1085, May 2019.
    DOI: 10.1515/ract-2019-0005
  38. A. Morgenstern, C. Apostolidis, F. Bruchertseifer, “Supply and clinical application of actinium-225 and bismuth-213,” Semin. Nucl. Med., vol. 50, pp. 119–123, Mar. 2020.
    DOI: 10.1053/j.semnuclmed.2020.02.003
  39. P.J. Blower, “A nuclear chocolate box: The periodic table of nuclear medicine,” Dalt. Trans., vol. 44 (11), pp. 4819–4844, Oct. 2015.
    DOI: 10.1039/c4dt02846e
  40. M. Makvandi, E. Dupis, J.W. Engle, F.M. Nortier, M.E. Fassbender, S. Simon, E.R. Birnbaum, R.W. Atcher, K.D. John, O. Rixe, J.P. Norenberg, “Alpha-emitters and targeted alpha therapy in oncology: from basic science to clinical investigations,” Target. Oncol., vol. 13, pp. 189–203, Feb. 2018.
    DOI: 10.1007/s11523-018-0550-9
  41. A.G. Kazakov, B.L. Garashchenko, M.K. Ivanova, S.E. Vinokurov, B.F. Myasoedov, “Carbon nanomaterials for sorption of 68Ga for potential using in positron emission tomography,” Nanomaterials, vol. 10, no. 6, pp.1090-1-13, Jun 2020.
    DOI: 10.3390/nano10061090
  42. A.G. Kazakov, B.L. Garashchenko, R.Yu. Yakovlev, S.E. Vinokurov, S.N. Kalmykov, B.F. Myasoedov, “Generator of Actinium-228 and a Study of the Sorption of Actinium by Carbon Nanomaterials,” Radiochemistry, vol. 62, no. 5, pp. 592–598, Oct. 2020.
    DOI: 10.1134/S1066362220050057
  43. M. Ibrahim, Y. Xue, M. Ostermann, A. Sauter, D. Steinmueller‐Nethl, S. Schweeberg, A. Krueger, M.R. Cimpan, K. Mustafa, “In vitro cytotoxicity assessment of nanodiamond particles and their osteogenic potential,” J. Biomed. Mater. Res. Part. A, vol. 106, pp. 1697–1707, Feb. 2018.
    DOI: 10.1002/jbm.a.36369
  44. L. Zhou, H.J. Forman, Y. Ge, J. Lunec “Multi-walled carbon nanotubes: A cytotoxicity study in relation to functionalization, dose and dispersion,” Toxicol. Vitr., vol. 42, no. 4, pp. 292–298, Aug. 2017.
    DOI: 10.1016/j.tiv.2017.04.027
A. G. Kazakov, B. L. Garashchenko, J. S. Babenya, M. K. Ivanova, S. E. Vinokurov, B. F. Myasoedov, "Nanodiamonds and carbon nanotubes as perspective carriers of bismuth isotopes for nuclear medicine," RAD Conf. Proc, vol. 4, 2020, pp. 1-6, http://doi.org/10.21175/RadProc.2020.01


Julya Zuenkova, Lev Izurov

DOI: 10.21175/RadProc.2020.02

Accessibility is an important part of quality of medical care and depends on the technical resources, infrastructure of a site, clinical stuff and work management. Clinical guidelines for the treatment of non-melanoma skin cancer (NMSC) which define the quality of processes influence work load. Purpose of the study was to determine the clinical and organizational changes in the technology of kilovoltage therapy for NMSC within the dayhospital department after implementation of new clinical guidelines and fraction regimes in compare with previously used schemes; derive a mathematical model of the work for the kilovoltage therapy unit. Materials and methods. Data from the kilovoltage therapy unit of the Sverdlovsk Regional Oncology Dispensary (SROD) were undertaken. Timekeeping was used for calculation the average duration of radiotherapy sessions per patient. The results were evaluated using correlation analysis. To forecast the need for material and human resources, an economic method of mathematical modeling was used. Results. The analysis of the kilovoltage therapy unit of radiotherapy department of the SROD for 3 years showed an increase from 10.4 to 17.3 in the average number of therapeutic fractions per patient after the implementation of the updated clinical guidelines. An increase in the average number of radiotherapy sessions leads to a doubling of the average bed-day of the patient's stay in the day-hospital. The formula was proposed for predicting the work of the unit. There is a clear correlation between the duration of treatment, the dynamics of hospitalization and the number of treated patients. The obtained results using a mathematical model fully correspond to the actual performance of the radiotherapy unit. Conclusion. To ensure optimal availability of medical care, it is necessary to match treatment technologies with available resources of the organization. The introduction of new treatment programs may require the expansion of staff, increase the quantity of medical equipment. The obtained mathematical model of the kilovoltage therapy unit allows to predict the optimal mode of work while maintaining the quality and accessibility of medical care.

  1. Order of the Ministry of Health of Russia dated 15.11.2012. No. 915н. «On approval of the Procedure for providing medical care to adults on the profile of «Oncology» (as amended on August 23, 2016, July 4, 2017), registered in the Ministry of Justice 17.04.2013 No. 28163). (In Russian).
  2. Clinical guidelines «Basal cell and squamous skin cancer» Ministry of Health of the Russian Federation, 2018. (In Russian).
  3. A.L. Lindenbraten, G.E. Ulumbekova Standardization and quality control of medical care [Obschestvennoe zdorovye i zdravookhranenie: Natsionalnoe rukovodstvo]. In: Starodubov V.I., Ed. Public Health and Health Care: National leadership. Moscow: GEOTAR-Media; 2014, 452—467. (In Russian).
  4. The status of cancer care of Russia in 2018. Ed. A.D. Kaprin, V.V. Starinsky, G.V. Petrova. Moscow: FGBU «MNIII P.A. Herzen» Ministry of Health of Russia, 2019, 236 p. (In Russian). Available at: http://www.oncology.ru/service/statistics/condition/2018.pdf
  5. V.N. Volgin, T.V. Sokolova, M.S. Kolbina, A.A. Sokolovskaya. Basalioma: epidemiology, etiology, pathogenesis and clinical picture (part 1). Vestnik Dermatologii i Venerologii. 2013; (2):6–14. (In Russian).
  6. S.K. Gantsev, A.S. Yusupov. Squamous cell carcinoma of the skin. Practical Oncology. 2012; 13(2):80–91. (In Russian).
  7. V.A. Solodkii, G.A. Panshin, V.M. Sotnikov, A.V. Ivashin. Economic and logistical problems of radiation oncology. Problems in oncology. 2014; 60(2):6–14. (In Russian).
  8. O.V. Morov, A.V. Chernichenko, R.S. Khasanov. Aссessibility of radiotherapy at the present conditions of specialized treatment in cancer patients. P.A. Herzen Journal of Oncology. 2016; 5(6):65–70.
    DOI: 10.17116/onkolog20165665-70 (In Russian).
  9. W-J. Koh, B.E. Greer, N.R. Abu-Rustum, S.M. Campos, K.R. Cho, H.S. Chon, et al. Vulvar Cancer, Version 1.2017, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2017; 15(1):92–120.
    DOI: 10.6004/jnccn.2017.0008
Julya Zuenkova, Lev Izurov, "Forecasting the kilovoltage therapy unit with the mathematical model," RAD Conf. Proc, vol. 4, 2020, pp. 7–10, http://doi.org/10.21175/RadProc.2020.02


S.E. Vinokurov, S.A. Kulikova

DOI: 10.21175/RadProc.2020.03

This article summarizes the results of our research on the possibility of using a magnesium potassium phosphate (MPP) matrix to solve the problem of immobilization of radioactive waste (RW) generated during reprocessing of mixed uranium plutonium nitride spent nuclear fuel. We used CaCO 3 as a surrogate of waste containing 14C, as well as an aqueous solution of 41.6% LiCl-52.9% KCl-5.5% CsCl as a surrogate of the spent electrolyte formed during the pyrochemical fuel reprocessing. The mechanical, radiation and hydrolytic stability of the obtained compounds were investigated. It was found that the compounds have a high compressive strength of 17–26 MPa. The minimum carryover of carbon dioxide into the atmosphere during the synthesis and keeping of the samples for 14 days was noted - no more than 3 wt%. It was found that the change of the matrix phase occurs during the irradiation by accelerated electrons during the accumulation of the absorbed dose of 108 Gy. In this case, the leaching rate of components of the compound including irradiated one corresponds to the current regulatory requirements for materials for RW immobilization. The differential leaching rate of Cs at 25 °C from monolithic samples containing LiCl-KCl-CsCl on the 91st day of samples contact with water was (5–11) × 10-5 g/(cm2 ·day) (according to GOST R 52126-2003 test), and was (4–29) × 10 −7 g/(cm2∙day) on the 7th day at 90 °C from crushed samples (in accordance with PCT standard). The thermal stability of the compound containing LiCl-KCl-CsCl up to 450 °C was shown.
  1. S.A. Kulikova, K.Y. Belova, E.A. Tyupina, S.E. Vinokurov, “Conditioning of spent electrolyte surrogate LiCl-KCl-CsCl using magnesium potassium phosphate Compound,” Energies, vol. 13, no. 8, 1963, 2020.
    DOI: 10.3390/en13081963
  2. A.Yu. Shadrin, K.N. Dvoeglazov, A.G. Maslennikov, V.A. Kashcheev, S.G. Tret’yakova, O.V. Shmidt, V.L. Vidanov, O.A. Ustinov, V.I. Volk, S.N. Veselov, V.S. Ishunin, “РH process as a technology for reprocessing mixed uranium-plutonium fuel from BREST-OD-300 reactor,” Radiochemistry, vol. 58, no. 3, pp. 271–279, 2016.
    DOI: 10.1134/S1066362216030085
  3. S.A. Yakunin, O.A. Ustinov, A.Yu. Shadrin, O.V. Shudegova, “Purification of gaseous emissions by 14C removal during reprocessing of spent uranium-plutonium nuclear fuel,” Atomic Energy, vol. 120, no. 3, pp. 229-232. Jul. 2016.
    DOI: 10.1007/s10512-016-0122-y
  4. A.V. Dmitrieva, M.Yu. Kalenova, S.A. Kulikova, I.V. Kuznetsov, A.M. Koshcheev, S.E. Vinokurov, “Magnesium-potassium phosphate matrix for immobilization of 14C,” Russ. J. Appl. Chem., vol. 91, no. 4, pp. 641-646, 2018.
    DOI: 10.1134/S107042721804016X
  5. A.A. Lizin, D.M. Yandaev, A.Yu. Shadrin, M.Yu. Kalenova, A.V. Dmitrieva, S.V. Tomilin, I.S. Golubenko, M.I. Khamdeev, V.N. Momotov, D.E. Tikhonova, O.S. Dmitrieva, A.A. Kolobova, S.S. Poglyad, M.V. Dodonova, S.E. Vinokurov, B.F. Myasoedov “Radiation and chemical stability of a magnesium-phosphate matrix for 14C immobilization,” Radiochemistry, vol. 62, no. 1, pp. 131–137, 2020.
    DOI: 10.1134/S1066362220010178
  6. A.A. Lizin, S.V. Tomilin, O.E. Gnevashov, A.N. Lukinykh, A.I. Orlova, “Orthophosphates of langbeinite structure for immobilization of alkali metal cations of salt wastes from pyrochemical processes,” Radiochemistry, vol. 54, no. 6, pp. 542–548, 2012.
    DOI: 10.1134/S1066362212060057
  7. P.P. Poluektov, O.V. Schmidt, V.A. Kascheev, M.I. Ojovan, “Modelling aqueous corrosion of nuclear waste phosphate glass,” J. Nucl. Mater., vol. 484, pp. 357–366, Feb. 2017.
    DOI: 10.1016/j.jnucmat.2016.10.033
  8. J. Choi, W. Um, S. Choung, “Development of iron phosphate ceramic waste form to immobilize radioactive waste solution,” J. Nucl. Mater., vol. 452, no. 1-3, pp. 16–23, Sep. 2014.
    DOI: 10.1016/j.jnucmat.2014.04.033
  9. Kohobhange S.P. Karunadasa, C.H. Manoratne, H.M.T.G.A. Pitawala, R.M.G. Rajapakse “Thermal decomposition of calcium carbonate (calcite polymorph) as examined by in-situ high-temperature X-ray powder diffraction,” J. Phys. Chem. Solids, vol. 134, pp. 21-28, Nov. 2019.
    DOI: 10.1016/j.jpcs.2019.05.023
  10. E.R. Vance, J. Davis, K. Olufson, I. Chironi, I. Karatchevtseva, I. Farnan, “Candidate waste forms for immobilisation of waste chloride salt from pyroprocessing of spent nuclear fuel,” J. Nucl. Mater., vol. 420, no. 1-3, pp. 396–404, Jan. 2012.
    DOI: 10.1016/j.jnucmat.2011.09.020
  11. A.S. Wagh, Chemically Bonded Phosphate Ceramics. Twenty-First Century Materials with Diverse Applications , Eds., 2nd ed., Amsterdam, The Netherlands: Elsevier, 2016, pp. 1–422.
    DOI: 10.1016/C2014-0-02562-2
  12. S.E. Vinokurov, Y.M. Kulyako, O.M. Slyunchev, S.I. Rovny, B.F. Myasoedov, “Low-temperature immobilization of actinides and other components of high-level waste in magnesium potassium phosphate matrices,” J. Nucl. Mater., vol. 385, no. 1, pp. 189–192, Mar. 2009.
    DOI: 10.1016/j.jnucmat.2008.09.053
  13. S.E. Vinokurov, S.A. Kulikova, V.V. Krupskaya, E.A. Tyupina, “Effect of characteristics of magnesium oxide powder on composition and strength of magnesium potassium phosphate compound for solidifying radioactive waste,” Russ. J. Appl. Chem., vol. 92, no. 4, pp. 490–497, 2019.
    DOI: 10.1134/S1070427219040049
  14. S.E. Vinokurov, S.A. Kulikova, V.V. Krupskaya, B.F. Myasoedov, “Magnesium potassium phosphate compound for radioactive waste immobilization: phase composition, structure, and physicochemical and hydrolytic durability,” Radiochemistry, vol. 60, no. 1, pp. 70–78, 2018.
    DOI: 10.1134/S1066362218010125
  15. S.E. Vinokurov, S.A. Kulikova, V.V. Krupskaya, S.S. Danilov, I.N. Gromyak, B.F. Myasoedov, “Investigation of the leaching behavior of components of the magnesium potassium phosphate matrix after high salt radioactive waste immobilization,” J. Radioanal. Nucl. Chem. , vol. 315, pp. 481–486, 2018.
    DOI: 10.1007/s10967-018-5698-3
  16. S.E. Vinokurov, S.A. Kulikova, B.F. Myasoedov, “Magnesium potassium phosphate compound for immobilization of radioactive waste containing actinide and rare earth elements,” Materials, vol. 11, no. 6, 976, Jun. 2018.
    DOI: 10.3390/ma11060976
  17. S.E. Vinokurov, S.A. Kulikova, B.F. Myasoedov, “Solidification of high level waste using magnesium potassium phosphate compound,” Nucl. Eng. Technol., vol. 51, no.3, pp. 755–760, Jun. 2019.
    DOI: 10.1016/j.net.2018.12.009
  18. V.A. Shkuropatenko, “High level wastes immobilization in ceramic and hydrated phosphate matrix,” East Eur. J. Phys., vol. 3, no. 1, pp. 49–60, 2016.
    DOI: 10.26565/2312-4334-2016-1-05
  19. L. Zhenyua, W. Hongtao, H. Yang, Ya. Tao, L. Zhongyuan, L. Shuzhen, Zh. Haibin, “Rapid solidification of highly loaded high‐level liquid wastes with magnesium phosphate cement,” Ceram. Int., vol. 45, no.4, pp. 5050–5057, Mar. 2019.
    DOI: 10.1016/j.ceramint.2018.11.206
  20. W.C. Lepry, B.J. Riley, J.V. Crum, C.P. Rodriguez, D.A. Pierce, “Solution-based approaches for making high-density sodalite waste forms to immobilize spent electrochemical salts,” J. Nucl. Mater., vol. 442, no. 1-3, pp. 350–359, Nov. 2013.
    DOI: 10.1016/j.jnucmat.2013.08
  21. S.A. Kulikova, S.E. Vinokurov, “The influence of zeolite (Sokyrnytsya deposit) on the physical and chemical resistance of a magnesium potassium phosphate compound for the immobilization of high-level waste,” Molecules, vol. 24, no. 19, 3421, Sep. 2019.
    DOI: 10.3390/molecules24193421
  22. Федеральные нормы и правила в области использования атомной энергии “Сбор, переработка, хранение и кондиционирование жидких радиоактивных отходов. Требования безопасности ,”НП-019-15, Ростехнадзор, Москва, Россия, стр. 1-22, 2015. (Federal Norms and Rules in the Field of Atomic Energy Use. In “Collection, Processing, Storage and Conditioning of Liquid Radioactive Waste. Safety Requirements,” NP-019-15, Rostekhnadzor, Moscow, Russia, 2015, pp. 1–22.)
    Retrieved from: https://www.secnrs.ru/en/science/development/normd/
    Retrieved on: Oct. 10, 2020
  23. Отходы радиоактивные. Определение химической устойчивости отвержденных высокоактивных отходов методом длительного выщелачивания , ГОСТ Р 52126-2003, Стандартинформ, Москва, Россия, 2003. стр. 1-8. ( Radioactive Waste. Long Time Leach Testing of Solidified Radioactive Waste Forms , GOST R 52126-2003, Standardinform, Moscow, Russia, 2003, pp. 1–8.)
    Retrieved from: https://www.russiangost.com/p-69117-gost-r-52126-2003.aspx
    Retrieved on: Oct. 10, 2020
  24. Standard Test Methods for Determining Chemical Durability of Nuclear, Hazardous, and Mixed Waste Glasses and Multiphase Glass Ceramics: The Product Consistency Test (PCT) , ASTM C1285-14, ASTM International, West Conshohocken, PA, 2014.
    Retrieved from: https://www.astm.org/Standards/C1285.htm
    Retrieved on: Oct. 10, 2020
  25. S. Graeser, W. Postl, H.-P. Bojar, P. Berlepsch, T. Armbruster, T. Raber, K. Ettinger, F. Walter, “Struvite-(K), KMgPO 4∙6H2O, the potassium equivalent of struvite – new mineral,” Eur. J. Mineralogy., vol. 20, pp. 629-633, May 2008.
    DOI: 10.1127/0935-1221/2008/0020-1810
  26. K. Kaboosi, Kh. Emami, “Interaction of treated industrial wastewater and zeolite on compressive strength of plain concrete in different cement contents and curing ages,” Case Studies in Construction Materials, vol. 11, e00308, Dec. 2019.
    DOI: 10.1016/j.cscm.2019.e00308
  27. F. Giacobbo, M. Da Ros, E. Macerata, M. Mariani, M. Giola, G. De Angelis, M. Capone, C. Fedeli, “An experimental study on Sodalite and SAP matrices for immobilization of spent chloride salt waste,” J. Nucl. Mater., vol. 499, pp. 512–527, Feb. 2018.
    DOI: 10.1016/j.jnucmat.2017.11.051
S.E. Vinokurov, S.A. Kulikova, "Magnesium potassium phosphate matrix for the immobilization of radioactive waste generated during the reprocessing of mixed uranium plutonium nitride spent nuclear fuel," RAD Conf. Proc, vol. 4, 2020, pp. 11–17, http://doi.org/10.21175/RadProc.2020.03
Radiation Protection


Natasha Ivanova, Javor Ivanov, Bistra Manusheva, Ismet Tahsinov, Hrisimir Todorov, Nikolai Aleksandrov

DOI: 10.21175/RadProc.2020.04

. In this article we present the first results of a study of the dose load received by a medical team working with an angiographic X-ray system in the Department of Invasive Cardiology. In the first stage, we made measurements of the equivalent dose received by an interventional cardiologist for the most commonly used projections of the С-arm, because we do not take into account the impact of the relevant tissue in the body that is irradiated. The measurements were made at three points of the cardiologist’s body: head, gonads and feet. The purpose of this first step is to determine at which position of the patient table the operating cardiologist receives the lowest dose load for the most commonly used С-arm projections. From the obtained results it is reasonable to conclude that the factory set zero position of the patient table gives the lowest dose load for most of the projections used.
  1. Von Schmilowski E., Swanton R. H., Essential Angioplasty 2012, Publisher:Wiley-Blackwell, ISBN 13:9781119950547
    Retrieved from: https://b-k.lat/book/2151973/6a2cba?regionChanged=&redirect=5046845
    Retrieved on: Sept. 21, 2020
  2. PHILIPS, History of X-ray.
    Retrieved from: https://www.philips.com/consumerfiles/newscenter/main/shared/assets/Downloadablefile/FACT_SHEET_X-ray_history.pdf
    Retrieved on: Sept. 21, 2020
  3. J.A.M. Hofman, Former Marketing Director, Universal RF Systems, Philips Healthcare, The art of medical imaging: Philips and the evolution of medical X-ray technology, Clinical applications, MEDICAMUNDI 54/1 2010
  4. Making the difference with Philips Live Image Guidance Philips Allura Xper FD10 system specifications © 2017 Koninklijke Philips N.V. 4522 991 18981 * Apr 2017 (The article was provided to me by Philips)
  5. Röntgen-GammaDosimeter 27091, Technical Description and Operating Instructions, September 02, 2008
    Retrieved from: http://www.step-sensor.de/media/main/rgd_27091___manual_.pdf
    Retrieved on: Sept. 21, 2020
Natasha Ivanova, Javor Ivanov, Bistra Manusheva, Ismet Tahsinov, Hrisimir Todorov, Nikolai Aleksandrov, "Dose load to the interventional cardiologist for different positions of the patient table - first results," RAD Conf. Proc, vol. 4, 2020, pp. 18–22, http://doi.org/10.21175/RadProc.2020.04


T. A. Belyakova, V. E. Balakin, O. M. Rozanova, E. N. Smirnova, N. S. Strelnikova, A. E. Shemyakov, S. S. Sorokina, S. I. Zaichkina

DOI: 10.21175/RadProc.2020.05

The purpose of the work was to study the growth of solid Ehrlich ascites carcinoma (EAC) and the remote effects (duration of remission, relapse rate, and average lifespan) in tumor-bearing mice exposed to oligofractionated irradiation with the pencil beam scanning of protons (PBSP) at a total dose of 60 Gy depending on the volume of the tissue being irradiated. Experiments were carried out on eight-to nine-week-old SHK male mice. Mice were irradiated with two fractions, 30 Gy each. In order to determine the volume of irradiated tissue, a tomogram of a mouse in a water phantom was obtained, and a gross tumor volume (GTV) that is equal to the average size of 470 mm 3 from all mice was specified using a specially developed 3D planning system. In another group of animals, the irradiated tissue region was increased to the planning target volume (PTV), which was equal to 1500 mm 3 . An analysis of EAC growth dynamics during the first month showed higher irradiation efficiency in mice with a smaller irradiated volume (the GTV group) compared with the PTV group. In the group with GTV irradiation, survival was higher: the maximum life expectancy in mice without relapse was 5 months longer, and in mice with relapse it was 3 months longer than in the PTV group. The average lifespan (AL) of mice with EAC relapses in the group with GTV irradiation was higher compared to the group with PTV irradiation (96 and 77 days after irradiation or 58 and 31 days after the occurrence of a relapse, respectively; p ≤ 0.01). The AL of mice without tumors was also notably longer in the GTV group: 283 days compared to 228 days after PTV irradiation (p ≤ 0.01).
  1. H. Paganetti, T. Bortfeld, H. Kooy, “Proton Beam Radiotherapy — The State of the Art,” Medical Physics, vol. 32, no. 6, pp. 2048-2049, 2005.
    DOI: 10.1118/1.1999671
  2. M. Durante, “Proton beam therapy in Europe: more centres need more research,” Br J Cancer, vol. 120(8), pp. 777-778, 2019.
    DOI: 10.1038/s41416-018-0329-x
    PMid: 30531831
  3. F. Tommasino, M. Durante, “Proton radiobiology,” Cancers, vol. 7, no. 1, pp. 353-381, 2015.
    DOI: 10.3390/cancers7010353
    PMid: 25686476
  4. M. Mishra, R. Khairnar, S. Bentzen, “Proton beam therapy delivered using pencil beam scanning vs. passive scattering/uniform scanning for localized prostate cancer: Comparative toxicity analysis of PCG 001-09,” Clinical and translational radiation oncology, vol. 19, pp. 80-86, Aug. 2019.
    DOI: 10.1016/j.ctro.2019.08.006
    PMid: 31650043
  5. Е.В. Хмелевский, “Лучевая терапия рака простаты: фотоны, протоны или тяжелые ионы?” Рад. онкол. и ядерная медицина, no. 1, стр. 28-33, 2013. (E.V. Khmelevskii “Prostate cancer radiotherapy: photons, protons or heavy ions?” Radiat. Onkol. Yadern. Med., no. 1, pp. 28-33, 2013.)
  6. International Commission on Radiation Units and Measurement, Prescribing, recording, and reporting proton-beam therapy (ICRU Report 78), 2007.
  7. S. Mishra, A. Tamta, M. Sarikhani, “Subcutaneous Ehrlich Ascites Carcinoma mice model for studying cancer-induced cardiomyopathy,” Scientific reports, vol. 8, no.1, Apr. 2018.
    DOI: 10.1038/s41598-018-23669-9
    PMid: 29618792
  8. С.Е. Ульяненко, А.А. Лычагин, С.Н. Корякин, “Распределение дозы и ЛПЭ в биообъектах при облучении протонами,” Мед. физика, no.1, стр. 68-74, 2018. (S.E. Ulyanenko, A.A. Lychagin, S.N. Koryakin, “Simulation of dose and LET distributions within biological objects in proton fields,” Med. Physics, no. 1, pp. 68-74, 2018).
  9. International Commission on Radiation Units and Measurements (ICRU Report 62: Prescribing, Recording and Reporting Photon Beam Therapy) , 1999.
  10. V.E. Balakin, A.E. Shemyakov, S.I. Zaichkina, “Hypofractionated irradiation of the solid form of ehrlich ascites carcinoma in mice by a thin scanning proton beam,” Biophysics, vol. 61, no. 4, pp. 682-686, 2016.
    DOI: 10.1134/Sooo6350916040047
  11. B. Sorensen, M. Horsman, J. Alsner, et al., “Relative biological effectiveness of carbon ions for tumor control, acute skin damage and late radiation-induced fibrosis in a mouse model,” Acta Oncologica, vol. 54 (9), pp. 1623-1630, 2015.
    DOI: 10.3109/0284186X.2015.1069890
    PMid: 26271798.
  12. T. van de Water, H. Bijl, C. Schilstra, et al., “The potential benefit of radiotherapy with protons in head and neck cancer with respect to normal tissue sparing: a systematic review of literature,” Oncologist, vol. 16(3), pp. 366-377, 2011.
    DOI: 10.1634/theoncologist.2010-0171
    PMid: 21349950
  13. S. Rieken, D. Habermehl, T. Haberer, et al., “Proton and carbon ion radiotherapy for primary brain tumors delivered with active raster scanning at the Heidelberg Ion Therapy Center (HIT): early treatment results and study concepts,” Radiat Oncol., vol. 7(41), 2012.
    DOI: 10.1186/1748-717X-7-41
    PMid: 22436135
T. A. Belyakova, V. E. Balakin, O. M. Rozanova, E. N. Smirnova, N. S. Strelnikova, A. E. Shemyakov, S. S. Sorokina, S. I. Zaichkina, "The impact of target volumes of Ehrlich ascites carcinoma irradiated with a pencil scanning beam of protons at a total dose of 60 Gy on the tumor growth and remote effects in mice," RAD Conf. Proc, vol. 4, 2020, pp. 23–27, http://doi.org/10.21175/RadProc.2020.05
Medicinal Chemistry


Donika Ivanova, Zvezdelina Yaneva

DOI: 10.21175/RadProc.2020.06

Cancer diseases are a problem with worldwide importance. However, the the lack of selectivity and induction of toxic side effect during conventional cancer therapy continue to provoke the search of innovative treatment approaches. Recent scientific results have reported for synergistic effect between combination of natural products and chemotherapeutic drugs. In this aspect, flavonoids, which are widely distributed in nature, are well known to exhibit numerous biological activities, including antioxidant, antibacterial, anti inflammatory, anti viral and anti cancer effects and may also, play a role in cancer prevention. In the present study, the effects of low concentrations of catechin hydrate and epigallocatechin, Acacia Catechu spay-dried extract, on cell viability of leukemia lymphocytes were investigated and compared, in order to provide an experimental basis for their future incorporation into newly-synthesized biopolymer particles.
  1. P. Angsutararux, S. Luanpitpong, S. Issaragrisil, “Chemotherapy-induced cardiotoxicity: Overview of the role of oxidative stress,” Oxid. Med. Cell Longev., vol. 2015, art. ID 795602, pp. 1-13, Sep. 2015.
    DOI: 10.1155/2015/795602
    PMid: 26491536
  2. S. Jaiman, A.K. Sharma, K. Singh, D. Khanna. “Signaling mechanisms involved in renal pathological changes during cisplatin-induced nephropathy,” Eur. J. Clin. Pharmacol. vol. 69 no. 11, pp. 1863-1874, Nov. 2013.
    DOI: 10.1007/s00228-013-1568-7
    PMid: 23929259
  3. D. Ivanova, Zh. Zhelev, S. Semkova, I. Aoki, R. Bakalova, “Resveratrol modulates the redox-status and cytotoxicity of anticancer drugs by sensitizing leukemic lymphocytes and protecting normal lymphocytes,” Anticancer Res., vol. 39 no. 7, pp. 3745-3755, Jul 2019.
    DOI: 10.21873/anticanres.13523
    PMid: 31262901
  4. D. Ivanova, Zh. Zhelev, D. Lazarova, P. Getsov, R. Bakalova I. Aoki, “Vitamins C and K3: a powerful redox system for sensitizing leukemia lymphocytes to everolimus and barasertib,” Anticancer Res., vol. 38, no. 3, pp. 1407-1414, Mar. 2018.
    DOI: 10.21873/anticanres.12364
    PMid: 29491065
  5. Zh. Zhelev, D. Ivanova, D. Lazarova, I. Aoki, R. Bakalova, T. Saga, “Docosahexaenoic acid sensitizes leukemia lymphocytes to baraserib and everolimus by ROS-dependent mechanism without affecting the level of ROS and viability of normal lymphocytes, Anticancer Res., vol. 36, no. 4, pp. 1673-1682, Apr. 2016.
    PMid: 27069145
  6. Zh. Zhelev, D. Ivanova, R. Bakalova, I. Aoki, T. Higashi, “Synergistic Cytotoxicity of Melatonin and New-generation Anticancer Drugs Against Leukemia Lymphocytes but not Normal Lymphocytes,” Anticancer Res., vol. 37, no. 1, pp. 149-159, Jan. 2017.
    DOI: 10.21873/anticanres.11300
    PMid: 28011485
  7. C.R. da Silva, J.B. de Andrade Neto, R. de Sousa Campos, N.S. Figueiredo, L.S. Sampaio, H.I.F. Magalhгes, B.C. Cavalcanti, D.M. Gaspar, G.M. de Andrade, I.S.P. Lima, G.S. de Barros Viana, M.O. de Moraes, M.D.P. Lobo, T.B. Grangeiro, H.V.N. Júniora, “Synergistic effect of the flavonoid catechin, quercetin, or epigallocatechin gallate with fluconazole induces apoptosis in Candida tropicalis resistant to fluconazole,” Antimicrob. Agents and Chemother., vol. 58, no. 3, pp. 1468–1478, Mar. 2014.
    DOI: 10.1128/AAC.00651-13
    PMid: 24366745
  8. J.H. Jeong, J.Y. An, Y.T. Kwon, J.G. Rhee, Y.J. Lee, “Effects of low dose quercetin: Cancer cell-specific inhibition of cell cycle progression, J. Cell Biochem., vol. 106, no. 1, pp. 73-82, Jan. 2009.
    DOI: 10.1002/jcb.21977
    PMid: 19009557
  9. N.P. Bondonno, F. Dalgaard, C. Kyrꝋ, K. Murray, C.P. Bondonno, J.R. Lewis, K.D. Croft, G. Gislason, A.Scalbert, A. Cassidy, A. Tjꝋnneland, K. Overvad, J.M. Hodgson, “Flavonoid intake is associated with lower mortality in the danish diet cancer and health cohort, “ Nat Commun., vol. 10, no. 3651, pp. 1-10, Aug. 2019.
    DOI: 10.1038/s41467-019-11622-x
    PMid: 31409784
  10. C. Rodriguez-Garcia, C. Sánchez-Quesada, J.J. Gaforio, “Dietary flavonoids as cancer chemopreventive agemts: an update review of human studies,” MDPI Antioxidants, vol. 8, no. 137, pp. 1-23, May 2019.
    DOI: 10.3390/antiox8050137
    PMid: 31109072
  11. G.G. Mackenzie, F. Carrasquedo, J.M. Delfino, C.L. Keen, C.G. Fraga, P.I. Oteiza, “Epicatechin, catechin, and dimeric procyanidins inhibit PMA-induced NF-κB activation at multiple steps in Jurkat T cells,” FASEB J., vol. 18, no. 1, pp. 167-169, Jan. 2004.
    DOI: 10.1096/fj.03-0402fje
    PMid: 14630700
  12. S.B. Lotito, C.G. Fraga, “(+)-Catechin prevents human plasma oxidation,” Free Radic. Biol. Med., vol. 24, no. 3, pp. 435-441, Feb. 1998.
    DOI: 10.1016/s0891-5849(97)00276-1
    PMid: 9438556
  13. S. B. Lotito, L. Actis-Goretta, M.L. Renart, M. Caligiuri, D. Rein, H.H. Schmitz, F.M. Steinberg, C.L. Keen, C.G. Fraga, “Influence of oligomer chain length onthe antioxidant activity of procyanidins,” Biochem. Biophys. Res. Commun., vol. 276, no. 3, pp. 945-951, Oct. 2000.
    DOI: 10.1006/bbrc.2000.3571
    PMid: 11027573
  14. C. Sanbongi, N. Susuki, T. Sakane, “Polyphenols in chocolate, which have antioxidant activity, modulate immune functions in humans in vitro,” Cell. Immunol., vol. 177, no. 2, pp. 129-136, May 1997.
    DOI: 10.1006/cimm.1997.1109
    PMid: 9178639
  15. C. Kürbitz, D. Heise, T. Redmer, F. Goumas, A. Arlt, J. Lemke, G. Rimbach, H. Kalthoff, A. Trauzold, “Epicatechin gallate and catechin gallate are superior to epigallocatechin gallate in growth suppression and anti-inflammatory activities in pancreatic tumor cells,” Cancer Sci, vol. 102, no. 4 , 728–734, Apr. 2011.
    DOI: 10.1111/j.1349-7006.2011.01870.x
    PMid: 21241417
  16. E. Ramiro, A. Franch, C. Castellote, C.Andrès-Lacueva, M. Izquierdo-Pulido, M. Castell, “Effect of Theobroma cacao flavonoids on immune activation of a lymphoid cell line”, British J. of Nutrition, vol. 93, no 6, 859–866, Jun 2005.
    DOI: 10.1079/BJN20051443
    PMid: 16022755
  17. M. Suhail, A. Parveen, A. Husain, M. Rehan, “Exploring inhibitory mechanisms of green tea catechins as inhibitors of a cancer therapeutic target, Nuclear Factor-kB (NF-kB)”, Biosci. Biotech. Res. Asia, vol. 16, no 4, 515-723, December 2019.
    DOI: 10.13005/bbra/2787
  18. V.L. Rayen, P.E. Porporato, P. Danhier, T. Vazeille, M.C.N.M. Blackman, B.H. May, P. Niebes, P. Sonveaux, “(+)-Catechin in a 1:2 complex with lysine inhibits cancer cell migration and metastatic take in mice,” Front. Pharmacol., vol.8, Dec. 2017.
    DOI: 10.3389/fphar.2017.00869
    PMid: 29255416
Donika Ivanova, Zvezdelina Yaneva, "Comparative analysis of the anti-proliferative effect of natural products catechin hydrate and epigallocatechin (extract) applied on leukemia lymphocytes," RAD Conf. Proc, vol. 4, 2020, pp. 28–31, http://doi.org/10.21175/RadProc.2020.06
Health and Environment


Snežana Živković, Milan Veljković

DOI: 10.21175/RadProc.2020.07

All life on our planet is surrounded by radiation. Human life takes place with a certain level of radiation. The term psychologically is used primarily to explain the emotional reactions of the public, on issues in relation to which one should have a rational relationship because every story about radiation causes fear and rejection in an “unprofessional” and “conscientious” citizen. Over the past seventy years, a general opinion has been created through the mass media about the deadly effects of radiation. Apart from the real fear, which arises from the feeling of ecological endangerment, and which is based on the objective dangers of modern technologies, irrational fear is inevitably born. It is a generalization of all human subjective sufferings within the framework of “overestimated” reality. The feeling of fear that we are exposed to radiation can have far greater consequences than the actual harmful effects of physical radiation. The aim of this paper is to identify the psychological effects that radiation can cause in humans and how to overcome fear and stressful situations caused by radiation and the effect of psychosocial factors on human behavior, but also elements for prognosis and prediction for their behavior in similar situations. There is a justified concern when the risk of radiation appears, but the reality is far from the amount of panic that is spreading in the public and the media when it comes to these phenomena. We can conclude that people are generally afraid of radiation because their beliefs are dominated by misconceptions, delusions, or opinions that are the product of errors of judgment or are based on false premises.
  1. National Research Council, Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII Phase 2. Washington, DC: The National Academies Press, 2006.
    DOI: 10.17226/11340
  2. National Research Council (US) Committee on the Biological Effects of Ionizing Radiation (BEIR V), Health Effects of Exposure to Low Levels of Ionizing Radiation: Beir V, Washington (DC): National Academies Press (US), 1990, pp. 22-45.
    Retrieved from: http://www.ncbi.nlm.nih.gov/books/NBK218704/
    DOI: 10.17226/1224
  3. P. Slovic, Perception of risk. Science, vol. 236, pp. 280-285, Apr. 1987.
    DOI: 10.1126/science.3563507
  4. Y. Kim, “The radiation problem and its solution from a health communication perspective,” J. Korean Med. Sci., vol. 31(Suppl 1), pp. S88-S98, Jan. 2016.
    DOI: 10.3346/jkms.2016.31.S1.S88
  5. R. Michel, B. Lorenz, H. Völkle, Radiation protection today – success, problems, recommendation for the future. Statement paper of the “Club of the Philosophers” of the German-Swiss Association for Radiation Protection, 2018.
    Retrieved from: https://fs-ev.org/fileadmin/user_upload/09_Themen/Philosophen/Future_of_Radia tion_Protection_20180921.pdf
  6. B. Popović, “Uticaj γ-zračenja na antioksidativni sistem odabranih genotipova soje i pojava oksidativnog stresa,” Doktorska disertacija, Univerzitet u Novom Sadu, Prirodno-matematički fakultet , Novi Sad, Srbija, 2006. (B. Popović, “Influence of γ-radiation on antioxidant system of selected genotypes of soybean and oxidative stress appearance,” Ph.D. thesis, University of Novi Sad, Faculty of Science, Novi Sad, Serbia, 2006)
    Retrieved from: http://nardus.mpn.gov.rs/handle/123456789/5925
  7. A. Perić, „Spektralne karakteristike veštačkih izvora UV zračenja–solarijumi,” diplomski rad, Univerzitet u Novom Sadu, Prirodno-matematički fakultet, Novi Sad, Srbija, 2007.
  8. (A. Perić, “Spectral characteristics of artificial sources of UV radiation - solariums,” Diploma work, University of Novi Sad, Faculty of Science, Novi Sad, Serbia, 2006)
    Retrieved from: https://www.df.uns.ac.rs/publikacije/diplomski-radovi/
  9. B.M. Drottz-Sjöberg, L. Persson, Public reaction to radiation: fear, anxiety, or phobia?. Health Physics, vol. 64, no. 3, pp. 223-231, Mar. 1993.
    DOI: 10.1097/00004032-199303000-00001
  10. Н. Коупленд, Психология и солдат / Пер. с англ., Москва, Россия: Воениздат, 1991. (N. Copeland, “Psychology and the Soldier,” Translation of English, Moscow, Russia: Voenizdat, 1991.)
  11. К.Э. Изард, Эмоции человека, Психологический этюд, Москва, Россия: МГУ, 1980. (C.E. Izard, The psychology of emotions. Moscow, Russia: MGU, 1991.)
  12. C.E. Izard, The psychology of emotions. New York, USA: Springer Science & Business Media, 1991.
  13. Ž. Trebješanin, Rečnik psihologije. Beograd: Stubovi kulture. 2000.
  14. Т. Ш. Нагимов, Э.С. Русаев, Г.Г. Нигаматуллина, Психология человека в местах массового пребывания населения. Паника и её предотвращение. Уфа: ГУ МЧС России по Республике Башкортостан, 2005. (T. Sh. Nagimov, E. S. Rusaev, G.G. Nigamatullina, Human psychology in places of mass presence of the population. Panic and its prevention. Ufa: GU EMERCOM of Russia in the Republic of Bashkortostan, 2005.)
  15. D. Ropeik, “Fear vs. radiation: the mismatch.” The New York Times, Oct. 21, 2013.
    Retrieved from: https://www.nytimes.com/2013/10/22/opinion/fear-vs-radiation-the-mismatch.html
  16. M. Zvonarević, Đ. Matošić, I. Mišković, P. Sekulić, Čovjek u zaštiti i spašavanju, Zagreb, Jugoslavija: Školska knjiga, 1986. (M. Zvonarević, Đ. Matošić, I. Mišković, P. Sekulić, Man in Protection and Rescue, Zagreb, Yugoslavia: Školska knjiga, 1986.)
  17. J.R. Croft, P. Zuniga-Bello, A. Kenneke, “The radiological accident in San Salvador.” In Recovery operations in the event of a nuclear accident or radiological emergency: Proceedings Series , Vienna, Austria: IAEA, 1990.
  18. B.R. Jordan, “The Hiroshima/Nagasaki survivor studies: discrepancies between results and general perception,” Genetics, vol. 203, no. 4, pp. 1505-1512, Aug. 2016.
    DOI: 10.1534/genetics.116.191759
  19. M. Durigon, T. Kosatsky, “Calls managed by the BC Drug and Poison Information Centre following the 2011 nuclear reactor incident at Fukushima, Japan.” Canad. Pharm. J., vol. 145, no. 6, pp. 256-258, Nov. 2012.
    DOI: 10.3821/145.6.cpj256
  20. Y. Tsfati, J. Cohen, J. Perceptions of media and media effects: The third person effect, trust in media and hostile media perceptions. In The international encyclopedia of media studies: media effects/media psychology, 1st ed.., A.N. Valdivia, E. Scharrer. Eds., Oxford, UK: Willey-Blackwell, 2013, ch. 5, pp. 1-19.
  21. C.C. Chow, R.K. Sarin, Known, unknown, and unknowable uncertainties, Theory Decision, vol. 52, no. 2, pp. 127-138, Mar. 2002.
    DOI: 10.1023/A:1015544715608
  22. C.J. Martin, “The LNT model provides the best approach for practical implementation of radiation protection,” Br. J. Radiol., vol. 78, no. 925, pp. 14-16, Jan. 2014.
    DOI: 10.1259/bjr/31745335
  23. C. Streffer, “The ICRP 2007 recommendations,” Radiat. Prot. Dosimetry., vol. 127, no. 1-4, pp. 1-7, Oct. 2007.
    DOI: 10.1093/rpd/ncm246
  24. R. Bertell, “First Assessment of the actual death toll attributable to the Chernobyl disaster based upon conventional risk methodology,” In Chernobyl: 20 years on health effects of the Chernobyl accident, C.C. Busby, A.V. Yablokov, European Committee on Radiation Risk (ECRR), Aberystwyth, UK: Green Audit, 2006, pp. 245-248.
  25. A. Petryna, Life exposed: biological citizens after Chernobyl. Princeton; Oxford, UK: Princeton University Press, 2013.
    DOI: 10.2307/j.ctt7rtb3.6
  26. W. Huda, “Radiation doses and risks in chest computed tomography examinations,” Proc. Am. Thorac. Soc., vol. 4, pp. 316–320, Aug. 2007.
    DOI: 10.1513/pats.200611-172HT
  27. D.J. Brenner, R.K. Sachs, “Do low dose-rate bystander effects influence domestic radon risks?” Int. J. Rad. Biol., vol. 78, no. 7, pp. 593-604, Aug. 2002.
    DOI: 10.1513/pats.200611-172HT
  28. G. Lawler, “Knowledge and awareness of radiation therapy in the general Irish population and a population of health professionals,” Radiother. Oncol., vol. 92, S157, Aug. 2009.
    DOI: 10.1016/S0167-8140(12)72998-5
  29. A. Turner, “Be wary of granite that glows,” Houston Chronicle, Jul. 25, 2008.
    Retrieved from: http://rhic22.physics.wayne.edu/SaxumSubluceo/Stories/HoustonChronicle_GraniteCountertopsMayCauseYouHarm.pdf
  30. A. Ubysz, M. Maj, M. Musiał, J. Ubysz, “Radon-occurrence and health risks in civil engineering” Proc. Eng., vol. 172, pp. 1184-1189, 2017.
    DOI: 10.1016/j.proeng.2017.02.138
  31. S. Živković, “Psihologija grupa,” Niš: Fakultet zaštite na radu, Srbija, 2012. (S. Živković, “Group Psychology,” Niš: Faculty of Occupational Safety, Serbia, 2012.)
  32. T. Perko, “Radiation risk perception: a discrepancy between the experts and the general population,” J. Environ. Radioact ., vol. 133, pp. 86-91, Jul. 2014.
    DOI: 10.1016/j.jenvrad.2013.04.005
  33. Y. Kim, “The radiation problem and its solution from a health communication perspective,” J. Korean Med. Sci., vol. 31 (Suppl 1), pp. S88-S98, Jan. 2016.
    DOI: 10.3346/jkms.2016.31.S1.S88
Snežana Živković, Milan Veljković, "Psychological aspects of ionizing radiation exposure," RAD Conf. Proc, vol. 4, 2020, pp. 32–38, http://doi.org/10.21175/RadProc.2020.07
Radiation Effects


Tsveta Angelova, Nikolai Tyutyundzhiev, Christo Angelov, Svetla Gateva, Gabriele Jovtchev

DOI: 10.21175/RadProc.2020.08

The aim of this study is to assess the potential of prolonged UV irradiation to induce genotoxic alteration in Poaceae species cultivated in laboratory and in mountain conditions. Changes in natural environment increase to a great extent with altitude. In natural ecosystems plants are exposed to UV and other environmental factors for more than one period of time of 10, 20, 30 or 43 days. Four wild species: Poa alpina L., Sesleria coerulans Friv., Festuca valida (R. Uechtr.) Pénzes, Dactylis glomerata L., characteristic of the ecosystems in Rila Mountain at three different altitudes (1500m, 1782m, and 2925m) were collected in three successive growing seasons (2017, 2018, 2019). Five-days old model plant Hordeum vulgare L. was cultivated and exposed to UV irradiation in laboratory conditions for periods of 10, 20, 30 and 43 days. Induction of micronuclei was applied as endpoint. We propose that: i) prolonged irradiation as well as its increase with altitude could induce higher genotoxic injuries in plants; ii) wild plants in mountainous and alpine biotopes are well adapted to the environmental conditions where a combination of abiotic stress factors can occur. Our results show variability in the response to UV irradiation between plant species cultivated in laboratory conditions and wild plants in natural environment where UV is combined with other abiotic stress factors. Micronuclei induced in H. vulgare in laboratory conditions were with higher frequency than those in plants growing in mountain conditions. It could be due to the fact that in laboratory conditions we studied the effect of a single factor and for a limited period of time, while in the natural environment the effect of prolonged UV irradiation is combined with other abiotic stress factors. Plant species at the highest altitude of 2925 m had a well pronounced low level of damage, despite expected high level of damage. It is well known that plants’ response is modified when the effect of UV irradiation is combined with other factors. Further studies are needed for better understanding the mechanisms of interaction between factors and plant responses to the changing environmental conditions. Based on this and on future monitoring studies it could be possible to select sensitive monitor/model Poaceae species for the following comparative environmental impact assessments in laboratory and in mountain conditions.
  1. S. W. Mpoloka, “Effects of prolonged UV-B exposure in plants“, African Journal of Biotechnology, vol. 7, no. 25, pp. 4874-4883, 2008.
    Retrieved from: http://www.academicjournals.org/AJB
  2. G. Kumar, A. Pandey, “Effect of UV-B radiation on chromosomal organisation and biochemical constituents of Coriandrum sativum L.”, Jordan Journal of Biological Sciences, vol. 10, no. 2, pp. 85-93, 2017.
  3. A. G. Roro, M. T. Terfa, K.A. Solhaug, A. Tsegaye, E. Olsen, S. Torre, “The impact of UV radiation at high altitudes close to the equator on morphology and productivity of pea (Pisum sativum) in different season”, South African Journal of Botany, vol. 106, pp. 119–128, 2016.
    DOI: 10.1016/j.sajb.2016.05.011
  4. L. F. Suárez Salas, J. L. Flores Rojas, A. J. Pereira Filho, H. A. Karam, “Ultraviolet solar radiation in the tropical central Andes (12.0°S)”, Photochem. Photobiol. Sci., vol. 16, pp. 954–971, 2017.
    DOI: 10.1039/C6PP00161K
  5. G. Jovtchev, A. Stankov, I. Ravnachka, S. Gateva, D. Dimitrov, N. Tyutyundzhiev, N. Nikolova, Ch. Angelov, “How can the natural radiation background affect DNA integrity in angiosperm plant species at different altitudes in Rila Mountain (Southwest Bulgaria)?”, Environmental Science and Pollution Research, vol. 26, pp. 13592–13601, 2019.
    DOI: 10.1007/s11356-019-04872-1
  6. Y. Sola, J. Lorente, E. Campmany, X. de Cabo, J. Bech, A. Redano, J. A. Martinez-Lozano, M. P. Utrillas, L. Alados-Arboledas, F. J. Olmo, J. P. Diaz, F. J. Exposito, V. Cachorro, M. Sorribas, A. Labajo, J. M. Vilaplana, A. M. Silva, J. Badosa, “Altitude effect in UV radiation during the evaluation of the effects of elevation and aerosols on the ultraviolet radiation 2002 (VELETA-2002) field campaign”. J Geophys Res, vol. 113: D23202, 2008.
    DOI: 10.1029/2007JD009742
  7. C. Körner, “The use of ‘altitude’ in ecological research”, Trends Ecol. Evol., vol. 22, no. 11, pp. 569-574, 2007.
    DOI: 10.1016/j.tree.2007.09.006
  8. O. Aknazarov, “Effect of ultraviolet radiation on the growth, morphogenesis, and hormone level of alpine plants”, Extended Abstract of Dr. Sci. (Biol.) Dissertation, Dushanbe, 1991.
  9. M. M. Caldwell, “Solar ultraviolet radiation as an ecological factor for alpine plants”, Ecol. Monographs, vol. 38, pp. 243–268, 1968.
    DOI: 10.2307/1942430
  10. M. M. Caldwell, C. L. Ballare, J. F. Bornman, S. D. Flint, L. O. Bjorn, A. H. Teramura, G. Kulandaivelu, M. Tevini, “Terrestrial ecosystems, increased solar ultraviolet radiation and interactions with other climatic change factors”, Photochem. Photobiol. Sci., vol. 2, no. 1, pp. 29–38, 2003.
    DOI: 10.1039/B211159B
  11. J. H. Sullivan, A. H. Teramura, “Field study of the interaction between solar ultraviolet-B radiation and drought on photosynthesis and growth in soybean”, Plant Physiol., vol. 92, no. 1, pp. 141–146, 1990.
  12. S. Koti, K. R. Reddy, V. R. Reddy, V. G. Kakani, D. Zhou, “Interactive effects of carbon dioxide, temperature, and ultraviolet-B radiation on soybean (Glycine max) flower and pollen morphology, production, germination and tube lengths”, J. Exp. Bot ., vol. 56, no. 412, pp. 725–736, 2004.
    DOI: 10.1016/j.envpol.2005.01.030
  13. Á. Ferrero-Serrano, S.M. Assmann, “Phenotypic and genome-wide association with the local environment of Arabidopsis”, Nat. Ecol. Evol. vol. 3, 274–285, 2019.
    DOI: 10.1038/s41559-018-0754-5
  14. E.V. Kanash, Influence of UV-B Radiation on Agroeconomic Systems, Dokl. Vseross. Akad. Sel’skokhoz. Nauk, vol. 3, pp. 17–20, 2002.
    Retrieved from: https://scholar.google.com/citations?user=JJ1nLq8AAAAJ&hl=en&oi=sra
  15. B.R. Jordan. The Effect of Ultraviolet-B Radiation on Plants: A Molecular Perspective, Adv. Bot. Res., vol. 122, pp. 97–162, 1996.
    Retrieved from: https://scholar.google.com/scholar_lookup?title=The%20Effect%20of%20Ultraviolet-B%20Radiation%20on%20Plants%3A%20A%20Molecular%20Perspective&journal=Adv.%20Bot.%20Res.&volume=122&pages=97-162&publication_year=1996&author=Jordan%2CB.R
  16. R. Rai, S. Singh, S. Yadav, A. Chatterjee, S. Rai, A. Shankar, L. C. Rai, “Impact of UV-B radiation on photosynthesis and productivity of crop. Environment and photosynthesis a future prospect” inV. P. Singh, S. Singh, R. Singh, P. K. Srivastava, S. M. Prasad, Eds., Environment and photosynthesis: a future prospect. Studium Press, New Delhi, 2018, pp. 336–346.
  17. C.S. Campbell, Poaceae, Website Name: Encyclopaedia Britannica, Publisher: Encyclopaedia Britannica, Inc., Date Published: 07 October 2016.
    Retrieved from: https://www.britannica.com/plant/Poaceae
  18. Rila National Park, Management Plan 2001–2010, published 2001, p. 289.
    Retrieved from: http://rilanationalpark.bg/assets/userfiles/Rila%20NP-en.pdf
  19. N. Tyutyundzhiev, Ch. Angelov, K. Lovchino, Hr. Nitchev, M. Petrov, T. Arsov, “Modeling the natural UV irradiation and comparative UV measurements at Moussala BEO (BG)”. IOP Publishing, J Phys: Conf. Ser. 992 (012022): pp. 1–7, 2018.
    DOI: 10.1088/1742-6596/992/1/012022
  20. Ts. Angelova, A. Stankov, N. Tyutyundzhiev, Ch. Ivanov, S. Gateva, G. Jovtchev, “Does prolonged UV irradiation induce genotoxic effect on Hordeum vulgare L.?,” in 23rd International Eco-conference of environmental protection of urban and suburban settlements, Proc., 25th-27th September, Novi Sad, Serbia , 2019, pp. 137-143, ISBN 978-86-83177-55-4.
  21. G. Jovtchev, M. Stergios, I. Schubert, “A comparison of N-methyl-N-nitrosourea-induced chromatid aberrations and micronuclei in barley meristems using FISH techniques”, Mutation Research, vol. 517, pp. 47–51, 2002.
    DOI: 10.1016/s1383-5718(02)00038-4
  22. G. Jovtchev, M. Menke, I. Schubert, “The comet assay detects adaptation to MNU-induced DNA damage in barley”, Mutation Research, vol. 493, pp. 95–100, 2001.
    DOI: 10.1016/S1383-5718(01)00166-8
  23. G. Jovtchev, S. Gateva, Ts. Angelova, K. Katrandzhiev, N. Nikolova, D. Dimitrov, Ch. Angelov, “Impact of UV radiation on the DNA of plants at different altitudes in Rila Mountain, Bulgaria-a three years study”, in 24 International Eco-conference, 11 Safe Food, Proc., 23–25th September, Novi Sad, Serbia, 2020, pp. 59-67. ISBN 978-86-83117-56-1.
Tsveta Angelova, Nikolai Tyutyundzhiev, Christo Angelov, Svetla Gateva, Gabriele Jovtchev, "Induction of micronuclei after prolonged UV irradiation of Poaceae species cultivated in laboratory conditions and wild-growing in Rila mountain," RAD Conf. Proc, vol. 4, 2020, pp. 39–44, http://doi.org/10.21175/RadProc.2020.08
Cancer Research


Marina Yu. Kopaeva, Irina B. Alchinova, Mikhail V. Nesterenko, Anton B. Cherepov, Marina S. Demorzhi, Irina Yu. Zarayskaya, Mikhail Yu. Karganov

DOI: 10.21175/RadProc.2020.09

The aim of this study was to investigate the effects of human lactoferrin (hLf) in mice exposed to acute sublethal gamma-irradiation. C57Вl/6 male mice were used for the experiments. Animals from experimental groups were exposed to whole-body gamma-radiation at a dose of 7.5 Gy. Some animals received an intraperitoneal injection of lactoferrin (Lf) immediately and then at 24 hours after the irradiation. The effect of Lf on survival rate and life span was studied. Changes in the physiological parameters were evaluated by laser correlation spectroscopy of blood serum, histological examination of the liver, and blood leukocyte shift index count on day 30 after irradiation. The Lf administration increased the survival rate and life span of irradiated mice during the experiment. In addition, Lf had a compensatory effect on the white blood formula, serum composition and liver condition of irradiated animals.
  1. N. Orsi, “The antimicrobial activity of lactoferrin: Current status and perspectives,” BioMetals, vol. 17, no. 3, pp. 189–196, Jun. 2004.
    DOI: 10.1023/B:BIOM.0000027691.86757.e2
  2. I. A. García-Montoya, T. S. Cendón, S. Arévalo-Gallegos, and Q. Rascón-Cruz, “Lactoferrin a multiple bioactive protein: An overview,” Biochim. Biophys. Acta BBA - Gen. Subj., vol. 1820, no. 3, pp. 226–236, Mar. 2012.
    DOI: 10.1016/j.bbagen.2011.06.018
  3. Y. Nishimura, S. Homma-Takeda, H.-S. Kim, and I. Kakuta, “Radioprotection of mice by lactoferrin against irradiation with sublethal X-rays,” J. Radiat. Res. (Tokyo), vol. 55, no. 2, pp. 277–282, Mar. 2014.
    DOI: 10.1093/jrr/rrt117
  4. L. Feng, J. Li, L. Qin, D. Guo, H. Ding, and D. Deng, “Radioprotective effect of lactoferrin in mice exposed to sublethal X‑ray irradiation,” Exp. Ther. Med., Aug. 2018.
    DOI: 10.3892/etm.2018.6570
  5. N. Faraji, Y. Zhang, and A. K. Ray, “Determination of adsorption isotherm parameters for minor whey proteins by gradient elution preparative liquid chromatography,” J. Chromatogr. A, vol. 1412, pp. 67–74, Sep. 2015.
    DOI: 10.1016/j.chroma.2015.08.004
  6. V. Kumar, Md. I. Hassan, T. Kashav, T. P. Singh, and S. Yadav, “Heparin-binding proteins of human seminal plasma: purification and characterization,” Mol. Reprod. Dev., vol. 75, no. 12, pp. 1767–1774, Dec. 2008.
    DOI: 10.1002/mrd.20910
  7. M. Yu. Kopaeva, A. B. Cherepov, I. Yu. Zarayskaya, and M. V. Nesterenko, “Transport of Human Lactoferrin into Mouse Brain: Administration Routes and Distribution,” Bull. Exp. Biol. Med., vol. 167, no. 4, pp. 561–567, Aug. 2019.
    DOI: 10.1007/s10517-019-04572-3
  8. M. Yu. Kopaeva, I. B. Alchinova, M. V. Nesterenko, A. B. Cherepov, I. Yu. Zarayskaya, and M. Yu. Karganov, “Lactoferrin beneficially influences the recovery of physiological and behavioral indexes in mice exposed to acute gamma-irradiation,” Nauchno-Prakt. Zhurnal «Patogenez» [Pathogenesis], vol. 18, no. 1, pp. 29–33, Mar. 2020.
    DOI: 10.25557/2310-0435.2020.01.29-33
  9. M. Karganov, I. Alchinova, E. Arkhipova, and A. V. Skalny, “Laser Correlation Spectroscopy: Nutritional, Ecological and Toxic Aspects,” Biophysics ed. A N Misra (InTech), pp. 1-16, 2012. ISBN 978-953-51-0376-9
    DOI: https://doi.org/10.5772/35254
  10. I. Alchinova, E. Arkhipova, Yu. Medvedeva, A. Cherepov, A. Antipov, N. Lysenko, L. Noskin, and M. Karganov, “The Complex of Tests for the Quantitative Evaluation of the Effects of Radiation on Laboratory Animals,” Am. J. Life Sci., vol. 3, no. 1, pp. 5-12, 2015.
    DOI: 10.11648/j.ajls.s.2015030102.12
  11. A. A. Ivanov, A. M. Ulanova, N. M. Stavrakova, Iu. B. Deshevoĭ, T. A. Nasonova, A. N. Koterov, K. K. Gutsenko, V. N. Mal’tsev, ["Antiradiation effects of Lactoferrin"]. Radiatsionnaia biologiia. Radioecologiia [Radiation biology. Radioecology] , vol. 49, no. 4, pp. 456-461, 2009. (in Russian)
  12. I. B. Alchinova, M. V. Polyakova, E. N. Yakovenko, Y. S. Medvedeva, I. N. Saburina, and M. Y. Karganov, “Effect of Extracellular Vesicles Formed by Multipotent Mesenchymal Stromal Cells on Irradiated Animals,” Bull. Exp. Biol. Med., vol. 166, no. 4, pp. 574-579, 2019.
    DOI: 10.1007/s10517-019-04394-3
Marina Yu. Kopaeva, Irina B. Alchinova, Mikhail V. Nesterenko, Anton B. Cherepov, Marina S. Demorzhi, Irina Yu. Zarayskaya, Mikhail Yu. Karganov, "Radioprotective effect of human lactoferrin against gamma-irradiation with sublethal dose," RAD Conf. Proc http://doi.org/10.21175/RadProc.2020.09
Cancer Research


Mitko Mitev, Evelin Obretenov

DOI: 10.21175/RadProc.2020.10

Introduction . The study aim to present the diagnostic capabilities of virtual bronchoscopy (VB) and fiberoptic bronchoscopy (FB) for determining the localization and shape of stenoses in patients with peripheral lung carcinoma. Materials and methods. A systemic study was performed on 90 patients, 61 patients of them (67.78%) are men and 29 (32.23%) are women, 44-85 years of age, with endobronchial disease, using the FB and VB methods, over the period 2013-2020. Results. As a result of the study of 220 patients aged 11-83 years (54.36 ± 17.24), in 90 patients after VB (40.91%; 61 men - 67.78% and 29 women - 32.23%) and in 86 patients after FB (39.09%; 61 men - 70.93% and 25 women - 29.07%) peripheral lung carcinoma was found. Cases of men diagnosed with VB and FB with peripheral left carcinoma predominate (65.38% and 71.43%, respectively) compared to those in women (34.62% and 28.57%, respectively) and as well as with regard to cases with peripheral right carcinoma. Significant differences in the size of the stenoses were found in both sexes with peripheral carcinoma (U = 4.112, P = 0.0000). Conclusion. VB allows high-quality visualization of stenoses and poststenotic areas that cannot be achieved with FB in peripherally located processes. Through VB peripheral branches of 5-6 order can be reached. VB makes it possible to examine the areas located after the tumour formation.
  1. М. А. Митев, Виртуална бронхоскопия с мултидетекторен компютърен томограф, Дисертация ОНС Доктор, Тракийски университет – Стара Загора, Катедра Мед. физика, биоф., рентг., рад., Стара Загора, Бг, 2017 (M. A. Mitev, “Virtual bronchoscopy with Multidetector computed tomography,” Ph.D. dissertation, Trakia University-Stara Zagora, Dept. of Med. Physics, Biophysics, Roentg, Rad., Stara Zagora, BG, 2017).
  2. P.M. Kotlyarov, “Virtual bronchoscopy for tumors and Traumatic Lesions of the Aitways,” Open access peer-reviewed chapter, in Intervent. Pulm. Pulm. Hypert. – Upd. Sp. Top., UK: IntechOpen, 2020, ch. 4, pp. 189-254.
    DOI: 10.5772/intechopen.78454
  3. М. Mitev, N. Trajkova, D. Arabadzhiev, S. Valkanov, N. Georgieva, E. Obretenov, “Virtual bronchoscopy importance of the method application and prospects for tumors of the trachea and bronchi,” Trakia J. Sci., vol. 15, no. 3, pp. 269-273, 2017.
    DOI: 10.15547/tjs.2017.03.018
  4. M. Mitev, E. Obretenov, D. Valchev, “Localization and shape of stenoses in central lung carcinoma – sensitivity and precision of MDCT VB and FB,” Acta Clin. Croat., vol. 59, no. 2, pp. 252-259, Sep. 2020
    DOI: 10.20471/acc.2020.59.02.08
  5. Т. Fleiter, Е.M. Merkle, A.J. Aschoff, G. Lang, M. Stein, J. Görich, F. Liewald, N. Rilinger, R. Sokiranski, „Comparison of Real-Time Virtual and Fiberoptic Bronchoscopy in Patients with Bronchial Carcinoma: Opportunities and Limitations,” A. J. R., vol. 169, no. 6, pp. 1591-1595, Dec. 1997
    DOI: https://www.ajronline.org/doi/pdfplus/10.2214/ajr.169.6.9393172
    PMid: 9393172
  6. F. Liewald, G. Lang, T.H. Fleiter, R. Sokiranski, G. Halter, K.H. Orend, “Comparison of virtual and fiberoptic bronchoscopy,” Thor. Cardio-vasc. Sur., vol. 46, no. 6, pp. 361-364, 1998.
    DOI: 10.1055/s-2007-1010254
    PMid: 9928859
  7. H.P. McAdams, Ph.C. Goodman, P. Kussin, “Virtual Bronchoscopy for Directing Transbronchial Needle Aspiration of Hilar and Mediastinal Lymph Nodes: A Pilot Study,” A. J. R., vol. 170, no. 5, pp. 1361-1364, May 1998.
    DOI: https://www.ajronline.org/doi/pdfplus/10.2214/ajr.170.5.9574616
    PMid: 9574616
  8. A.J. Burke, D.J. Vining, W.F.Jr. McGuirt, G. Postma, J.D. Browne, “Evaluation of airway obstruction using virtual endoscopy,” Laryngoscope, no. 110, pp. 23–29, Jan. 2000.
    DOI: https://onlinelibrary.wiley.com/doi/pdf/10.1097/00005537-200001000-00005
    PMid: 10646710
  9. П. М. Котляров, С. З. Темирханов, К. Е. Флеров, В. А. Гомболевский, Н. В. Черниченко, Н. В. Нуднов, В. А. Солобкий, Виртуальная бронхоскопия в диагностике рака легкого и его распространенности, мониторинге послеоперационных изменений, Вестника РНЦРР МЗ РФ N13, 2013 (P. M. Kotlayrov, S. Z. Temirhanov, K. E. Flerov, V. A. Gombolevskii, N. V. Chernychenko, N. V. Nudnov, V. A. Solodkiy, “Virtual bronchoscopy in the diagnosis of lung cancer, in the assessment of its spread and in monitoring of post-operative changes,” Newspaper RSCX-RR МH RF N13 , 2013.)
    Retrieved from: http://vestnik.rncrr.ru/vestnik/v13/papers/flerov_v13.htm
  10. F. Asano, R. Eberhardt, F. Herth, “Virtual Bronchoscopic Navigation for peripheral Pulmonary Lesions,” Respiration, no. 88, pp. 430-440, Oct. 2014.
    DOI: 10.1159/000367900
    PMid: 25402610
  11. N. McAleece, J. D. G., Lambshead, G. L. J. Peterson, “BioDiversity professional statistics analysis software,” UK (London): Natural History Museum and Scottish Association for Marine Science, 1997.
    Retrieved from: http://www.sams.ac.uk/peter-lamont/biodiversity-pro
    Retrieved on: Feb. 1, 2016
  12. StatSoft Inc., 2011. Statistica (data analysis software system),version 10. www.statsoft.com.
    Retrieved from: https://statistica.software.informer.com/10.0/
    Retrieved on: Jan. 20, 2011
  13. F. Li, Sh. Sone, H. Abe, H. MacMahon, K. Doi, “Malignant versus Benign Nodules at CT Screening for Lung Cancer: Comparison of Thun-Section CT Findings,” Radiology, vol. 233, no. 3, pp. 793-798, Dec. 2004.
    DOI: 10.1148/radiol.2333031018
    PMid: 15498895
  14. T. Schlathölter, C. Lorenz, I. Carlsena, S. Renischa, T. Deschamps, “Simultaneous Segmentation and Tree Reconstruction of the Airways for Virtual Bronchoscopy,” Proceedings of SPIE, vol. 4684, no. 02, pp. 103-113, 2002.
    Retrieved from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=
    Retrieved on: May 9, 2002
  15. W. De Wever, J. Bogaert, J. A. Verschakelen, “Virtual Bronchoscopy: Accuracy and Usefulness — An Overview,” Semin Ultrasound CT MRI, vol. 26, no. 5, pp. 364-373, Oct. 2005.
    DOI: 10.1053/j.sult.2005.07.005
    PMid: 16274005
  16. 16. St. Leong, T. Shaipanich, St. Lam, K. Yasufuku, “Diagnostic bronchoscopy – current and future perspectives,” J Thorac Dis, vol. 5, suppl. 5, pp. S498-S510, Sep. 2013.
    DOI: 10.3978/j.issn.2072-1439.2013.09.08
    PMid: 24163743
  17. M. Luo, C. Duan, L. Qiu, W. Li, D. Zhu, W. Cai, “Diagnostic Value of Multidetector CT and Its Multiplanar Reformation, Volume Rendering and Virtual Bronchoscopy Postprocessing Techniques for Primary Trachea and Main Bronchus Tumors,” PLoS One, vol. 10, no. 9, pp. e0137329, Sep. 2015.
    DOI: 10.1371/journal.pone.0137329
    PMid: 26332466
  18. T. Ishiwata, A. Gregor, T. Inage, K. Yasufuku, “Advances in interventional diagnostic bronchoscopy for peripheral pulmonary lesions,” Expert Review of Respiratory Medicine, vol. 13, no. 9, Jul. 2019.
    DOI: 10.1080/17476348.2019.1645600
    PMid: 31322455
  19. T. Ishida, F. Asano, K. Yamazaki, N. Shinagawa, S. Oizumi, H. Moriya, M. Munakata, M. Nishimura, “Virtual bronchoscopic navigation combined with endobronchial ultrasound to diagnose small peripheral pulmonary lesions: a randomised trial,” Thorax, vol. 66, no. 12, pp. 1072-1077, Dec. 2011.
    DOI: 10.1136/thx.2010.14.54.90
    PMid: 21749984
  20. Sh. Li, W. Yan, M. Chen, Zh. Li, Y. Zhu, Q. Wu, “Virtual bronchoscopic navigation without fluoroscopy guidance for peripheral pulmonary lesions in inexperienced pulmonologist,” Chin. J. Cancer Res., vol. 32, no. 4, pp. 530-539, Aug. 2020.
    DOI: 10.21147/j.issn.1000-9604.2020.04.10
    PMid: 32963465
  21. T. Adachi, H. Machida, M. Nishikawa, T. Arai, T. Kariyasu, M. Koyanagi, K. Yokoyama, “Improved delineation of CT virtual bronchoscopy by ultrahigh resolution CT: comparison among different reconstruction parameters”, Jpn J Radiol., vol. 38, no. 9, pp. 884-889, Apr. 2020.
    DOI: 10.1007/s11604-020-00972-y
    PMid: 32297061
Mitko Mitev, Evelin Obretenov, "Localization and shape of stenoses in peripheral lung carcinoma diagnosed by methods of VB and FB," RAD Conf. Proc, vol. 4, 2020, pp. 50–54, http://doi.org/10.21175/RadProc.2020.10
Radiation Protection


Natasha Ivanova, Javor Ivanov, Bistra Manusheva, Ismet Tahsinov, Hrisimir Todorov, Nikolai Aleksandrov

DOI: 10.21175/RadProc.2020.11

In this article, we present some first results of the study of the dose load on a medical team working with an angiographic X-ray system in the Department of Invasive Cardiology. In the first stage, we made measurements of the dose received by an interventional cardiologist for the most commonly used projections of the C-arm. The measurements were made at three different points of the body of the cardiologist: head, gonads and feet. The aim of this article is to determine, based on the measurements, how the dose load is distributed at different points of the body of the cardiologist when various projections of the C-arm of the angiographic system and at different positions of the patient’s table are used. The obtained results indicate the point “Gonads” to receive the highest dose load and “Head” as the point with the lowest dose load.
  1. PHILIPS, History of X-ray.
    Retrieved from: https://www.philips.com/consumerfiles/newscenter/main/shared/assets/Downloadablefile/FACT_SHEET_X-ray_history.pdf
    Retrieved on: Sept. 21, 2020
  2. Werner Otto Theodor Forsman (in Bulg. Вернер Ото Теодор Форсман)
    Retrieved from: https://bg.pmtctdonations.org/forssmann-5637
    Retrieved on: Sept. 21, 2020
  3. J.A.M. Hofman, Former Marketing Director, Universal RF Systems, Philips Healthcare, The art of medical imaging: Philips and the evolution of medical X-ray technology, Clinical applications, MEDICAMUNDI 54/1 2010.
    Retrieved from: http://incenter.medical.philips.com/doclib/enc/fetch/2000/4504/577242/577256/588821/5050628/5313460/6391861/%5B04%5D_MM_54-1_Hofman.pdf%3Fnodeid=6391873&vernum=-2
    Retrieved on: Sept. 21, 2020
  4. Making the difference with Philips Live Image Guidance Philips Allura Xper FD10 system specifications © 2017 Koninklijke Philips N.V. 4522 991 18981 * Apr 2017 (the article was provided by Philips)
  5. Röntgen-GammaDosimeter 27091, Technical Description and Operating Instructions, September 02, 2008.
    Retrieved from: http://www.step-sensor.de/media/main/rgd_27091__manual_.pdf
    Retrieved on: Sept. 21, 2020
  6. M. Osanai, K. Kudo, M. Hosoda, H. Tazoe, N. Akata, M. Kitajima, M. Tsushima, N. Komiya, M. Kudo, T. Tsujiguchi, M. Takagi, Y. Hosokawa, Y. Saito, “The impact on the eye lens of radiation emitted by natural radionuclides (lead-210) present in radiation protection glasses,” Radiat. Prot. Dosimetry, vol. 188, no. 1, pp. 13- 21, Jan. 2020.
    DOI: 10.1093/rpd/ncz252
    PMid: 31711199
    Retrieved from: https://pubmed.ncbi.nlm.nih.gov/31711199/
    Retrieved on: November 26, 2020
  7. Y. Haga, K. Chida, Y. Kaga, M. Sota, T. Meguro, M. Zuguchi “Occupational eye dose in interventional cardiology procedures,” Sci. Rep. 7, p. 569, Apr. 2017.
    DOI: 10.1038/s41598-017-00556-3
Natasha Ivanova, Javor Ivanov, Bistra Manusheva, Ismet Tahsinov, Hrisimir Todorov, Nikolai Aleksandrov, "Dose load to different parts of the body of the interventional cardiologist - first results," RAD Conf. Proc, vol. 4, 2020, pp. 55–59, http://doi.org/10.21175/RadProc.2020.11


Dmitry Lebedev, Luiza Garaeva, Vladimir Burdakov, Andrey Volnitskiy, Natalya Razgildina, Alina Garina, Dmitry Amerkanov, Fedor Pack, Konstantin Shabalin, Evgeniy Ivanov, Victor Ezhov, Andrey Konevega, Tatiana Shtam

DOI: 10.21175/RadProc.2020.12

Proton therapy is used today to treat many cancers and is particularly appropriate in situations where surgery options are limited, and conventional radiotherapy presents unacceptable risks to patients. A few years ago, it was suggested that an increase of up to a factor of two of the doses at the proton Bragg peak could be achieved if boron is accumulated in the tumor tissues. The mechanism responsible for a higher dose was suggested to be related to proton-boron fusion reactions, leading to the production of high Linear Energy Transfer (LET) α-particles. Nowadays there are single works showing the effectiveness of proton beam irradiation boron-11-containing cancer cells. A limited number of the studies devoted to the application of 11B(p,3a) nuclear reaction in proton therapy and lack of consistency in their results do not allow to judge about the prospects of the boron-containing drugs utilization in proton therapy to increase its antitumor efficacy. In this work, we experimentally test the possibility to enhance proton biological effectiveness in boron-11-containing cancer cells in vitro. Human glioblastoma cells were pre-incubated with boron compound (Na2B 4O7, sodium tetraborate) and irradiated with increasing doses 2-8 Gy at the proton Bragg peak. To test whether the physical nuclear reaction 11B(p,3a) results in an enhancement of the cancer cell death by high-energy proton beam irradiation, cell lines were also irradiated with graded doses 2-8 Gy using
γ-ray source. The ability of boron compound to activate the cancer cell death with protons at the Bragg peak irradiation was shown in vitro. At the same time, weaker similar effect was determined for gamma-irradiation that may indicate not only the physical nature of influence boron at irradiated cancer cell viability but a specific biological effect. The data suggest that the combined effect of proton therapy with 11B on glioma cells increases their sensitivity to proton irradiation with low toxicity of the boron compound for cells of normal morphology.
  1. R. Mohan, D. Grosshans, “Proton therapy – present and future,” Adv. Drug Delivery Rev., vol. 109, pp. 26–44, Jan. 2017.
    DOI: 10.1016/j.addr.2016.11.006
  2. X. Tian, K. Liu, Y. Hou, J Cheng, J. Zhang, “The evolution of proton beam therapy: Current and future status,” Mol. Clin. Oncol., vol. 8, no. 1, pp. 15-21, Jan. 2018.
    DOI: 10.3892/mco.2017.1499
  3. A. C. Begg, F. A. Stewart, C. Vens, “Strategies to improve radiotherapy with targeted drugs,” Nat. Rev. Cancer, vol. 11, no. 4, pp. 239-253, Apr. 2011.
    DOI: 10.1038/nrc3007
    PMid: 21430696
  4. F. Tranquart, “Radiosensitizers and radiochemotherapy in the treatment of cancer,” Ultrasound in Medicine & Biology, vol. 42, no. 2, Nov. 2015.
    DOI: 10.1016/j.ultrasmedbio.2015.10.004
  5. A. A. Lipengol’ts, A. A. Cherepanov, V. N. Kulakov, E. Yu. Grigor’eva, I. B. Merkulova, I. N. Sheino, “Comparison of the antitumor efficacy of bismuth and gadolinium as dose-enhancing agents in formulations for photon capture therapy,” Pharm. Chem., vol. 51, pp. 783–786, Dec. 2017.
    DOI: 10.1007/s11094-017-1693-1
  6. I. N. Sheino, P. V. Izhevskij, A. A. Lipengolts, V. N. Kulakov, A. A. Wagner, E. S. Sukhikh et al., “Development of binary technologies of radiotherapy of malignant neoplasms: condition and problems,” Bulletin of Siberian Medicine, vol. 16, no. 3, pp. 192-209, 2017.
    DOI: 10.20538/1682-0363-2017-3-192-209
  7. S. Miyatake, M. Wanibuchi, N. Hu, K. Ono, “Boron neutron capture therapy for malignant brain tumors,” J. Neurooncol., vol. 149, no. 1, pp. 1–11, Aug. 2020.
    DOI: 10.1007/s11060-020-03586-6
  8. D. Yoon, J. Jung, T. Suh, “Application of proton boron fusion reaction to radiation therapy: A Monte Carlo simulation study,” Appl. Phys. Lett., vol. 105, p. 223507, Dec. 2014.
    DOI: 10.1063/1.4903345
  9. J. Y. Jung, D. K. Yoon, B. Barraclough, H. C. Lee, T. S. Suh, B. Lu, “Comparison between proton boron fusion therapy (PBFT) and boron neutron capture therapy (BNCT): Monte Carlo study,” Oncotarget., vol. 8, no. 24, pp. 39774-39781, Feb. 2017.
    DOI: 10.18632/oncotarget.15700
  10. G. A. P. Cirrone, L. Manti, D. Margarone, G. Petringa, L. Giuffrida, A. Minopoli et al., “First experimental proof of proton boron capture therapy (PBCT) to enhance proton therapy effectiveness,” Sci. Rep., vol. 8, no. 1, p. 1141, Jan. 2018.
    DOI: 10.1038/s41598-018-19258-5
  11. A. Mazzone, P. Finocchiaro, S. Lo Meo, N. Colonna, “On the (un) effectiveness of proton boron capture in proton therapy,” Eur. Phys. J. Plus, vol. 134, p. 361, Jul. 2019.
    DOI: 10.1140/epjp/i2019-12725-8
  12. A. Volnitskiy, T. Shtam, V. Burdakov, R. Kovalev, A. Konev, M. Filatov, “Abnormal activity of transcription factors gli in high-grade gliomas,” PLoS One, vol. 14, no. 2, pp. e0211980, Feb. 2019.
    DOI: 10.1371/journal.pone.0211980
    PMid: 30730955
    PMCid: PMC6366868
  13. S.A. Artamonov, E.M. Ivanov, N.A. Ivanov, J.S. Lebedeva, G. A. Riabov. “Numerical simulation and optimization of the variable energy 60–1000 MeV proton beams at PNPI synchrocyclotron for testing the radiation resistance of electronics,” Phys. Part. Nuclei Lett., vol. 14, pp. 188–200, Jan. 2017.
    DOI: 10.1134/S1547477117010046
  14. A. Yu. Bushmanov, I. N. Sheino, A. A. Lipengolts, A. N. Solovev, S. N. Koryakin, “Prospects of proton therapy combined technologies in the treatment of cancer,” Medical Radiology and Radiation Safety, vol. 64, no. 3, pp. 8-11, 2019.
    DOI: 10.1371/journal.pone.0211980
Dmitry Lebedev, Luiza Garaeva, Vladimir Burdakov, Andrey Volnitskiy, Natalya Razgildina, Alina Garina, Dmitry Amerkanov, Fedor Pack, Konstantin Shabalin, Evgeniy Ivanov, Victor Ezhov, Andrey Konevega, Tatiana Shtam,"Radiosensitizing effect of boron enhances the effectiveness of proton therapy in vitro," RAD Conf. Proc, vol. 4, 2020, pp. 60–65, http://doi.org/10.21175/RadProc.2020.12
Medical Imaging


Elena Zvezdkina, Dmitry Lebedev, Anna Kedrova, Yulia Stepanova, Dmitry Astakhov, Dmitry Panchenkov

DOI: 10.21175/RadProc.2020.13

he aim of the study is to assess the role of the surgical technique and liver response in the development of complications after transcatheter arterial chemoembolization of liver arteries using drug-eluting beads (DEB-TACE). The study included 34 patients who underwent 52 DEB-TACE with drug-saturated microspheres in 2014 - 2020. CT and MRI were performed for follow-up and if complications were suspected. The modification of the surgical technique made it possible to avoid complications from the vascular wall and non-target embolization. Stages of complications from the bile ducts can be diagnosed on CT and MRI. This can help slow down the further development of the process. Separate patients at risk groups based on previous treatment prevent of developing severe complications.
  1. R.J. Lewandowski, M.F. Mulcahy, L.M. Kulik et al. “Chemoembolization for Hepatocellular Carcinoma” Radiology, vol. 255, no. 3, pp. 955-965, Jun. 2010.
    DOI: 10.1148/radiol.10091473
    PMiD: 20501733
  2. N. Kennoki, T. Saguchi, T. Sano, Y. Takara, T. Moriya et al. “Long-term Histopathologic Follow-up of a Spherical Embolic Agent; Observation of the Transvascular Migration of HepaSphereTM”, BJR Case Rep, Jun 25 (5), 1, 20180066, 2019.
    DOI: 10.1259/bjrcr.20180066
  3. Y. Xiao-Dan, Y. Zuguo, Z. Hang et al. “Radiological biomarkers for assessing response to locoregional therapies in hepatocellular carcinoma: From morphological to functional imaging”, Oncology reports, vol. 37, no. 3, pp. 1337-1346, 2017.
    DOI: 10.3892/or.2017.5420
  4. J. Chung, J-S. Yu, J. H. Kim et al. “Haemodynamic events and localised parenchymal changes following transcatheter arterial chemoembolisation for hepatic malignancy: interpretation of imaging findings”. The British Journal of Radiology, no. 83, pp. 71–81, 2010.
    DOI: 10.3892/mco.2017.1235
  5. А.М. Бабунашвили, Д.П. Дундуа, З.А. Кавтеладзе, Д.С. Карташов, Переход с трансбедренного на трансрадиальный доступ в практике интервенционной кардиологии: сможет ли стать трансрадиальный доступ методом выбора? // Международный журнал интервенционной кардиоангиологии, ― 2005, ― №7, ― С. 73. [A.M. Babunashvili, D.P. Dundua, Z.A. Kavteladze, D.S. Kartashov, The transition from transfemoral to transradial access in the practice of interventional cardiology: can transradial access be the method of choice? // International Journal of Interventional Cardioangiology, 2005 (7):73. (In Russian)]
  6. S. Chittapuram, B. Ramesh, S. Malay, “Biliary Tract Anatomy and its Relationship with Venous Drainage”, Journal of Clinical and Experimental Hepatology, no. 1, pp. 18–26, 2014.
    DOI: 10.1016/j.jceh.2013.05.002
    PMCid: PMC4244820
  7. B. Guiu et al. “Liver/biliary injuries following chemoembolisation of endocrine tumours and hepatocellular carcinoma: Lipiodol vs. drug-eluting beads”. Journal of hepatology, vol. 56, no 3, pp. 609–617, 2012.
    DOI: 10.1016/j.jhep.2011.09.012
    PMiD: 22027582
  8. J. C. Spina, M. Ulla, E.L. Yeyati, M.C. Kucharczyk, H. Irusta, J.L. Savluk et al. “MDCT findings after hepatic chemoembolization with DC-beads: What the radiologist needs to know”, Abdominal Imaging, vol. 38, pp. 778–784, 2013.
    DOI: 10.1007/s00261-012-9963-6
Elena Zvezdkina, Dmitry Lebedev, Anna Kedrova, Yulia Stepanova, Dmitry Astakhov, Dmitry Panchenkov, "Multidisciplinary approach in the prevention and treatment of complications of transcatheter arterial chemoembolization of liver arteries,", RAD Conf. Proc, vol. 4, 2020, pp. 66–68, http://doi.org/10.21175/RadProc.2020.13
Health and Environment


S.K. Pinaev

DOI: 10.21175/RadProc.2020.14

We studied the dependence of cancer incidence in the young children (0-4 years old) population of the Khabarovsk Territory (Russia) with the number of forest fires and solar radiation. It was established that the number of forest fires 2 years before the birth of children is associated with the incidence of Hodgkin's lymphoma, in the year of birth - with incidence of neuroblastoma and retinoblastoma. Fires that occurred 1 year after the birth of children had a linkage with the incidence of tumors of the central nervous system. The sunspot number 1 year before the birth of children was associated with non-Hodgkin's lymphomas, in the year of birth - with sarcomas of soft tissues, 3 years after birth - with a Wilms tumor. Leukemia incidence was found to be related both to the number of forest fires 2 years before the birth of children and to the sunspot number 3 years after their birth. For the combined group of embryonic tumors a significant link was found with the number of fires per year of birth, and the radiation of the Sun 1 year after the birth of children. Thus, fluctuations in the incidence of cancer in young children are associated with long-term changes over many years of the complex of environmental factors. We called this phenomenon “Alternative oncogenesis”, implying a change in the incidence and spectrum of tumors over a certain period of time due to changes in the parameters of the complex of environmental factors.
  1. S. K. Pinaev, O. G. Pinaeva, A. Ya. Chizhov, “Environmentally-induced alternative oncogenesis: EROS arrows”, Actual Problems of Ecology and Environmental Management: Cooperation for Sustainable Development and Environmental Safety (APEEM 2020) , E3S Web of Conferences 169, 04006, 2020
    DOI: 10.1051/e3sconf/202016904006
  2. S. K. Pinaev, O. G. Pinaeva, A. Ya. Chizhov, “About the role of environmental factors in carcinogenesis”, Actual Problems of Ecology and Environmental Management: Cooperation for Sustainable Development and Environmental Safety (APEEM 2020) , E3S Web of Conferences 169, 04003, 2020.
    DOI: 10.1051/e3sconf/202016904003
  3. G. Neufeld, Y. Mumblat., T. Smolkin, S. Toledano, I. Nir-Zvi, K. Ziv, Kessler O., “The role of the semaphorins in cancer”, Cell Adh. Migr., vol. 10, no. 6, pp. 652-674, 2016.
    DOI: 10.1016/j.drup.2016.08.001
  4. D. Ito, S. Nojima, M. Nishide, T. Okuno, H. Takamatsu et al., “mTOR Complex Signaling through the SEMA4A-Plexin B2 Axis Is Required for Optimal Activation and Differentiation of CD8+ T Cells”, J. Immunol., vol. 195, no. 3, pp. 934-43, 2015.
    DOI: 10.4049/jimmunol.1403038
  5. С. К. Пинаев, А. Я. Чижов, “Риск развития эмбриональных опухолей у детей в зависимости от радиации Солнца и дыма лесных пожаров”, Радиация и риск, том 29, no.1, стр. 68-78, 2020. (S. K. Pinaev, A. Ya. Chizhov, “Impact of solar activity and the wildfire smoke on the risk of embryonal tumors in young children”, Radiation and Risk, vol. 29, no. 1, pp. 68-78, 2020).
    DOI: 10.21870/0131-3878-2020-29-1-68-78
  6. С. К. Пинаев, А. Я. Чижов, “Альтернативный онкогенез. “Системная динамика экологических факторов при новообразованиях у детей”, Успехи молекулярной онкологии, т. 5, no. 4, Приложение, стр. 18-19, 2018 (S. K. Pinaev, A. Ya. Chizhov, “Alternative oncogenesis. Systemic dynamics of environmental factors in neoplasms in children”, Adv. Mol. Oncol. App., vol. 4, no. 5, pp. 18-19, 2018).
    Retrieved from: http://mol-oncol.com/project/mol-oncol.com/tezis_all.pdf
  7. А. Я. Чижов, С. К. Пинаев, “Системный анализ влияния солнечной радиации и дыма лесных пожаров на риск лейкоза у детей”, Радиация и риск, том 27, нo. 4, pp. 87-94, 2018. (A. Ya. Chizhov, S. K. Pinaev, “Effects of solar radiation and woodsmoke on risk of childhood leukaemia: system analysis”, Radiation and Risk, vol. 27, no. 4, pp. 87-94, 2018).
    DOI: 10.21870/0131-3878-2018-27-4-87-94
  8. А. Я. Чижов, С. К. Пинаев, С. З. Савин, “Экологически обусловленный оксидативный стресс как фактор онкогенеза”, Технологии живых систем, том 9, нo. 1, стр. 47-53, 2012 (A.Ya. Chizhov, S.K. Pinaev, S. Z. Savin, “Environmentally-related oxidative stress as a carcinogenesis factor”, Technologies of Living Systems , vol. 9, no. 1, pp. 47-53, 2012).
  9. J. Vitte, F. Gao, G. Coppola, A. R. Judkins, M. Giovannini, “Timing of Smarcb1 and Nf2 inactivation determines schwannoma versus rhabdoid tumor development”, Nat. Commun., vol. 8, no. 1, 2017.
    DOI: 10.1038/s41467-017-00346-5
  10. A. Agaimy, W. D. Foulkes, “Hereditary SWI/SNF complex deficiency syndromes”, Semin. Diagn. Pathol., vol. 35, no. 3, pp. 193-198, 2018.
    DOI: 10.1053/j.semdp.2018.01.002
S.K. Pinaev, "The influence of solar radiation and forest fires smoke on sporadic fluctuations of neoplasms incidence in children," RAD Conf. Proc, vol. 4, 2020, pp. 69–71, http://doi.org/10.21175/RadProc.2020.14
Medical Physics


Maria Poncyljusz, Wojciech Bulski

DOI: 10.21175/RadProc.2020.15

For postprostatectomy patients at higher risk of nodal involvement the irradiation of pelvic lymph nodes may improve the therapeutic ratio. However, whole pelvic radiotherapy results in increased doses delivered to the pelvic bones’ marrow and other OARs. The aim of this study was to compare IMRT and VMAT techniques in terms of sparing of pelvic bones. The VMAT and IMRT plans were created for ten patients. Treatment plans were generated for prostate bed (PTV1) and pelvic lymph nodes (PTV2). The delivered mean dose to the sum of PTV1 and PTV2 was 46Gy in 23 fractions and additionally a mean dose of 18Gy in 9 fractions was prescribed to PTV1. The target coverage and the OARs sparing were compared across techniques. The following OARs were delineated: pelvic bones, bowel bag, rectum and bladder. The following dose volume parameters were compared using the Wilcoxon test: pelvic bones V30Gy[%], V40Gy[%], the bowel bag V30Gy[cc], V45Gy[cc], rectum V40Gy[%], V50Gy[%], V60Gy[%] and bladder V40Gy[%], V50Gy[%], V60Gy[%]. The target coverage in VMAT and IMRT plans was comparable. The value of PTV1 V95% and PTV2 V95% were both >99%. The VMAT plans result in decrease of pelvic bones V30Gy[%] and significant increase of the following parameters: rectum V60Gy[%], bladder V60Gy[%] and bowel bag V30Gy[cc]. Differences between values of V40Gy[%] and V50Gy[%] for bladder and rectum across mentioned techniques were statistically not significant. A comparison between VMAT and IMRT techniques showed, that the VMAT technique reduces the delivered dose to pelvic bones and thus also to red marrow. However, IMRT provided better sparing at higher doses for rectum, bladder and bowel bag. These results should be taken into consideration when VMAT and IMRT techniques being used in the whole pelvic radiotherapy of patients after radical prostatectomy.
  1. M.T. Spiotto, S.L. Hancock, C.R. King, “Radiotherapy after prostatectomy: improved biochemical relapse-free survival with whole pelvic compared with prostate bed only for high-risk patients,” Int. J. Radiat. Oncol. Biol. Phys., vol. 69, no.1, pp. 54–61, Sep. 2007.
    DOI: 10.1016/j.ijrobp.2007.02.035
    PMid: 17459606
  2. C. Sini, C. Fiorino, L. Perna, et al. “Dose–volume effects for pelvic bone marrow in predicting haematological toxicity in prostate cancer radiotherapy with pelvic node irradiation,” Radiother. Oncol., vol. 118, no.1, pp. 79–84, Jan. 2016.
    DOI: 10.1016/j.radonc.2015.11.020
    PMid: 26702990
  3. Ch. Kusumoto, S. Ohira, M. Miyazaki, et al. “Effect of various methods for rectum delineation on relative and absolute dose-volume histograms for prostate IMRT treatment planning,” Medical Dosimetry, vol. 41, no. 2, pp. 136–141, Jun. 2016.
    DOI: 10.1016/j.meddos.2015.11.001
  4. S. Sutani, T. Ohashi, M. Sakayori, et al. “Comparison of genitourinary and gastrointestinal toxicity among four radiotherapy modalities for prostate cancer: Conventional radiotherapy, intensity-modulated radiotherapy, and permanent iodine-125 implantation with or without external beam radiotherapy,” Radiother. Oncol., vol. 117, no.2, pp. 270–276, Nov. 2015.
    DOI: 10.1016/j.radonc.2015.08.019
    PMid: 26318662
  5. 5. C. J. Neill, “Dosimetric comparison of intensity-modulated solutions for intact prostate cancer,” Medical Dosimetry, vol. 39, no. 4, pp. 366–373, 2014.
    DOI: 10.1016/j.meddos.2014.06.006
  6. E. A. Mellon, K. Javedan, T. J. Strom, et al. “A dosimetric comparison of volumetric modulated arc therapy with step-and-shoot intensity modulated radiation therapy for prostate cancer,” Practical Radiation Oncology, vol. 5, no. 1, pp. 11-15, Jan. 2015.
    DOI: 10.1016/j.prro.2014.03.003
    PMid: 25413432
  7. R. Wortel, L. Incrocci, F. Pos, et al. “Image-guided IMRT reduces late toxicity compared to 3D-CRT for prostate cancer,” Radiother. Oncol., vol. 119, pp. S346-S347, Apr. 2016.
    DOI: 10.1016/S0167-8140(16)31992-2
  8. H. E. Carter, A. Martin, D. Schofield, et al. “A decision model to estimate the cost-effectiveness of intensity modulated radiation therapy (IMRT) compared to three dimensional conformal radiation therapy (3DCRT) in patients receiving radiotherapy to the prostate bed,” Radiother. Oncol., vol. 112, no. 2, pp. 187-193, Aug. 2014.
    DOI: 10.1016/j.radonc.2014.03.020
    PMid: 24929702
  9. S. Katayama, T. Striecker, K. Kessel, et al. “Hypofractionated IMRT of the prostate bed after radical prostatectomy: acute toxicity in the PRIAMOS-1 Trial,” Radiother. Oncol., vol. 90, no.4, pp. 926-933, Nov. 2014.
    DOI: 10.1016/j.ijrobp.2014.07.015
    PMid: 25216858
  10. M. Davidson, S. Blake, D. Batchelar, et al. “Assessing the role of volumetric modulated arc therapy (VMAT) relative to IMRT and helical tomotherapy in management of localized, locally advanced, and post-operative prostate cancer,” Int. J. Radiat. Oncol. Biol. Phys., vol. 80, no. 5, pp. 1550-1558, Aug. 2011.
    DOI: 10.1016/j.ijrobp.2010.10.024
    PMid: 21543164
  11. H. A. Gay, H. J. Barthold, E. O’Meara et al. “Pelvic Normal Tissue Contouring Guidelines for Radiation Therapy: A Radiation Therapy Oncology Group Consensus Panel Atlas,” J. Radiat. Oncol. Biol. Phys., vol. 83, no. 3, pp. E353-E362, Jul. 2012.
    DOI: 10.1016/j.ijrobp.2012.01.023
  12. L. B. Marks, E. D. Yorke, A. Jackson, et al. “Use of normal tissue complication probability models in the clinic,” Int. J. Radiat. Oncol. Biol. Phys., vol. 76, no. 3, pp. S10-S19, Mar. 2010.
    DOI: 10.1016/j.ijrobp.2009.07.1754
    PMid: 20171502
    PMCid: PMC4041542
  13. L. K. Mell, D. A. Schomas, J. K. Salama, et al. “Association between bone marrow dosimetric parameters and acute hematologic toxicity in anal cancer patient treated with concurrent chemotherapy and intensity-modulated radiotherapy,” Int. J. Radiat. Oncol. Biol. Phys., vol. 70, no. 5, pp. 1431-1437, Apr. 2008.
    DOI: 10.1016/j.ijrobp.2007.08.074
    PMid: 17996390
  14. F. Alongi, C. Fiorino, C. Cozzarini, et al. “IMRT significantly reduces acute toxicity of whole-pelvis irradiation in patients treated with post-operative adjuvant or salvage radiotherapy after radical prostatectomy,” Radiother. Oncol., vol. 93, no. 2, pp. 207–212, Nov. 2009.
    DOI: 10.1016/j.radonc.2009.08.042
Maria Poncyljusz, Wojciech Bulski, "Assessing the role of VMAT relative to IMRT for patients after prostatectomy in terms of sparing pelvic bones," RAD Conf. Proc, vol. 4, 2020, pp. 72–75, http://doi.org/10.21175/RadProc.2020.15
Medical Imaging


Yulia A. Stepanova

DOI: 10.21175/RadProc.2020.16

IPMN is a borderline malignant epithelial tumor that develops in the pancreatic duct and/or its lateral branches from mucin-producing cells. The aim is to evaluate the capabilities of radiology diagnostic methods in assessing IPMN, based on the analysis of literature data and personal experience. From 2004 to 2019, at A.V. Vishnevsky National Medical Research Center of Surgery (A.V. Vishnevsky NMRC of Surgery), 96 patients were examined and treated with morphologically verified IPMN, aged from 38 to 80, with a somewhat larger share of men (57.3%). Patients were subjected to the complete radiology examination: ultrasound (in B-mode and duplex scanning, with 3D reconstruction, if it’s necessary), multislice computed tomography (MSCT) and magnetic resonance imaging (MRI) with contrast enhancement. The following types of IPMN have been diagnosed: MD-IPMN - 19 cases (19.8%), BD-IPMN - 46 cases (47.9%), combined-IPMN – 31 cases (32.3%). The criteria of radiology diagnostics of the IPMN are as follows: extended duct throughout its range; thickening of its walls; parietal papillary proliferations of varying degrees of severity; possible single expanded segmental ducts and tumor masses around the main pancreatic duct. The MRCP is the priority method of diagnostics. In accordance with the criteria of tumor malignancy, 56 (58.3%) patients were operated on, 40 (41.7%) were under observation: Type 1: operated on - 17 (89.5%); are under observation - 2 (10.5%); Type 2: operated on - 12 (26.1%); are under observation - 34 (73.9%); Type 3: operated on - 27 (87.1%); are under observation - 4 (12.9%). Thus, dynamic monitoring is carried out mainly for type II tumors. Despite the increase in the availability of radiological methods of examination, the diagnosis of IPMN can be difficult. Current guidelines provide indications for surgery and recommendations for surveillance, but management of IPMN is still challenging in routine clinical practice. Due to the high risk of tumor malignancy in types 1 and 3, timely correct diagnosis and determination of further treatment tactics are extremely important. MRI is a priority method for the diagnosis of IPMN, however, in some cases, the involvement of at least two methods of radiology diagnostics allows to establish the nature of the disease and determine the tactics of treatment.
  1. I.D. Nagtegaal, R.D. Odze, D. Klimstra, V. Paradis, M. Rugge, P. Schirmacher, K.M. Washington, F. Carneiro, I.A. Cree, “WHO Classification of Tumours Editorial Board. The 2019 WHO classification of tumours of the digestive system,” Histopathology, vol. 76, no. 2, pp. 182-188, 2020.
    DOI: 10.1111/his.13975
  2. Ю.А. Степанова, “Лучевые методы диагностики кистозных образований поджелудочной железы и парапанкреатической зоны на этапах хирургического лечения,” Дисс. … докт. мед. наук. - Москва, 2009; 398 с. (Yu.A. Stepanova, “Radiology methods of diagnostics of cystic lesions of the pancreas and parapancreatic zone at the stages of surgical treatment,” Ph.D. dissertation, Moscow, Russia, 398 pages, 2009).
    Retrieved from: http://medical-diss.com/medicina/luchevye-metody-diagnostiki-kistoznyh-obrazovaniy-podzheludochnoy-zhelezy-i-parapankreaticheskoy-zony-na-etapah-hirurgich
    Retrieved on: Sep. 27, 2020
  3. E. Buscarini et al., “Italian consensus guidelines for the diagnostic work-up and follow-up of cystic pancreatic neoplasms,” Dig. Liver Dis., vol. 46, no. 6, pp. 479-493, 2014.
    DOI: 10.1016/j.dld.2013.12.019
  4. J.H. Lim, G. Lee, Y.L. Oh, “Radiologic Spectrum of Intraductal Papillary Mucinous Tumor of the Pancreas,” RadioGraphics, vol. 21, pp. 323–340, 2001.
    DOI: 10.1148/radiographics.21.2.g01mr01323
  5. Y. Mori, T. Ohtsuka, H. Kono, N. Ideno, T. Aso, Y. Nagayoshi, S. Takahata, M. Nakamura, K. Ishigami, S. Aishima, Y. Oda, M. Tanaka, “Management strategy for multifocal branch duct intraductal papillary mucinous neoplasms of the pancreas,” Pancreas, vol. 41, no. 7, pp. 1008-1012, 2012.
    DOI: 10.1586/14737159.1.2.211
  6. K. Ohhashi, F. Murakami, M. Maruyama, T. Takekoshi, H. Ohta, I. Ohhashi, K. Takagi, Y. Kato, “Four cases of mucous secreting pancreatic cancer,” Prog. Digest Endosc., vol. 20, pp. 348–351, 1982.
  7. Ю.А. Степанова, Г.Г. Кармазановский, В.И. Егоров, А.В. Кочатков, Е.А. Дубова, И.А. Косова, Е.Н. Солодинина, “Лучевые методы Лучевые методы диагностики диагностики внутрипротоковых папиллярных внутрипротоковых папиллярных муцинозных опухолей,” Анналы хирургической гепатологии, т. 14, no. 3, стр. 69-79, 2009. (Yu.A. Stepanova, G.G. Karmazanovsky, V.I. Egorov, A.V. Kochatkov, E.A. Dubova, I.A. Kosova, E.N. Solodinina, “Radiaology methods of the diagnosis of intraductal papillary mucinous neoplasms,” Annals of Surgical Hepatology, vol. 14, no. 3, pp. 69-79, 2009 (In Rus.)
  8. The European Study Group on Cystic Tumours of the Pancreas, “European evidence-based guidelines on pancreatic cystic neoplasms,” Gut, vol. 67, pp. 789–804, 2018.
    DOI: 10.1136/gutjnl-2018-316027
  9. M. Moris, M.D. Bridges, R.A. Pooley, M. Raimondo, T.A. Woodward, J.A. Stauffer, H.J. Asbun, M.B. Wallace, “Association Between Advances in High-Resolution Cross-Section Imaging Technologies and Increase in Prevalence of Pancreatic Cysts From 2005 to 2014,” Clin. Gastroenterol. Hepatol, vol. 14, pp. 585–593, 2016/
    DOI: 10.1016/j.cgh.2015.08.038
  10. S. Crippa, C. Fernández-Del Castillo, R. Salvia, D. Finkelstein, C. Bassi, I. Domínguez, A. Muzikansky, S.P. Thayer, M. Falconi, M. Mino-Kenudson, P. Capelli, G.Y. Lauwers, S. Partelli, P. Pederzoli, A.L. Warshaw, “Mucin-producing neoplasms of the pancreas: an analysis of distinguishing clinical and epidemiologic characteristics,” Clin Gastroenterol Hepatol, vol. 8, no. 2, pp. 213-219, 2010 Feb.
    DOI: 10.1016/j.cgh.2009.10.001
  11. L. Aronsson, R. Andersson, D. Ansari, “Intraductal papillary mucinous neoplasm of the pancreas - epidemiology, risk factors, diagnosis, and management,” Scand. J. Gastroenterol., vol. 52, no. 8, pp. 803-815, 2017 Aug.
    DOI: 10.1080/00365521.2017.1318948
  12. S.J. Song, J.M. Lee, Y.J. Kim, S.H. Kim, J.Y. Lee, J.K. Han, B.I. Choi, “Differentiation of intraductal papillary mucinous neoplasms from other pancreatic cystic masses: comparison of multirow-detector CT and MR imaging using ROC analysis,” J. Magn. Reson. Imaging, vol. 26, no. 1, pp. 86-93, 2007.
    DOI: 10.1002/jmri.21001
  13. M. Tanaka, C. Fernández-Del Castillo, T. Kamisawa, J.Y. Jang, P. Levy, T. Ohtsuka, R. Salvia, Y. Shimizu, M. Tada, C.L. Wolfgang, “Revisions of international consensus Fukuoka guidelines for the management of IPMN of the pancreas,” Pancreatology, vol. 17, no. 5, pp. 738-753, 2017.
    DOI: 10.1016/j.pan.2017.07.007
Yulia A. Stepanova, "Intraductal papillary mucinous neoplasms: Radiology methods in the definition of treatment tactics," RAD Conf. Proc, vol. 4, 2020, pp. 76–80, http://doi.org/10.21175/RadProc.2020.16
Neutron and Heavy Ion Radiations


M.V. Bulavin, A. Yskakov, K.A. Mukhin

DOI: 10.21175/RadProc.2020.17

The paper presents the results of measurements of the concentration of gaseous radiolytic hydrogen using gas chromatography, which is produced irradiating the mixture of aromatic hydrocarbons of mesitylene and m-xylene in the chamber of the pelletized cold moderator of the IBR-2 reactor during post-irrradiation heating. As it is shown, the hydrogen concentration in the operating mode of the moderator at 22K in the chamber and a reactor power of 1.6 MW does not exceed 0.13%. After post-irradiation heating, with variations of temperature from 20K to 293K, and zero reactor power, the maximum hydrogen concentration is 22.5%. A conclusion is drawn that such concentration of hydrogen in an inert atmosphere of helium cannot lead to the production of an explosive mixture in the moderator chamber in close vicinity to the IBR-2 reactor core.
  1. S. Kulikov, A. Belyakov, M. Bulavin et al., “Current status of advanced pelletized cold moderators development for IBR-2M research reactor,” Physics of Particles and Nuclei Letters, vol. 10, no. 2, pp. 230-235, 2013.
    DOI: 10.1134/S154747711302009X
  2. E. Shabalin, S. Kulikov, M. Bulavin et al., “The world’s first pelletized cold neutron moderator began its operation,” Neutron News, vol. 24, no. 3, p. 27, 2013.
    DOI: 10.1080/10448632.2013.804363
  3. V. Ananiev, A. Beliakov, M. Bulavin et al., “The world’s first pelletized cold neutron moderator at a neutron scattering facility ,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atom, vol. 320, pp. 70-74, 2014.
    DOI: 10.1016/j.nimb.2013.12.006
  4. L. Cher, “Organic compounds for cold moderators,” Proceedings of the 14th International Conference on Advanced Neutron Sources , Starved Rock, Illinois, vol. 2, pp. 241-244, 1998.
    Retrieved from: https://www.osti.gov/servlets/purl/1164678
    Retrieved on: May 17, 2020
  5. R.D. Taylor, J.E. Kilpatrick, “Entropy, heat capacity, and heats of transition of 1, 3, 5‐trimethylbenzene,” The Journal of Chemical Physics, vol. 23, no. 7, pp. 1232-1235, 1955
    DOI: 10.1063/1.1742247
  6. T.L. Bauer, B.W. Wehring, K. Unlu, “Study of Neutron Focusing at the Texas Cold Neutron Source. Final Report”, Nuclear Engineering Teaching Laboratory the University of Texas at Austin , Texas, USA, 1996.
    Retrieved from: https://inis.iaea.org/collection/NCLCollectionStore/_Public/28/074/28074813.pdf
    Retrieved on: June 3, 2020
  7. B.W. Wehring, K. Unlu, “The University of Texas Cold Neutron Source,” Proceedings of the Second International Seminar on Advanced Pulsed Neutron Sources PANS-II, Dubna, Russia, 1994.
    Retrieved from: https://inis.iaea.org/collection/NCLCollectionStore/_Public/26/041/26041197.pdf?r=1&r=1
    Retrieved on: June 3, 2020
  8. D.D. Clark, C.G. Ouellet, J.S. Berg, “On the design of a cold neutron source,” Nuclear Science and Engineering, vol. 110, pp. 445-454, 1992.
    DOI: 10.13182/NSE92-A23917
  9. D.D. Clark, “The Cornell University cold neutron beam facility: design features,” Proceedings of the International Workshop on Cold Neutron Sources, Los-Alamos, USA, pp. 559-563, 1990.
    Retrieved from: https://inis.iaea.org/collection/NCLCollectionStore/_Public/23/008/23008249.pdf
    Retrieved on: June 17, 2020
  10. M. Leuschner, “LENS: A new pulsed neutron source for research and education,” Journal of Research of the National Institute of Standards and Technology , vol. 110, pp. 153-155, 2005.
    DOI: 10.6028/jres.110.016
  11. M. Bulavin, A. Beliakov, A. Verkhogliadov et al., “Gain factor of the pelletized cold neutron moderator at 22K”, Journal of Surface Investigation: X-ray, Synchrotron, Neutron Techniques , vol. 14, no. 2, 2020.
    DOI: 10.1134/S1027451020030040
  12. V. Ananiev, A. Beliakov, M. Bulavin et al., “Pelletized cold moderator of the IBR-2 reactor: current status and future development,” Journal of Physics: Conference Series 746 012031, pp. 1-6, 2016.
    DOI: 10.1088/1742-6596/746/1/012031
  13. E.P. Shabalin, S. Kulikov, E. Kulagin et al., “Solid Methane Cold Moderator for the IBR-2 Reactor” Proceedings of the International Workshop on Cold Moderators for Pulsed Neutron Sources Argonne National Laboratory , Argonne, USA, pp. 73-78, 1997.
    Retrieved from: https://www.osti.gov/servlets/purl/1163133/
    Retrieved on: June 15, 2020
  14. O. Kirichek, C.R. Lawson, D.M. Jenkins, et al., “Solid methane in neutron radiation: Cryogenic moderators and cometary cryo volcanism,” Cryogenics, vol. 88, pp. 101-105, 2017.
    DOI: 10.1016/j.cryogenics.2017.10.017
  15. T.L. Scott, J.M. Carpenter, M.E. Miller, “The development of solid methane neutron moderators at the intense pulsed neutron source facility of Argonne National Laboratory” Proceedings of the Argonne National Laboratory, Argonne, USA, pp. 299-304, 1998.
    Retrieved from: https://inis.iaea.org/collection/NCLCollectionStore/_Public/46/109/46109622.pdf?r=1
    Retrieved on: June 20, 2020
  16. E.P. Shabalin, S. Kulikov, E. Kulagin et al., “Radiation effects in cold moderator materials: Experimental study of accumulation and release of chemical energy,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms , vol. 215, pp. 181-186, 2004
    DOI: 10.1016/j.nimb.2003.08.026
  17. E.P. Shabalin, S. Kulikov, E. Kulagin et al., “Experimental study of spontaneous release of accumulated energy in irradiated ices,” Radiation Physics and Chemistry, vol. 67, pp. 315-319, 2003.
    DOI: 10.1016/S0969-806X(03)00059-8
  18. A.A. Beljakov, E.P. Shabalin, E. Kulagin, et al., “First experience of cold moderator operation and solid methane irradiation at the IBR-2 pulsed reactor,” Proceedings of the 16th Meeting of the International Collaboration on Advanced Neutron Sources (ICANS-XII), Abingdon, USA, vol. 2, pp. 144-155, 1993.
    Retrieved from: http://www.neutronresearch.com/parch/1993/01/199301041440.pdf
    Retrieved on: July 13, 2020
M.V. Bulavin, A. Yskakov, K.A. Mukhin, "Measurement of the concentration of radiolytic hydrogen in the chamber of the pelletized cryogenic moderator of the IBR-2 reactor using gas chromatography," RAD Conf. Proc, vol. 4, 2020, pp. 81–84, http://doi.org/10.21175/RadProc.2020.17
Health and Environment


S. K. Pinaev

DOI: 10.21175/RadProc.2020.18

According to the report of the International Agency for Research on Cancer, more than 100 different factors of chemical and physical nature are recognized as carcinogenic. Many ecological factors provide their potential through environmentally related oxidative stress (EROS) induction, which can be considered as an “assemblage point” of various environmental factors into a single oncogenic vector. Based on the role of EROS in oncogenesis, measures for the prevention of all forms of malignant neoplasms have to include means that improve antioxidant protection by stimulating autophagy and Transfer Factor for an effective immunorehabilitation.
  1. V. J. Cogliano, R. Baan, Straif K., Y. Grosse, B. Lauby-Secretan et al., “Preventable exposures associated with human cancers”, J. Natl. Cancer Inst., vol. 103, no. 24, pp. 1827-1839, 2011.
    DOI: 10.1093/jnci/djr483
  2. IARC monographs on the identification of carcinogenic hazard to humans, “Agents Classified by the IARC Monographs”, vol. 1–127.
    Retrieved from: https://monographs.iarc.fr/list-of-classifications
  3. A. B. Miller, M. E. Sears, L. L. Morgan, D. L. Davis, L. Hardell et al., “Risks to Health and Well-Being From Radio-Frequency Radiation Emitted by Cell Phones and Other Wireless Devices”, Front. Public Health, vol. 7, art. 223, 2019.
    DOI: 10.3389/fpubh.2019.00223
  4. S. Azary, A. Ganguly, G. R. Bunin, C. Lombardi, A. S. Park et al., “Sporadic Retinoblastoma and Parental Smoking and Alcohol Consumption before and after Conception: A Report from the Children’s Oncology Group”, PLoS One, vol. 11, no. 3, e0151728-1-16, 2016.
    DOI: 10.1371/journal.pone.0151728
  5. J. E. Heck, A. S. Park, J. Qiu, M. Cockburn, B. Ritz, “Retinoblastoma and ambient exposure to air toxics in the perinatal period”, J. Expo. Sci. Environ. Epidemiol., vol. 25, no. 2, pp. 182-186, 2015.
    DOI: 10.1038/jes.2013.84
  6. C. Modonesi, E. Oddone, C. Panizza, G. Gatta, “Childhood cancer and environmental integrity: a commentary and a proposal”, Rev. Saude Publica., vol. 51, 2017.
    DOI: 10.1590/S1518-8787.2017051006744
  7. A. Cárceles-Álvarez, J. A. Ortega-García, F. A. López-Hernández, M. Orozco-Llamas, B. Espinosa-López et al., “Spatial clustering of childhood leukaemia with the integration of the Paediatric Environmental History”, Environ. Res., vol. 156, pp. 605-612, 2017.
    DOI: 10.1016/j.envres.2017.04.019
  8. R. J. McNally, L. Parker, “Environmental factors and childhood acute leukemias and lymphomas”, Leuk. Lymphoma., vol. 47, no. 4, pp. 583-598, 2006.
    DOI: 10.1080/10428190500420973
  9. S. K. Pinaev, O. G. Pinaeva, A. Ya. Chizhov, “About the role of environmental factors in carcinogenesis”, Actual Problems of Ecology and Environmental Management: Cooperation for Sustainable Development and Environmental Safety (APEEM 2020) , E3S Web of Conferences 169, 04003 (2020).
    DOI: 10.1051/e3sconf/202016904003
  10. А. Я. Чижов, С. К. Пинаев, “Системный анализ влияния солнечной радиации и дыма лесных пожаров на риск лейкоза у детей”, Радиация и риск, том 27, no. 4, pp. 87-94. (A. Ya. Chizhov, S. K. Pinaev, “Effects of solar radiation and woodsmoke on risk of childhood leukaemia: system analysis”, Radiation and Risk, vol. 27, no. 4, pp.87-94, 2018).
    DOI: 10.21870/0131-3878-2018-27-4-87-94
  11. M. L. Hooper, “Is sunlight an aetiological agent in the genesis of retinoblastoma?”, Br. J. Cancer., vol. 79, no. 7-8, pp. 1273-12766, 1999.
    DOI: 10.1038/sj.bjc.6690204
  12. C. Lombardi, J. E. Heck, M. Cockburn, B. Ritz, “Solar UV radiation and cancer in young children”, Cancer Epidemiol. Biomarkers Prev., vol. 22, no. 6, pp. 1118-1128, 2013.
    DOI: 10.1158/1055-9965.EPI-12-1316
  13. A. M. Hughes, B. K. Armstrong, C. M. Vajdic, J. Turner, A. E. Grulich et al., “Sun exposure may protect against non-Hodgkin lymphoma: a case-control study”, Int. J. Cancer, vol. 12, no. 5, pp. 865-871, 2004.
    DOI: 10.1002/ijc.20470
  14. IARC Scientific Publications, 161, “Air pollution and cancer”, Edited by K. Straif, F. Cohen, J. Samet, P.170, 2013.
    Retrieved from: http://publications.iarc.fr/Book-And-Report-Series/Iarc-Scientific-Publications/Air-Pollution-And-Cancer-2013
  15. A. J. Sasco, H. Vainio, “From in utero and childhood exposure to parental smoking to childhood cancer: a possible link and the need for action”, Hum. Exp. Toxicol., vol. 18, no. 4, pp. 192-201, 1999.
    DOI: 10.1191/096032799678839905
  16. K. R. Greenop, A. L. Hinwood, L. Fritschi, R. J. Scott, J. Attia et al., “Vehicle refuelling, use of domestic wood heaters and the risk of childhood brain tumours: Results from an Australian case-control study”, Pediatr. Blood Cancer, vol. 62, no. 2, pp. 229-234, 2015.
    DOI: 10.1002/pbc.25268
  17. C. Metayer, E. Petridou, J. M .Aranguré, E. Roman, J. Schüz et al., “Parental Tobacco Smoking and Acute Myeloid Leukemia: The Childhood Leukemia International Consortium”, Am. J. Epidemiol, vol. 184, no. 4, pp. 261-273, 2016.
    DOI: 10.1093/aje/kww018
  18. L. Nelson, J. Valle, G. King, P. K. Mills, M. J. Richardson et al., “Estimating the Proportion of Childhood Cancer Cases and Costs Attributable to the Environment in California”, Am. J. Public Health, vol. 107, no. 5, pp. 756-762, 2017.
    DOI: 10.2105/AJPH.2017.303690
  19. V. L. Boothe, T. K. Boehmer, A. M. Wendel, F. Y. Yip, “Residential traffic exposure and childhood leukemia: a systematic review and meta-analysis”, Am. J. Prev. Med., vol. 46, no. 4, pp. 413-422, 2014.
    DOI: 10.1016/j.amepre.2013.11.004
  20. C. Metayer, G. Dahl, J. Wiemels, M. Miller, “Childhood Leukemia: A Preventable Disease”, Pediatrics, vol. 138 (Suppl. 1), S45-S55, 2016.
    DOI: 10.1542/peds.2015-4268H
  21. M. Greaves, “A causal mechanism for childhood acute lymphoblastic leukaemia”, Nat. Rev. Cancer, vol. 18, no. 8, pp. 471-484, 2018.
    DOI: 10.1038/s41568-018-0015-6
  22. T. Sorahan, R. J. Lancashire, “Parental cigarette smoking and childhood risks of hepatoblastoma: OSCC data”, Br. J. Cancer, vol. 90, no. 5, pp. 1016-1018, 2004.
    DOI: 10.1038/sj.bjc.6601651
  23. С. К. Пинаев, А. Я. Чижов, “Риск развития эмбриональных опухолей у детей в зависимости от радиации Солнца и дыма лесных пожаров”, Радиация и риск, т.29, no.1, стр. 68-78, 2020. (S. K. Pinaev, A. Ya. Chizhov, “Impact of solar activity and the wildfire smoke on the risk of embryonal tumors in young children”, Radiation and Risk, vol. 29, no. 1, pp.68-78, 2020).
    DOI: 10.21870/0131-3878-2020-29-1-68-78
  24. С. К. Пинаев, А. Я. Чижов, “Системный анализ влияния солнечной радиации и дыма лесных пожаров на риск развития злокачественных новообразований у детей”, Успехи молекулярной онкологии, т. 5, no. 4, Приложение, стр. 9, 2018 (S. K. Pinaev, A. Ya. Chizhov, “System analysis of the effect of solar radiation and forest fire smoke on the risk of developing malignant neoplasms in children”, Adv. Mol. Oncol., App., pp. 9, 2018)
    Retrieved from: http://mol-oncol.com/project/mol-oncol.com/tezis_all.pdf
  25. R. Bono, V. Bellisario, R. Tassinari, G. Squillacioti, T. Manetta, M. Bugiani, E. Migliore, P. Piccioni, “Bisphenol A, Tobacco Smoke, and Age as Predictors of Oxidative Stress in Children and Adolescents”, Int. J. Environ. Res. Public Health, vol. 16, no. 11, 2019.
    DOI: 10.3390/ijerph16112025
  26. G. Colombo, M. Clerici, D. Giustarini, N. M. Portinaro, G. Aldini et al., “Pathophysiology of tobacco smoke exposure: recent insights from comparative and redox proteomics”, Mass. Spectrom. Rev., vol. 33, no. 3, pp. 183-218, 2014.
    DOI: 10.1002/mas.21392
  27. R. Rabha, S. Ghosh, P. K. Padhy, “Indoor air pollution in rural north-east India: Elemental compositions, changes in haematological indices, oxidative stress and health risks”, Ecotoxicol. Environ. Saf., vol. 165, pp. 393-403, 2018.
    DOI: 10.1016/j.ecoenv.2018.09.014
  28. S. Roychoudhury, N. K. Mondal, S. Mukherjee, A. Dutta, S. Siddique, M. R. Ray, “Activation of protein kinase B (PKB/Akt) and risk of lung cancer among rural women in India who cook with biomass fuel”, Toxicol. Appl. Pharmacol., vol. 259, no. 1, pp. 45-53, 2012.
    DOI: 10.1016/j.taap.2011.12.002
  29. S. Ghodbane, A. Lahbib, M. Sakly, H. Abdelmelek, “Bioeffects of static magnetic fields: oxidative stress, genotoxic effects, and cancer studies”, Biomed. Res. Int., vol. 2013, Article ID 602987, 2013.
    DOI: 10.1155/2013/602987
  30. C. Consales, C. Cirotti, G. Filomeni, M. Panatta, A. Butera et al., “Fifty-Hertz Magnetic Field Affects the Epigenetic Modulation of the miR-34b/c in Neuronal Cells”, Mol. Neurobiol., vol. 55, no. 7, pp. 5698-5714, 2018.
    DOI: 10.1007/s12035-017-0791-0
  31. Е. В. Проскурнина, Ю. А. Владимиров, “Свободные радикалы как участники регуляторных и патологических процессов”, Фундаментальные науки – медицине. Биофизические медицинские технологии , Под редакцией А. И. Григорьева и Ю. А. Владимирова, Maкс Пресс, Москва, стр. 38-71, 2015 (E.V. Proskurnina, Yu. A. Vladimirov, “Free radicals as participants in regulatory and pathological processes”, Fundamental sciences – medicine. Biophysical Medical Technologies, Edited by A.I. Grigoriev and Yu.A. Vladimirov, Max Press, Moscow, pp. 38-71, 2015.)
    Retrieved from: http://fbm.msu.ru/education/lectures/biophys/pdf/Проскурнина%20Т.1%2038-71.pdf
  32. В. В. Давыдов, А. И. Божков, “Карбонильный стресс как неспецифический фактор патогенеза”, Журнал НАМН України, том 20, нo. 1, стр. 25-34, 2014 (V. V. Davydov, A. I. Bozhkov, “Carbonyl stress as a nonspecific factor of pathogenesis”, Journal of the National Academy of Medical Sciences of Ukraine, vol. 20, no. 1, pp. 25-34, 2014).
    Retrieved from: https://iozdp.org.ua/files/davydov_namn_2014.pdf
  33. C. N. S. Breda, G. G. Davanzo, P. J. Basso, N. O. Saraiva Câmara, P. M. M. Moraes-Vieira, “Mitochondria as central hub of the immune system”, Redox Biol., vol. 26, 101255, 2019.
    DOI: 10.1016/j.redox.2019.101255
  34. A. V. Kudryavtseva, G. S. Krasnov, A. A. Dmitriev, B. Y. Alekseev, O. L. Kardymon et al., “Mitochondrial dysfunction and oxidative stress in aging and cancer”, Oncotarget, vol. 7, no. 29, 44879-44905, 2016.
    DOI: 10.18632/oncotarget.9821
  35. М. Г. Завьялова, В. Г. Згода, Е. Н. Николаев, “Определение роли фосфорилирования белков в развитии заболеваний”, Биомедицинская химия, вол. 63, но. 2, стр. 101-114, 2017 (M. G. Zavyalova, V. G. Zgoda, E. N. Nikolaev, “Determination of the role of protein phosphorylation in the development of diseases”, Biomedical Chemistry, vol. 63, no. 2, pp. 101-114, 2017).
    Retrieved from: http://pbmc.ibmc.msk.ru/ru/article-ru/PBMC-2017-63-2-101/ 10.1134/S1990750817030118
  36. J. Yoon, J. R. Terman, “MICAL redox enzymes and actin remodeling: New links to classical tumorigenic and cancer pathways”, Mol. Cell. Oncol., vol. 5, no. 1, e1384881, 2017.
    DOI: 10.1080/23723556.2017.1384881
  37. А. Я. Чижов, С. К. Пинаев, С. З. Савин, “Экологически обусловленный оксидативный стресс как фактор онкогенеза”, Технологии живых систем, нo. 1., стр. 47-53, 2012. (A.Ya. Chizhov, S.K. Pinaev, S. Z. Savin, “Environmentally-related oxidative stress as a carcinogenesis factor”, Technologies of living systems, no. 1., pp. 47-53, 2012).
    Retrieved from: https://www.elibrary.ru/item.asp?id=17741394
  38. Н. К. Зенков, А. В. Чечушков, П. М. Кожин, Г. Г. Мартинович, Н. В. Кандалинцева, Е. Б. Меньщикова, “Аутофагия как механизм защиты при окислительном стрессе”, “ Бюллетень сибирской медицины”, том 18, нo. 2, стр. 195–214, 2019 (N. K. Zenkov, A. V. Chechushkov, P. M. Kozhin, G. G. Martinovich, N. V. Kandalintseva, E. B. Menshchikova, “Autophagy as a defense mechanism under oxidative stress”, “Bulletin of Siberian medicine “, vol. 18, no. 2, pp. 195–214, 2019)
    Retrieved from: https://www.elibrary.ru/download/elibrary_39186073_29982430.pdf
  39. Q. Qian, W. Chen, Y. Cao, Q. Cao, Y. Cui et al., “Targeting Reactive Oxygen Species in Cancer via Chinese Herbal Medicine”, Oxid. Med. Cel.l Longev., vol. 2019:9240426, 2019.
    DOI: 10.1155/2019/9240426
  40. D. R. Senger, D. Li, S. C. Jaminet, S. Cao, “Activation of the Nrf2 Cell Defense Pathway by Ancient Foods: Disease Prevention by Important Molecules and Microbes Lost from the Modern Western Diet”, PLoS One, vol. 11, no. 2:e0148042, 2016.
    DOI: 10.1371/journal.pone.0148042
  41. G. Filomeni, D. De Zio, F. Cecconi, “Oxidative stress and autophagy: the clash between damage and metabolic needs”, Cell Death. Differ., vol. 22, no. 3, pp. 377-388, 2015.
    DOI: 10.1038/cdd.2014.150
  42. “Иммунореабилитация при инфекционно-воспалительных и соматических заболеваниях с использованием Трансфер Факторов. Методическое письмо”, Министерство здравоохранения и социального развития Российской Федерации, 34, 2004. (“Immunorehabilitation in infectious-inflammatory and somatic diseases using Transfer Factors. Methodological letter”, Ministry of Health and Social Development of the Russian Federation, 34, 2004).
  43. Prescriber’s Digital Reference, “4Life Transfer Factor Tri-Factor Formula”.
    Retrieved from: https://pdr.net/full-prescribing-information/4life-transfer-factor-tri-factor?druglabelid=159
S.K. Pinaev, "Environmentally related oxidative stress (EROS) in children carcinogenesis: An overview and own data," RAD Conf. Proc, vol. 4, 2020, pp. 85–89, http://doi.org/10.21175/RadProc.2020.18


Šaćira Mandal

DOI: 10.21175/RadProc.2020.19

Metabolic derangements in Type 2 diabetes mellitus (T2D) are associated primarily with the carbohydrate and lipid levels disturbances. Increased flow of free fatty acids (FFAs) into the blood that is coming from the adipocytes as well as an elevated flux of FFAs from de novo lipid synthesis in the liver contribute to these metabolic disturbances. Previous studies suggested a strong association of the hepatic activity of certain enzymes, such as aspartate and alanine transferase (AST, ALT), gamma glutamyl transpeptidase (GGT), and alkaline phosphatase (ALP) with the progression of T2D. In this study, the potential association of the hepatic activities of the liver enzymes and FFAs levels in T2D was examined. Analysis of the activities of ALT, AST, GGT and AP, as well levels of FFAs, fasting plasma glucose (FPG), and lipid profile was performed in 40 healthy control and 71 diabetic subjects. All participants were free of hepatitis, viral infections or active liver damage. The results showed a positive association between levels of palmitic and oleic acids with ALT activity (p<0.05), while the activity of GGT was significantly associated with the levels of palmitic, stearic, and oleic fatty acids (p<0.01). Interestingly, in control group, a positive correlation was found between palmitoleic acid levels with ALT activity (p<0.05), and a negative correlation palmitoleic acid with ALP activity (p<0.05) was observed. Obtained data suggest that an elevation of free fatty acid levels and the hepatic fat accumulation in insulin-resistant conditions affect the hepatic enzymes activities, which might contribute further to the progression of Type 2 diabetes and its complications.
  1. IDF. International Diabetes Federation. IDF Diabetes Atlas — 9th Edition. Diabetes Atlas.
    Retrieved from: https://diabetesatlas.org/resources/2017-atlas.html
    Retrieved on: Sep. 17, 2020
  2. P. J. Randle, P. B. Garland, C. N. Hales, E. A. Newsholme, “The glucose fatty-acid cycle its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus,” Lancet, vol. 281, no. 7285, pp. 785 –789, Apr. 1963.
    DOI: 10.1016/s0140-6736(63)91500-9
    PMid: 13990765
  3. M. Hawkins, J. Tonelli, P. Kishore, D. Stein, E. Ragucci, A. Gitig, K. Reddy, “Contribution of elevated free fatty acid levels to the lack of glucose effectiveness in type 2 diabetes,” Diabetes, vol. 52, no. 11, pp. 2748 – 2758, Nov. 2003.
    DOI: 10.2337/diabetes.52.11.2748
    PMid: 14578293
  4. J. A. Menendez, A. Vazquez-Martin, F. Jose Ortega, J. M. Fernandez-Real, “Fatty acid synthase: association with insulin resistance, type 2 diabetes, and cancer,” Clin. Chem., vol. 55, no. 3, pp. 425 – 438, Jan. 2009.
    DOI: 10.1373/clinchem.2008.115352
    PMid: 19181734
  5. S. Jiang, J. L. Young, K. Wang, Y. Qian, L. Cai, “Diabetic induced alterations in hepatic glucose and lipid metabolism: The role of type 1 and type 2 diabetes mellitus,” Mol. Med. Rep., vol. 22, no.2, pp. 603 –611, Aug. 2020.
    DOI: 10.3892/mmr.2020.11175
    PMid: 32468027
  6. J. Zhang, N. Cheng, Y. Ma, H. Li, Z. Cheng, Y. Yang, et al., “Liver enzymes, fatty liver and type 2 diabetes mellitus in a Jinchang cohort: a prospective study in adults,” Can. J. Diabetes, vol. 42, no. 6, pp. 652–658, Dec. 2018.
    DOI: 10.1016/j.jcjd.2018.02.002
    PMid: 29936075
  7. S. Nagaraj, S. S. Kiran, R. Gandham, W. D. C. R. Silvia, M. R. Nagaraja, A. S.Nasar, D. Biswajit, “Study of prevalence of non-alcoholic fatty liver disease in type 2 diabetes mellitus patients and variations in liver function tests, lipid profile and mean platelet volume in patients with fatty liver in comparison with patients without fatty liver,” Int. J. Res. Med. Sci., vol. 4, no. 3, pp. 871– 876, Mar. 2016.
    DOI: 10.18203/2320-6012.ijrms20160534
    PMid: 603
  8. X.-Y. Hu, Y. Li, L.-Q. Li, Y. Zheng, J.-H. Lv, S.-C. Huang, W. Zhang, L. Liu, L. Zhao, Z. Liu, X.-J. Zhao, “Risk factors and biomarkers of nonalcoholic fatty liver disease: an observational cross-sectional population survey,” BMJ Open, vol. 8, no. 4, pp. 1 – 7, Apr. 2018.
    DOI: 10.3978/j.issn.2304-3881.2015.01.03
    PMid: 29626047
  9. H. B. Bhatt, R. J. Smith, “Fatty liver disease in diabetes mellitus,” HepatoBiliary Surg. Nutr., vol. 4, no. 2, pp. 101 – 108, Apr. 2015.
    DOI: 10.2337/diabetes.52.11.2748
    PMid: 26005676
  10. F. Bril, K. Cusi, “Management of nonalcoholic fatty liver disease in patients with type 2 diabetes: A call to action,” Diabetes Care, vol. 40, no. 3, pp. 419 – 430, Mar. 2017.
    DOI: 10.2337/dc16-1787
    PMid: 28223446
  11. K.L. Donnelly, C. I. Smith, S. J. Schwarzenberg, J. Jessurun, M. D. Boldt, E. J. Parks, “Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease,” J. Clin. Invest., vol. 115, no. 5, pp. 1343 – 1351, May 2005.
    DOI: 10.1172/JCI23621
    PMid: 15864352
  12. S. Islam, S. Rahman, T. Haque, A. H. Sumon, A. M. Ahmed, N. Ali, “Prevalence of elevated liver enzymes and its association with type 2 diabetes: A cross-sectional study in Bangladeshi adults,” Endocrinol. Diabetes Metab., vol. 3, no.2, e00116, Apr. 2020.
    DOI: 10.1002/edm2.116
    PMid: 32318634
  13. D. M. Tanase, E. M. Gosav, C. F. Costea, M. Ciocoiu, C. M. Lacatusu, M. A. Maranduca, A. Ouatu, M. Floria, “The intricate relationship between type 2 diabetes mellitus (T2DM), insulin resistance (IR), and nonalcoholic fatty liver disease (NAFLD)”, Journal of Diabetes Research, vol. 2020, Article ID 3920196, p. 16, Aug. 2020.
    DOI: 10.1155/2020/3920196
    PMid: 343446834
  14. M. T. Long, S. Gandhi, R. Loomba, “Advances in non-invasive biomarkers for the diagnosis and monitoring of non-alcoholic fatty liver disease”, Metabolism, vol. 111, pp. 154259-1-8, Oct. 2020.
    DOI: 10.1016/j.metabol.2020.154259
    PMid: 32387227
  15. Association AD. 4, Comprehensive Medical Evaluation and Assessment of Comorbidities: Standards of Medical Care in Diabetes-2019, Diabetes Care, vol. 42 (Suppl 1), pp. S34-S45, 2019.
    DOI: 10.2337/dc19-S004
  16. American Diabetes Association 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2018, Diabetes Care, vol. 41 (Suppl 1), pp. S13-S27, 2018.
  17. Ethical principles for medical research involving Human Subjects , World Medical Association, Helsinki, Finland, 1964.
    Retrieved from: https://www.who.int/bulletin/archives/79(4)373.pdf
    Retrieved on: Sep. 17, 2020
  18. R. Feng, C. Luo, C. Li, S. Du, A. P. Okekunle, Y. Li, Y. Chen, T. Zi, Y. Niu, “Free fatty acids profile among lean, overweight and obese non-alcoholic fatty liver disease patients: a case – control study,” Lipids in Health and Disease, vol. 16, no. 165, pp. 1-9, Sep. 2017.
    DOI: 10.1186/s12944-017-0551-1
    PMid: 28870233
  19. T. Shibabaw, G. Dessie, M. D. Molla, M. F. Zerihun, B. Ayelign, “Assessment of liver marker enzymes and its association with type 2 diabetes mellitus in Northwest Ethiopia,” BMC. Res. Notes., vol. 12, no. 707, pp. 1– 5, Oct. 2019.
    DOI: 10.1186/s13104-019-4742-x
    PMid: 204940234
  20. F. Imamura, A. M. Fretts, M. Marklund, A. V. Ardisson Korat, W.-S. Yang, M. Lankinen, et al., “Fatty acids in the de novo lipogenesis pathway and incidence of type 2 diabetes: A pooled analysis of prospective cohort studies,” PLoS Med., vol. 17, no. 6, pp. e1003102–1-7, Jun. 2020.
    DOI: 10.1371/journal. pmed.1003102
    PMid: 32530938
  21. T. K. Lam, A. Carpentier, G. F. Lewis, G. van de Werve, I. G. Fantus, A. Giacca, “Mechanisms of the free fatty acid-induced increase in hepatic glucose production,” Am. J. Physiol. Endocrino. Metab., vol. 284, no. 5, pp. E863–73. May 2003.
    DOI: 10.1152/ajpendo.00033.2003
    PMid: 12676648
  22. H. R. Ahn, M. H. Shin, H. S. Nam, K.-S. Park, Y.–H. Lee, S.-K. Jeong, “The association between liver enzymes and risk of type 2 diabetes: The Namwon study,” Diabetol. Metab. Syndr., vol. 6, no. 1, p. 14, Feb. 2014.
    DOI: 10.1186/1758-5996-6-14
    PMid: 24502834
  23. S.-H. Ko, M. K. Baeg, K.-D. Han, S.-H. Ko, Y.-B. Ahn, “Increased liver markers are associated with higher risk of type 2 diabetes,” World J. Gastroenterol., vol. 21, no. 24, pp. 7478–87, June 2015.
    DOI: 10.3748/wjg.v21.i24.7478
    PMid: 26139993
  24. S. Tomah, N. Alkhouri, O Hamdy, “Nonalcoholic fatty liver disease and type 2 diabetes: where do Diabetologists stand?”, Clin. Diabetes Endocrinol., vol. 6, no. 9, pp. 1–12, June 2020.
    DOI: 10.1186/s40842-020-00097-1
    PMid: 32518675
  25. M. Akheruzzaman, V. Hegde, A. C. Shin, N. V. Dhurandhar, “Reducing endogenous insulin is linked with protection against hepatic steatosis in mice,” Nutr. Diabetes, vol. 10, no. 1, pp. 1–12, Apr. 2020.
    DOI: 10.1038/s41387-020-0114-9
    PMid: 32286259
Šaćira Mandal, "Free fatty acids and hepatic activity in type 2 diabetes," RAD Conf. Proc, vol. 4, 2020, pp. 90–94, http://doi.org/10.21175/RadProc.2020.19


A.A. Oleshkevich, S.A. Komarova, A.A. Guselnikova, E.I. Yarygina

DOI: 10.21175/RadProc.2020.20

The hair (one of skin derivatives) structure is polymorphic, therefore the study of its specific features has diagnostic value. Nowadays, the main methods for the wool species determining are either microscopy of hair in transmitted light, or light microscopy. The relevance of the work is caused by the need to study hair and its alkaline hydrolysates using the simplest, fastest and most modern biophysical methods in order to create a laboratory test system in the future. To determine the species of animal hair, the possibility of using of the following biophysical methods was studied: polarization-interference microscopy, reflected light microscopy, fluorescence microscopy, ultraviolet spectrophotometry, and redox-measurement. Hair of different color, shape, length and thickness from animals of various classes, families and species were selected as samples. The possibilities of each method, their advantages and disadvantages were studied in samples selected. It is shown that the effectiveness of luminescence microscopy and reflected light microscopy are limited, and techniques cannot be recognized as reliably informative. The method of polarization-interference microscopy is one the most promising and can serve as alternative to reflected light microscopy. The possibility of the new redox-measurement method has been revealed. The authors have developed a special device for redox measurements and tested it in laboratory practice. The probability of the presence of a different number of absorption bands in the absorption spectra (hair species from various animals) is proven by spectrophotometric method. This allows to use ultraviolet spectrophotometry for the hair species identification. According to the authors, the most informative in laboratory identification of animal hair samples will be provided using the ultraviolet spectrophotometry method combined with the redox-potential measurement in alkaline wool hydrolysates.
  1. А. И. Сапожникова, И. М. Гордиенко, В. И. Хачиянц, О. В. Овсянкина, “Выделение и характеристика фибриллярных белков из отходов сырья животного происхождения,” Вопросы улучшения качества и рационального использования сырья животного происхождения и продуктов животноводства: Межвед: сб. науч. тр , Москва, Росcия, 1990, с. 100-106. (A. I. Sapozhnikova, I. M. Gordienko, V. I. Khachiyants, O. V. Ovsyankina, “Isolation and characterization of fibrillar proteins from wastes of raw materials of animal origin,” Issues of improving the quality and rational use of raw materials of animal origin and animal products: Interved: collection of scientific articles , Moscow, Russia, 1990, pp. 100-106.)
  2. В. И. Хачиянц, А. И. Сапожникова, “Изменение химического состава кератин-содержащих отходов в процессе их растворения,” Вопросы улучшения качества и рационального использования сырья животного происхождения и продуктов животноводства: Межвед: сб. науч. тр. Москва, Росcия, 1990, с. 91-95. (V. I. Khachiyants, A. I. Sapozhnikova, “Change in the chemical composition of keratin-containing wastes in the process of their dissolution,” Issues of improving the quality and rational use of raw materials of animal origin and animal products: Interved: collection of scientific articles , Moscow, Russia, 1990, pp. 91-95.)
  3. О. Ф. Чернова, “Архитектоника и диагностическое значение коры и сердцевины волос,” Известия РАН, № 1, с. 73-83, 2004. (O. F. Chernov, “Architectonics and diagnostic significance of the cortex and core of the hair,” Izvestiya RAN, no. 1, pp. 73-83, 2004.)
    Retrieved from: https://www.elibrary.ru/item.asp?id=17277643
    Retrieved on: September 30, 2020
  4. Е. В. Слепнева, “Модификация шерстяного сырья как метод улучшения физико-механических характеристик волокон,” Вестник технологического университета, том 18, № 9, с. 188-190, 2015. (E. V. Slepneva “Modification of wool raw materials as a method of improving physical and mechanical fibers,” Bulletin of Technological University, vol. 18, № 9, pp. 188-190, 2015.)
    Retrieved from: https://www.elibrary.ru/item.asp?id=23719145
    Retrieved on: September 30, 2020
  5. Н. И. Белик, “Тонина шерсти и её связь с другими хозяйственно полезными и морфологическими признаками овец,” автореферат, Ставропольский государственный аграрный университет, Ставрополь, Россия, 2013. (N. I. Belik, “Wool fineness and its relationship with other economically useful and morphological characteristics of sheep,” Theses, Stavropol State Agrarian University, Stavropol, Russia, 2013.)
    Retrieved from: https://www.dissercat.com/content/toninshersti-i-ee-svyaz-s-drugimi-khozyaistvenno-poleznymi-i-morfologicheskimi-priznakami-
    Retrieved on: September 30, 2020
  6. С. А. Комарова, А. А. Олешкевич, “Исследование щелочных гидролизатов волос животных с целью выявления половозрастных различий и видовой принадлежности,” Сборник научных трудов VI Съезда биофизиков России, том 2 , Краснодар, Россия, 2019, с. 206. (S. A. Komarova, A. A. Oleshkevich, “Study of alkaline hydrolysates of animals using different sex, age and species,” Collection of scientific papers of the VI Congress of Biophysicists of Russia, vol. 2 , Krasnodar, Russia, 2019, p. 206)
    Retrieved from: http://conf-2019.biophys.ru/work/BioPhys-2019_V2.pdf
    Retrieved on: September 30, 2020
  7. В. Э. Новиков, С. А. Комарова, «Устройство для определения параметров фоторедокс-эффекта в щелочных растворах кератинов,» Патент РФ № 171788, Россия 16 июня 2017. (V. E. Novikov, S. A. Komarova, “Device for determining of the parameters of the photoredox effect in alkaline solutions of keratins,” RF Patent 171788, Russia, Jun. 16, 2017.)
    Retrieved from: https://www.elibrary.ru/item.asp?id=38296394
    Retrieved on: October 03, 2020
  8. А. А. Олешкевич, С. А. Комарова, В. Н. Шевкопляс, “Анализ физиологических особенностей производных кожи биофизическими методами,” Актуальные вопросы ветеринарной биологии с. 3-7, 2019. (A. A. Oleshkevich, S. A. Komarova, V. N. Shevkoplyas, “Analysis of the physiological functions of skin derivatives by biophysical methods,” Actual Issues of Veterinary Biology, pp. 3-7, 2019.)
    DOI: 10.24411/2074-5036-2019-10030
  9. S. A. Komarova, A. A. Oleshkevich, V. E. Novikov, “Device for redox-potential measurement,” in Book of Abstr. 8th Int. Conf. Radiation in Various Fields of Research (RAD 2020), Herceg Novi, Montenegro, Virtual Conference, 2020, p. 27.
    Retrieved from: https://www.rad-conference.org/Book_of_Abstracts-RAD_2020.pdf
    Retrieved on: September 23, 2020
  10. A. Ehlers, I. Riemann, M. Stark, K. Kőnig, “Multiphoton fluorescence lifetime imaging of human hair,” Microscopy Research and Technique, vol. 70, pp. 154–161, 2007.
    DOI: 10.1002/jemt.20395
  11. Zs. Éhen, Cs. Novák, J. Sztatisz, O. Bene, “Thermal characterization of hear using tg-ms combined thermoanalytical,”Journal of Thermal Analysis and Calorimetry, vol. 78, pp. 427–440, 2004.
    DOI: 10.1023/b:jtan.0000046108.29225.b2
  12. V. F. Monteiro, A. P. Maciel, E. Longo, “Thermal analysis of Caucasian human hears,” Journal of Thermal Analysis and Calorimetry, vol. 79, pp. 289-293, 2005,
    DOI: 10.1007/s10973-005-0051-9
  13. S. A. Komarova, A. A. Oleshkevich, V. E. Novikov, “Pelage alkaline hydrolysates’ redox change via light flash,” in Book of Abstr. 5th Int. Conf. Radiation and Applications in Various Fields of Research (RAD 2017), Budva, Montenegro, 2017, p. 70.
    Retrieved from: https://www.rad-conference.org/Book_of_Abstracts-RAD_2017.pdf
    Retrieved on: September 23, 2020
A.A. Oleshkevich , S.A. Komarova, A.A. Guselnikova, E.I. Yarygina, "Laboratory examination technique for animal skin derivatives (hair, wool, fluff)," RAD Conf. Proc, vol. 4, 2020, pp. 95–100, http://doi.org/10.21175/RadProc.2020.20
Medicinal Chemistry


Zvezdelina Yaneva, Donika Ivanova

DOI: 10.21175/RadProc.2020.21

The aim of the recent study was to assess the extent of catechin hydrate release from newly synthesized bioflavanol-loaded chitosan-based particles. The biopolymer particles were prepared by a modified ion gelation method. The synthesized biopolymer particles were divided into two series: Series 1 - washed with ethanol and stored in 70% EtOH at 4oC, and Series 2 - washed with EtOH, dried and stored at -18oC. Both particle series were stable after 72 h storage. The desorption experiments were conducted by agitation of determined mass of catechin-loaded particles in PBS for 48 h. The maximum efficiency of catechin desorption from series 1 particles in PBS was 91% in simulated intestinal medium after 48 h. Series 2 catechin-loaded particles exhibited slightly higher desorption extend in PBS. It has to be outlined that the size of series 1 particles significantly decreased, while the dried particles were completely degraded at the end of the experiment.
  1. B. Liu, Y. Wang, Q. Yu, D. Li, F. Li, “Synthesis, characterization of catechin-loaded folate-conjugated chitosan nanoparticles and their anti-proliferative effect,” CyTA – Journal of Food, vol. 16, no. 1, pp. 868-876, 2018.
    DOI: 10.1080/19476337.2018.1491625
  2. S. Cosarca, C. Tanase, D.L. Muntean, “Therapeutic aspects of catechin and its derivatives – an update,” ABMJ, vol. 2, no. 1, pp. 21-29, Sept. 2019.
    DOI: 10.2478/abmj-2019-0003
  3. M. Tzanova, V. Atanasov, Z. Yaneva, D. Ivanova, T. Dinev, “Selectivity of current extraction techniques for flavonoids from plant materials,” Processes, vol. 8, no. 10:1222, pp. 1–30, Oct. 2020.
    DOI: 10.3390/pr8101222
  4. M. Ahmad, P. Mudgil, A. Gani, F. Hamed, F.A. Masood, S. Maqsood, “Nano-encapsulation of catechin in starch nanoparticles: Characterization, release behavior and bioactivity retention during simulated in-vitro digestion,” Food Chemistry, vol. 270, pp. 95-104, Jan. 2019.
    DOI: 10.1016/j.foodchem.2018.07.024
  5. P. Paximada, A.A. Koutinas, I.G. Mandala, J.M. Lagaron, Y. Echegoyen, “Encapsulation of hydrophilic and lipophilized catechin into nanoparticles through emulsion electrospraying,” Food Hydrocolloids., vol. 64, pp. 123-132, Mar. 2017.
    DOI: 10.1016/j.foodhyd.2016.11.003
  6. A.M. Safer, S. Leporatti, J. Jose, M.S. Soliman, “Conjugation оf EGCG and chitosan NPs as a novel nano-drug delivery system,” Int. J. Nanomedicine, vol. 14, pp. 8033-8046, 2019.
    DOI: 10.2147/IJN.S217898
  7. Z. Yaneva, D. Ivanova, N. Nikolova, M. Tzanova, “The 21st century revival of chitosan in service to bio-organic chemistry,” Biotechnology and Biotechnological Equipment, vol. 34, no. 1, pp. 221-237, 2020.
    DOI: 10.1080/13102818.2020.1731333
  8. D.G. Ivanova, Z.L. Yaneva, “Antioxidant properties and redox-modulating activity of chitosan and its derivatives: biomaterials with application in cancer therapy,” Biores Open Access., vol. 9, no. 1, pp. 64-72, Mar. 2020.
    DOI: 10.1089/biores.2019.0028
  9. F. Li, H. Jin, J. Xiao, X. Yin, X. Liu, D. Li, Q. Huang, “The simultaneous loading of catechin and quercetin on chitosan-based nanoparticles as effective antioxidant and antibacterial agent,” Food Res. Int., vol. 111, pp. 351-360, Sept. 2018.
    DOI: 10.1016/j.foodres.2018.05.038
  10. C.L. Domínguez-Delgado, I.M. Rodríguez-Cruz, E. Fuentes-Prado, J.J. Escobar-Chávez, G. Vidal- Romero, L. García-González, R. I. Puente-Lee, “Drug carrier systems using chitosan for non-parenteral routes,” in Pharmacology and Therapeutics, IntechOpen, Jul. 2014.
    DOI: https://doi.org/10.5772/57235
  11. S. Potrč, T.K. Glaser, A. Vesel, N.P. Ulrih, L.F. Zemljič, “Two-Layer functional coatings of chitosan particles with embedded catechin and pomegranate extracts for potential active packaging,” Polymers, vol. 12, no. 9: 1855, pp. 1–20, 2020.
    DOI: 10.3390/polym12091855
  12. Z. Yaneva, N. Georgieva, “Physicochemical and morphological characterization of pharmaceutical nanocarriers and mathematical modeling of drug encapsulation/release mass transfer processes,” in Nanoscale Fabrication, Optimization, Scale-up and Biological Aspects of Pharmaceutical Nanotechnology , 1st Ed., Elsevier, 2018.
  13. Z. Yaneva, N. Georgieva, M. Staleva, “Development of d,l-α-tocopherol acetate/zeolite carrier system: equilibrium study,” Monatshefte fur Chemie, vol. 147, no. 7, pp. 1167-1175, Mar. 2016.
    DOI: 10.1007/s00706-016-1714-x
  14. Z. Yaneva, N. Georgieva, “Study on the Physical Chemistry, Equilibrium, and Kinetic Mechanism of Azure A Biosorption by Zea Mays Biomass,” Journal of Dispersion Science and Technology, vol. 35, no. 2, pp. 193-204, Jan. 2014.
    DOI: 10.1080/01932691.2013.780242
  15. Z. Yaneva, N.V. Georgieva, L.L. Bekirska, S. Lavrova, “Drug mass transfer mechanism, thermodynamics, and in vitro release kinetics of antioxidant-encapsulated zeolite microparticles as a drug carrier system,” Chemical and Biochemical Engineering Quarterly CABEQ, vol. 32, no. 3, pp. 281-298, 2018.
    DOI: 10.15255/CABEQ.2018.1319
  16. Z. L. Yaneva, “Nonsteroidal anti-inflammatory drug solid-state microencapsulation on green activated carbon – Mass transfer and host-guest interactions,” Chemical and Biochemical Engineering Quarterly, vol. 33, no. 2, pp. 249-269, 2019.
    DOI: 10.15255/CABEQ.2019.1656
  17. Z. Yaneva, D. Ivanova, G. Beev, K. Besheva, “Quantification of catechin in Acacia catechu extract by non-derivative, first Derivative UV/Vis spectrophotometry and FT-IR spectroscopy,” Bulgarian Chemical Communications, Special Issue D, vol. 52, 2020. – in press
  18. P. Ghitescu, A. Popa, А. Schipanski, C. Hirsch, G. Yazgana, V.I. Popa, R.M. Rossi, K. Maniura-Weber, “Catechin loaded PLGA submicron-sized fibers reduce levels of reactive oxygen species induced by MWCNT in vitro,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 122, pp. 78–86, Jan. 2018.
    DOI: 10.1016/j.ejpb.2017.10.009
  19. J.S. Lee, H.W. Kim, D. Chung, H.G. Lee, H.G., “Catechin-loaded calcium pectinate microparticles reinforced with liposome and hydroxypropylmethylcellulose: Optimization and in vivo antioxidant activity,” Food Hydrocolloids, vol. 23, no. 8, pp. 2226–2233, Dec. 2009.
    DOI: 10.1016/j.foodhyd.2009.05.005
  20. Y. Zhao, X. Xu, N. Wen, R. Song, Q. Meng, Y. Guan, S. Cheng, D. Cao, Y. Dong, J. Qie, K. Liu, Y. Zhang, “A drug carrier for sustained zero-order release of peptide therapeutics,” Scientific Reports, vol. 7: 5524, pp. 1–9, Jul. 2017.
    DOI: 10.1038/s41598-017-05898-6
  21. Y. Danyuo, C.J. Ani, A.A. Salifu, J.D. Obayemi, S. Dozie-Nwachukwu, V.O. Obanawu, U.M. Akpan, O.S. Odusanya, M. Abade-Abugre, F. McBagonluri, W.O. Soboyejo, “Anomalous release kinetics of prodigiosin from poly-N-isopropyl-acrylamid based hydrogels for the treatment of triple negative breast cancer,” Scientific Reports, vol. 9: 3862, pp. 1–14, Mar. 2019.
    DOI: 10.1038/s41598-019-39578-4
  22. M. Sivabalan, V. Gayathri, C. Kiruthika, B. Madhan, “Formulation and evaluation of biodegradable polyphenolic microspheres for cancer,” International Journal of Pharmacy & Technology, vol. 4, no. 2, pp. 4493-4505, Jul. 2012.
    Retrieved from: https://www.ijptonline.com/wp-content/uploads/2009/10/4493-4505.pdf
  23. H. Pool, D. Quintanar, J. de Dios Figueroa, C.M. Mano, J.E.H. Bechara, L.A. Godínez, S. Mendoza, “Antioxidant effects of quercetin and catechin encapsulated into PLGA nanoparticles,” Journal of Nanomaterials, vol. 2012, Article ID 145380, pp. 1–12, Sept. 2012.
    DOI: 10.1155/2012/145380
  24. D.W. Tang, S.H. Yu, Y.C. Ho, B.Q. Huang, G.J. Tsai, H.Y. Hsieh, H.W. Sung, F.L. Mi, “Characterization of tea catechins-loaded nanoparticles prepared from chitosan and an edible polypeptide,” Food Hydrocolloids, vol. 30, no. 1, pp. 33-41, Jan. 2013.
    DOI: 10.1016/j.foodhyd.2012.04.014
  25. G. Zhang, J. Zhang, “Enhanced oral bioavailability of EGCG using pH-sensitive polymeric nanoparticles: characterization and in vivo investigation on nephrotic syndrome rats,” Drug Design, Development and Therapy, vol. 12, pp. 2509–2518, Aug. 2018.
    DOI: 10.2147/DDDT.S172919
  26. S. Mandal, K. Debnath, N.R. Jana, N.R.R. Jana, “Trehalose conjugated, catechin loaded polylactide nanoparticle for improved neuroprotection against intracellular polyglutamine aggregate,” Biomacromolecules, vol. 21, no. 4, pp. 1578-1586, Apr. 2020.
    DOI: 10.1021/acs.biomac.0c00143
  27. F. Li, H. Jin, J. Xiao, X. Yin, X. Liu, D. Li, Q., Huang, “The simultaneous loading of catechin and quercetin on chitosan-based nanoparticles as effective antioxidant and antibacterial agent,” Food Research International, vol. 111, pp. 351–360, Sept. 2018.
    DOI: 10.1016/j.foodres.2018.05.038
  28. R. Kaur, R. Rajput, P. Nag, S. Kumar, Rachana, M. Singh, “Synthesis, characterization and evaluation of antioxidant properties of catechin hydrate nanoparticles,” Journal of Drug Delivery Science and Technology, vol. 39, pp. 398-407, Jun. 2017.
    DOI: 10.1016/j.jddst.2017.04.030
Zvezdelina Yaneva, Donika Ivanova, "Catechin hydrate desorption from newly-synthesized catechin-loaded biopolymer particles," RAD Conf. Proc, vol. 4, 2020, pp. 101–105, http://doi.org/10.21175/RadProc.2020.21


J. F. Facetti-Masulli, H. D. Colman

DOI: 10.21175/RadProc.2020.22

The distribution of valence states III and V of radioactive 76As after neutron irradiations of thioarsenic compounds has been investigated in arsenic sulphides, optical glasses materials. Compounds were irradiated with neutrons at a flux of 1012 n cm-2 s-1 . The radioisotope formed by (n, γ) reaction is 76As with T 1/2= 26.4h. Separations of valence states were performed by electrophoresis. Radiochemical yields of As V were higher than those obtained by other workers in the irradiation of arsenic oxygenated compounds; a similar high yield of Sb V was also found previously on the irradiation of thioantimony compounds and seems to be related to the covalent character of the As-S bond; likewise, internal conversion accounts for the primary oxidation of recoil atoms.
  1. S. Radescu, A. Mujica, P. Rodríguez Hernández, A. Muñoz, J. Ibáñez, J.A. Sans, V.P. Cuenca-Gotor, F.J. Manjón, “Study of the orpiment and anorpiment phases of As2S3 under pressure”, Journal of Physics: Conference Series, vol. 950: 42018, 2017.
    DOI: 10.1088/1742-6596/950/4/042018
  2. V.P. Cuenca-Gotor, J.Á. Sans, O. Gomis, A. Mujica, S. Radescu, A. Muñoz, P. Rodríguez-Hernández, E.L. da Silva, C. Popescu, J. Ibañez, R. Vilaplana, F. J. Manjón; “Orpiment under compression: metavalent bonding at high pressure”, Physical Chemistry Chemical Physics, vol. 22, no. 6, pp. 3352-336923, Jan. 2020.
    DOI: 10.1039/c9cp06298j
  3. V.P.Cuenca-Gotor, “Estudio de compuestos As2X3 bajo presión”. Tesis doctoral dirigida F. J. Manjón, J. Á. Sans-Universitat Politécnica de Valencia, 311 pages, Jun. 2019.
  4. I. Fejes, F. Billes, V. Mitsa, “A theoretical study of the effect on the vibrational spectrum of the stepwise sulfur by selenium substitution in arsenic pentasulfide”, Journal of Molecular Structure THEOCHEM, vol. 531, pp. 407-414, Oct. 2000.
  5. H. Kobayashi, H. Kanbara, M. Koga, “Third‐order nonlinear optical properties of As2S3 chalcogenide glass”, Journal of Applied Physics, 74: 3683, 1993.
    DOI: 10.1063/1.354511
  6. M. Wuttig, V.I. Deringer, X. Gonze, C. Bichara, J.Y. Raty, “Incipient Metals: Functional Materials with a Unique Bonding Mechanism”, Advanced Materials, vol. 30, no. 51: 1803777, 2018.
    DOI: 10.1002/adma.201803777
  7. N.R. Ramakant, K. Ganesan. S. Sangunni, “Optical properties change in amorphous (As2S3)0.87Sb0.13 thin films by photo and thermal induced process”, J. Mater. Chem. Phys ., vol. 125, no. 3, pp. 505-509, 2011.
    DOI: 10.1016/j.matchemphys.2010.10.025
  8. A. G. Maddock and MM de Maine, “A search for the chemical effects of internal conversion following radiative neutron capture” Can. J. Chem, vol. 34, no. 4, pp. 441-444, 1956.
  9. J.F. Facetti-M., “Chemical effects of neutron irradiation of antimony compounds”, J. Inorg. Nucl. Chem., vol. 25, pp. 759-762, 1963.
  10. G. Baró, A. Aten, “Chemical state of arsenic formed by nuclear transformations in the oxides of germanium and selenium”, Proc. Symp. of Chem. Eff. of Nucl. Transf, IAEA, vol. 2, pp. 233-239, 1961.
  11. H. Kawahara, G. Harbottle, “Thermal annealing of recoil arsenic atoms in neutron-irradiated solid compounds of arsenic”, J. Inorg. Nucl. Chem., vol. 9, no. 3–4, pp. 240-245, 1959.
  12. V. Kacena, A.G. Maddock, “The effects of compression on the annealing behaviour of neutron irradiated potassium dihydrogen arsenate crystals”, Chemical Effects of Nuclear Transformations – IAEA Proceedings series, vol. II, pp. 255-262, 1965.
  13. J. F. Facetti-M., E. Trabal, S. Torres, “Study of annealing of antimony compounds irradiated with neutrons”, Primera Conferencia Interamericana de Radioquímica, Montevideo, pp. 234-236, 1965.
  14. J.F. Facetti-M., H. Colmán, “Chemical effects of neutron capture in thioantimony compounds”, J. Inorg. Nucl. Chem. vol. 33, pp. 419-423, 1971.
  15. J.F. Facetti-M., A. Vallejos, “Chemical consequences of thermal annealing in neutron activated thioantimony compounds” J. Inorg. Nucl. Chem. vol. 34, pp. 3659-3664, 1972.
  16. Wen Li, “Synthesis and Solubility of Arsenic Tri-sulfide and Sodium Arsenic Oxy-sulfide Complexes in Alkaline Sulfide Solutions” MSc Thesis. The University of British Columbia, Vancouver, 123 pages, Jun. 2013.
  17. R.B. Firestone, V.S. Shirley, Table of Isotopes, 8th ed. John Wiley & Sons, New York, USA, 1996.
  18. J.F. Facetti-M., H. Colman, A. Vallejos, “Separación por electroforesis de AsIII y As V en thiocompuestos de arsénico”, Rev. Soc. Cientif. Paraguay, vol. 10, pp. 21-23, 1969.
  19. A. F. Wells, Structural Inorganic Chemistry, Clarendon Press, Oxford, UK, 1984.
  20. T.T. Meek, T.J. Isaacs, “Structure of amorphous bulk As2S5”, Journal of Electronic Materials, vol. 10, no. 4, pp. 653-664, 1981.
  21. W.J. Stec, W.E. Morgan, R.G. Albridge, J.R. van Wazer, “Measured Binding Energy shifts of the “3p” and “3d” electrons in arsenic compounds”, Inorganic Chemistry, vol. 11, no. 2, pp. 216-225, 1972.
  22. R.B. Firestone, “Adopted data base and user tables” in Database of Prompt Gamma Rays from Slow Neutron Capture for Elemental Analysis , IAEA, Vienna, ch. 7, pp. 73-75 & 104-107, 2007.
  23. G. Harbottle, “Hot Atom Chemistry in inorganic solids”,Hot Atom Chemistry Status Report: Proceedings of a Panel, IAEA, Vienna, pp. 19-24, 1975.
  24. K. Tanaka, “Chemical and medium-range orders in As2S3 glass”, Physical Review B, vol. 36, no. 18, pp. 9746-9752, 1987.
  25. G. Harbottle, “Effect of nucleogenesis preceding chemical reaction: dissipation of excitation before chemical reaction”, in Chemical Effects of Nuclear Transformations in Inorganic Systems, G. Harbottle and A.G. Maddock, Eds., pp. 39-73, North Holland: Amsterdam, 1979.
  26. T.A. Carson, “Primary processes in hot atom chemistry” in Chemical Effects of Nuclear Transformations in Inorganic Systems, G. Harbottle and A.G. Maddock Eds., pp. 11-38, North Holland: Amsterdam, 1979.
  27. R.S. Nyholm, M.L. Tobe, “The stabilization of oxidation states of the transition metals in Advances” in Inorganic and Nuclear Chemistry and Radiochemistry, H. J. Emeleus and A.G. Sharpe Eds., vol. 5, p. 1, Academy Press: New York, 1963.
  28. A. Vallejos, J. F. Facetti-M., “Chemical effects of neutron irradiation on germanium thiocompounds”, Radiochim. Acta vol. 98, pp. 109-111, 2010.
    DOI: 10.1524/ract.2010.1688
J. F. Facetti-Masulli, H. D. Colman, "Chemical effects of neutron irradiation on arsenic sulfides," RAD Conf. Proc, vol. 4, 2020, pp. 106–108, http://doi.org/10.21175/RadProc.2020.22


А.V. Kovtun, L.V. Vеngеr, N.I. Khrаmеnkо

DOI: 10.21175/RadProc.2020.23

The aim of the study was to determine the possibility of early diagnosis of optic neuritis in patients with anterior uveitis by determining the diameter of the optic nerve using computed tomography of the orbit. The examination and treatment included 114 patients with anterior uveitis and 36 patients with anterior uveitis complicated by optic neuritis. A standard ophthalmological examination was performed and also ocular electrical impedance studies (relative ocular pulse blood filling and ocular blood flow velocity, determination of the diameter of the optic nerve by coherence tomography were performed An increase in the diameter of the optic nerve in eyes with anterior uveitis complicated by neuritis by 7.2, 11.5 and 18.3% was shown relative to paired eyes when measured retrobulbar, in the middle section and in the orbital region. An increase in volumetric pulse blood filling was found in anterior uveitis in the diseased eye relative to the paired eye, especially pronounced in the presence of neuritis (65.4%). The obtained data indicate the possibility of predicting the development of neuritis against the background of anterior uveitis with an increase in the diameter of the optic nerve (according to computed tomography) and the presence of a vascular reaction in the focus of inflammation (according to the results of ocular electrical impedance studies).
  1. I. F. Gutteridge, A. J. Hall, “Acute anterior uveitis in primary care,” Clin. Exp. Optom., vol. 90, no. 2, pp. 70–82, Mar., 2007.
    DOI: 10.1111/j.1444-0938.2006.00128.x
    PMid: 17311570
  2. B. Trusko et al., “The Standardization of Uveitis Nomenclature (SUN) Project. Development of clinical evidence base utilizing informatics tools and techniques,” Methods Inf. Med., vol. 52, no. 3, pp. 259–265, 2013.
    DOI: 10.3414/ME12-01-0063
    PMid: 23392263
  3. C. A. McCannel et al., “Causes of uveitis in the general practice of ophthalmology. UCLA Community-Based Uveitis Study Group”, Am J. Ophthalmol., vol. 121, no. 1, pp. 35–46, 1996.
    DOI: 10.1016/s0002-9394(14)70532-x
  4. T. Tsirouki et al., “A Focus on the Epidemiology of Uveitis”, Ocul. Immunol. Inflamm., vol. 26, no. 1, pp. 2–16, 2018.
    DOI: 10.1080/09273948.2016.1196713
    PMid: 27467180
  5. D. Jee, K. S. Kim, W. K. Lee, S. Jeon “Clinical features of ocular toxocariasis in adult Korean patients,” Ocular Immunology and Inflammation, vol. 24, no. 2, pp. 207–216, 2016.
    DOI: 10.3109/09273948.2014.994783
    PMid: 25564736
  6. N. I. Khramenko, N. V. Konovalova, “The state of hemodynamics of the eye with optic neuritis” in Abstracts of the Scientific and Practical Conference with International ParticipationFilatov Memorial Lectures - 2019”, Odessa, Ukraine, p. 128, 2019.
  7. Н. И. Храменко, Н. В. Коновалова, Л. Н. Величко, А. В. Богданова, “Состояние гемодинамики глаза и иммунной системы при неврите зрительного нерва,” Точка зрения Восток-Запад, вып. 2, стр. 91-93, 2019. (N. I. Khramenko, N. V. Konovalova, L. N. Velichko, A. V. Bogdanova “The state of the eye hemodynamics and the immune system in optic neuritis”, Point of View: East-West, no. 2, pp. 91-93, 2019).
    DOI: 10.25276/2410-1257-2019-2-91-93
  8. D. A. Jabs, R. B. Nussenblatt, J. T. Rosenbaum, “Standardization of Uveitis Nomenclature (SUN) Working Group. Standardization of uveitis nomenclature for reporting clinical data. Results of the First International Workshop”, Am. J. Ophthalmol., vol. 140, no. 3, pp. 509-16, Sep. 2005.
    DOI: 10.1016/j.ajo.2005.03.057
    PMid: 16196117
  9. А. В.Семенов, Н. В. Монаков, Е. И. Балханова, А. А. Разнобарский, Т. А. Мамонова, «Многослойная и компьютерная томография в диагностике смешанной травматической травмы мозга», Журнал радиологии и ядерной медицины, вып. 99 (3), стр. 119-124, 2018. (A. V. Semenov, N. V. Monakov, E. I. Balkhanova, A. A. Raznobarski, T. A. Mamonova, “Multislice computed tomography in the diagnosis of mixed traumatic brain injury”, Journal of Radiology and Nuclear Medicine, vol. 99, no. 3, pp. 119-124, 2018).
    DOI: 10.20862/004676-2018-99-3-119-124
  10. P. Lochner, M. A. Leone, L. Coppo et al., “B-mode transorbital ultrasononography for the diagnosis of acute optic neuritis. A systematic review”, Clin Neurophysiol., vol. 127, no. 1, pp. 803-809, Jan. 2016.
    DOI: 10.1016/j.clinph.2015.05.005
    PMid: 26024983
  11. P. Lochner, R. Cantello, F. Brigo et al., “Transorbital sonography in acute optic neuritis: a case-control study”, AJNR Am. J. Neuroradiol., vol.35, no. 12, pp. 2371-2375, Dec 2014.
    DOI: 10.3174/ajnr.A4051
    PMid: 25034772
  12. J. Badron, G. Y. Ong, “Bedside Transorbital Ultrasound in the Clinical Evaluation of Pediatric Optic Neuritis in the Emergency Department”, J Emerg Med., vol. 56, no.4, pp. 417-420, Apr. 2019.
    DOI: 10.1016/j.jemermed.2018.12.042
    PMid: 30745196
А.V. Kovtun, L.V. Vеngеr, N.I. Khrаmеnkо, "Possibility of early diagnosis of complication of optic nerve neuritis in patients with anterior uveitis according to coherent tomography of the eye orbit," RAD Conf. Proc, vol. 4, 2020, pp. 109–112, http://doi.org/10.21175/RadProc.2020.23


N.A. Kozlov, A.A. Oleshkevich, B. Bhattarai, S.V. Pozyabin

DOI: 10.21175/RadProc.2020.24

To compare the influence of classical and modified partial lateral corpectomy in vertebral instability biomechanical studies was performed. The study was carried out on fresh sectional material (9 specimens each with two spinal segments L2-L3) from dogs of non-chondrodystrophic breeds, weighing from 25 to 35 kg, who died from causes that did not cause any pathological changes in the thoracolumbar spine. Fragments of the spinal column were isolated by anatomical preparation, after which the soft tissue structures were removed as much as possible. Computed tomography was performed to exclude any structural changes in the vertebral column. Biomechanical studies were carried out on laboratorial modified UTS 110M-100 and KTS 403-100 universal testing machine. The areas of elastic and plastic deformation, maximum torque, resistance of samples in different parts of the graph, residual deformation were determined. When comparing the areas of elastic deformations in different groups, the following data were obtained. In all groups of samples, a directly proportional relationship between the load and resistance of the samples was obtained. Native vertebral specimens are the most resistant to stress, the next in strength are specimens with modified partial lateral corpectomy, the least durable ones with classical partial lateral corpectomy. The greatest resistance was exerted by native spinal specimens. The maximum torque values were (44.5 ± 1.5) N∙m. To reduce stability, the groups were arranged in the following order: the group with a classical partial lateral corpectomy [maximum value (44.5 ± 1.5) N∙m], with a modified partial lateral corpectomy [maximum value (49.5 ± 0.5) N∙m]. The difference in indicators indicates the possibility of both changing the modulus of the radius vector and the angle between the vector indicated and the direction of the acting force. The values of rotation angles at which a transition from elastic to plastic deformation was observed were also different and amounted to 22.0º ± 1.0º and 28.0º ± 1.0º degrees. The native specimens of the spine proved to be the most resistant to force applied; specimens with modified partial lateral corpectomy were less resistant than native specimens but more resistant then specimens with partial lateral corpectomy. At the same time, the samples with modified partial lateral corpectomy differed little from the native samples.
  1. N. A. Kozlov, A. A. Oleshkevich, B. Bhattarai, “Biomechanical study of vertebral column after performing modified partial lateral corpectomy in dogs,” in Book of Abstr. 8th Int. Conf. Radiation and Applications in Various Fields of Research (RAD 2020), Budva, Montenegro, p. 7, 2020.
    Retrieved from: https://www.rad-conference.org/Book_of_Abstracts-RAD_2020.pdf
    Retrieved on: Sept. 23, 2020
  2. Y. Zheng, W. W. Lu, Q. Zhu L. Qin, S. Zhong, J. C. Leong, “Variation in bone mineral density of the sacrum in young adults and its significance for sacral fixation,” Spine, vol. 25, no. 3, pp. 353–357, 2000.
    DOI: 10.1097/00007632-200002010-00016
    PMid: 10703109
  3. В. В. Рерих, М. У. Байдарбеков, М. А. Садовой, Н. Д. Батпенов, И. А. Кирилова, “Хирургическое лечение переломов грудных и поясничных позвонков с использованием транспедикулярной пластики и фиксации,” Хирургия позвоночника, т. 14, № 3, с. 54–61, 2017 (V. V. Rerikh, M. U. Baiderbekov, M. A. Sadovoy, N. D. Barpenov, L. A. Kirilova, “Surgical tratment of thoracic and lumbar spine fractures using transpedicular vertebroplasty and fixation,” Spine Surgery, vol. 14, no. 4, pp. 54-61, 2017.)
    Retrieved from: https://cyberleninka.ru/article/n/hirurgicheskoe-lechenie-perelomov-grudnyh-i-poyasnichnyh-pozvonkov-s-ispolzovaniem-transpedikulyarnoy-plastiki-i-fiksatsii
    Retrieved on: Jul. 17, 2020
  4. M. Hofstetter, P. Gédet, M. Doherr, J. Ferguson, F. Forterre, “Biomechanical Analysis of the Three-Dimensional Motion Pattern of the Canine Cervical Spine Segment C4–C5,” Veterinary Surgery, vol. 38, pp. 49–58, 2009.
    DOI: 10.1111/j.1532-950X.2008.00465.x
  5. F. De Vicente, F. Bernard, D. Fitzpatrick, P. Moissonnier, “In vitro radiographic characteristics and biomechanical properties of the canine lumbar vertebral motion unit after lateral corpectomy, mini-hemilaminectomy and hemilaminectomy”, Vet. Comp. Orthop. Traumatol., vol. 26, pp. 19–26, 2013.
    DOI: 10.3415/VCOT-12-02-0016
  6. C. J. Downes, T. J. Gemmill, S. E. Gibbons, “Hemilaminectomy and vertebral stabilisation for the treatment of thoracolumbar disc protrusion in 28 dogs,” J. Small Anim. Pract., vol. 50, pp. 525–535, 2009.
    DOI: 10.1111/j.1748-5827.2009.00808.x
  7. A. Filleur, “Benefit of thoracolumbar lateral corpectomy for chronic intervertebral disc disease in dogs: results of a 14 year retrospective study of 107 dogs in two veterinary teaching hospitals”, Proceedings of the 21st Annual Scientific Meeting European College of Veterinary Surgeons , Barcelona, Spain, p. 76, 2012.
    Retrieved from: https://www.ivis.org/library/ecvs/ecvs-annual-cientific-meeting-spain-2012/benefits-of-thoracolumbar-lateral-corpectomy
    Retrieved on: May 25, 2020.
  8. T. Flegel et.al. “Partial lateral corpectomy of the thoracolumbar spine in 51 dogs: assessment of slot morphometry and spinal cord decompression”, Vet. Surg., vol. 40, pp. 14–21, 2011.
    DOI: 10.1111/j.1532-950X.2010.00747.x
  9. N. D. Jeffery, J. M. Levine N. J. Olby, V. M. Stein “Intervertebral Disk Degeneration in Dogs: Consequences, Diagnosis, Treatment, and Future Directions”, Journal of Veterinary Internal Medicine, vol. 27, no. 6, pp. 1318-1333, 2013.
    DOI: 10.1111/jvim.12183
  10. L. A. Smolders et al., “Biomechanical assessment of the effects of decompressive surgery in non-chondrodystrophic and chondrodystrophic canine multisegmented lumbar spines”, Eur. Spine J., vol. 21, pp. 1692-1699, 2012.
    DOI: 10.1007/s00586-012-2285-0
  11. H. J. Hansen, “A pathologic-anatomical study on disc degeneration in dog, with special reference to the so-called enchondrosis intervertebralis”, Acta Orthop. Scand. Suppl., vol. 11, pp. 1–117, 1952.
    Retrieved from: https://pubmed.ncbi.nlm.nih.gov/14923291/
    Retrieved on: June 3, 2020
  12. A. Fujiwara et al., “The relationship between disc degeneration, facet joint osteoarthritis and stability of the degenerative lumbar spine”, J. Spinal Disord, vol. 13, pp. 444-450, 2000.
    DOI: 10.1097/00002517-200010000-00013
  13. P. Moissonnier, P. Meheust, C. Carozzo, “Thoracolumbar lateral corpectomy for treatment of chronic disk herniation: technique description and use in 15 dogs”, Vet. Surg., vol. 33, pp. 620–628, 2004.
    DOI: 10.1111/j.1532-950X.2004.04085.x
  14. A. Z. Akhtar, J. J. Pippin, C. B. Sandusky, “Animal studies in spinal cord injury: a systematic review of methylprednisolone”, Altern. Lab. Anim., vol. 37, no. 1, pp. 43-62, 2009.
    DOI: 10.1177/026119290903700108
  15. O. Besalti et.al., “The role of extruded disk material in thoracolumbar intervertebral disk disease: a retrospective study in 40 dogs”, Can. Vet. J., vol. 46, pp. 814–820, 2005.
    Retrieved from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1187791/
    Retrieved on: June 15, 2020
  16. V. N. Revés et.al., “Influence of partial lateral corpectomy with and without hemilaminectomy on canine thoracolumbar stability: a biomechanical study”, Vet. Surg., vol. 41, no. 2, pp. 228–234, 2012.
    DOI: 10.1111/j.1532-950X.2011.00912.x
N.A. Kozlov, A.A. Oleshkevich, B. Bhattarai, S.V. Pozyabin, "Biomechanics of vertebral column after performing modified partial lateral corpectomy," RAD Conf. Proc, vol. 4, 2020, pp. 113–117, http://doi.org/10.21175/RadProc.2020.24
Environmental Pollution


Elisaveta Petrova

DOI: 10.21175/RadProc.2020.25

The aim of the study was to predict the occurrence of silicosis and asbestosis, resp. from dry or from dry and water drilling in the mines among former miners, and among asbestos exposed workers by determining the duration of dust free period [DFP] – for silicosis, and latent period [LP] – for asbestosis, and to describe some new trends of appearance of early silicotic changes during water drilling in the Bulgarian mines. DFP was investigated among 481 quartz exposed miners, and the LP – among 120 asbestos exposed workers. A retrospective and cross-sectional study, using linear regression analysis for DFP, respectively nonparametric analysis – for mean of LP has been performed. SPSS software package has been used. The DFP has been calculated, using the formula: У= А + Х1.В + Х2.С + Х3.D + Х4.Е, where the regression coefficients were: A (free coefficient), B (age), C (dust exposure duration), D (total dust concentrations), and E (quartz presence in the dust). The coefficients have been of different values for each mine. The average LP up to the occurrence of benign asbestos diseases was about 17.45 years. Conclusions: Calculation of DFP and LP values, together with the knowledge of the number of exposed workers and their exposure makes possible to predict the occurrence of silicosis and benign asbestos diseases in future.
  1. Early Detection of Occupational Diseases , Id. 924154211X, WHO, Geneva, Switzerland, 1986.
    Retrieved from: http://apps.who.int/iris/bitstream/handle/10665/37912/924154211X.pdf?sequence=1&i
    Retrieved on: Aug. 15, 2018
  2. Е. Петрова, “Късни форми на силикоза и силикотуберкулоза,” Канд. дисертация, Медицински Университет, София, 1988. (E. Petrova, “Late forms of silicosis and silicotuberculosis,” Ph.D. dissertation, Medical University, Sofia, 1988).
  3. E. Петрова, “Силикоза и силикотуберкулоза”, Мед. и физк., С, 1993. (E. Petrova, Silicosis and silicotuberculosis”, Med. and Physc., S, 1993).
  4. E. Petrova, “Present-day Characterization of Silicosis in Bulgaria,” Revja rada, Varedno izdanje, pp. 131 – 135, 1989.
  5. Т. Бурилков, М. Добрева, С. Иванова-Джубрилова, “Минерални прахове в работната среда,” Мед. и физк., С, 1983. (T. Bourilkov, M. Ivanova-Djubrilova, “Mineral Dust in Working Environmental Air,” Med. and Physc., S, 1983).
  6. “Asbestos, asbestosis, and cancer: The Helsinki criteria for diagnosis and attribution,” Scand. J. Work. Environ. Health, vol. 23, no. 4, pp. 311-316, Aug. 1997.
    PMid: 9322824
  7. M. Kidu, T. Tsuda, “Pulmonary Fibrosis Due to Inhaled Inorganic Dusts,” in: Basic and Clinical Aspects of Pulmonary Fibrosis, London/Tokyo, UK/Japan, CRC Press, 1994, ch. 28, pp. 389-399.
  8. D. Sherson, “Silicosis in the twenty first century,” Occup. Environ. Med., vol. 59, no. 11, pp. 721 – 722, Nov. 2002.
    DOI: 10.1136/oem.59.11.721
    PMid: 12409528
    PMCid: PMC174024
  9. NIOSH Hazard Review: Health Effects of Occupational Exposure to Respirable Crystalline Silica , DHHS (NIOSH) Publication No. 2002-129, NIOSH, Cincinnati (OH), USA, 2002.
    Retrieved from: https://www.cdc.gov/niosh/docs/2002-129/pdfs/2002-129.pdf?id=10.26616/NIOSHPUB2002129
    Retrieved on: Aug. 15, 2018
Elisaveta Petrova, "Appearance of silicosis and asbestosis in dust exposed workers," RAD Conf. Proc, vol. 4, 2020, pp. 118–120, http://doi.org/10.21175/RadProc.2020.25


L.V. Tereshchenko, I.D. Shamsiev, I.V. Bondar, E.A. Krasavin, A.V. Latanov

DOI: 10.21175/RadProc.2020.26

During long-duration space flights outside the Earth’s magnetosphere, exposure to galactic cosmic rays and solar energetic particles may lead to early damage to human central nervous system, causing operator activity impairments in astronauts. A conditioned instrumental performance involving saccadic eye movements and manual reactions was studied in two nonhuman primates (Macaca mulatta). One monkey was exposed to a single cranial proton irradiation (170 MeV, 3 Gy). For the other control animal irradiation was simulated. Proton irradiation had no negative effects on instrumental performance during three months after irradiation. However, irradiated monkey showed an increase in saccadic and manual response latencies started at the one month after irradiation and observed next two months. No such effects were found in control monkey. Thus system processes, crucial for conditioned instrumental behaviour, turned out to be widely resistant to proton irradiation, although increase in saccadic and manual response latencies suggests its early negative effects on integrative and executive brain mechanisms.
  1. J. C. Chancellor, R. S. Blue, K. A. Cengel et al., “Limitations in predicting the space radiation health risk for exploration astronauts”, NPJ Microgravity, vol. 4, a. no. 8, 2018.
    DOI: 10.1038/s41526-018-0043-2
  2. G. A. Nelson, “Space Radiation and Human Exposures, A Primer”, Radiat Res., vol. 185, no. 4, pp. 349-358, 2016.
    DOI: 10.1667/RR14311.1
  3. V. K. Parihar, B. D. Allen, C. Caressi et al., “Cosmic radiation exposure and persistent cognitive dysfunction”, Sci. Rep., vol. 6, a. no. 34774, 2016.
    DOI: 10.1038/srep34774
  4. F. Kiffer, V. Boerma, A. Allen, “Behavioral effects of space radiation: A comprehensive review of animal studies”, Life Sci. Space Res., vol. 21, pp. 1-21, 2019.
    DOI: 10.1016/j.lssr.2019.02.004
  5. A. Bruner, V. Bogo, R. K. Jones, “Delayed match-to-sample early performance decrement in monkeys after 60-Co irradiation”, Radiat. Res., vol. 63, no. 1, pp. 83-96, 1975.
    PMid: 1144685
  6. V. Bogo, “Radiation: behavioral implications in space”, Toxicology ., vol. 49, pp. 299–307, 1988.
    DOI: 10.1016/0300-483X(88)90012-1
  7. M. E. Robbins, J. D. Bourland, J. M. Cline et al., “A model for assessing cognitive impairment after fractionated whole-brain irradiation in nonhuman primates”, Radiat Res., vol. 175, no. 4, pp. 519–525, 2011.
    DOI: 10.1667/RR2497.1
  8. E. E. Kovalev, “Radiation protection during space flight”, Aviation, Space, and Environmental Medicine, vol. 54, no. 12, pp. 16-23, 1983.
    PMid: 6318715
  9. N. V. Kuznetsov, R. A. Nymmik, M. I. Panasyuk, “The balance between SEP and GCR particle fluxes in interplanetary space, depending on solar activity level”, AIP Conference Proceedings, vol. 552, pp. 1197-1202, 2001.
    DOI: 10.1063/1.1358072
  10. P. König, N. Wilming, T. C. Kietzmann et al., “Eye movements as a window to cognitive processes”, Journal of Eye Movement Research, vol. 9, no. 5, a. no. 3, 2016.
    DOI: 10.16910/jemr.9.5.3
  11. И. В. Бондарь, Л. Н. Васильева, Л. В. Терещенко и др., “Обучение макак-резусов сложным когнитивным задачам”, Журн. высш. нервн. деят. им. И.П. Павлова, т. 68, no. 4, стр. 459-476, 2018. (I. V. Bondar, L. N. Vasileva, L. V. Tereshchenko et al., “Rhesus monkey training in complex cognitive tasks”, I.P. Pavlov Journal of Higher Nervous Activity, vol. 68, no. 4, pp. 459-476, 2018.)
    DOI: 10.1134/S0044467718040044
  12. A. V. Latanov, V. N. Anisimov, “Method and system for recording eye movement”, Patent No. RU 2696042C2, 2019.
  13. А. Г. Беляева, А. С. Штемберг, А. М. Носовский и др., “Воздействие высокоэнергетических протонов и ионов углерода 12С на когнитивные функции обезьян и содержание моноаминов и их метаболитов в периферической крови”, Нейрохимия, т. 34, no. 2, стр. 168–176, 2017. (G. Belyaeva, A. S. Shtemberg, A. M. Nosovskii et al., “The effects of high-energy protons and carbon ions (12C) on the cognitive function and the content of monoamines and their metabolites in peripheral blood in monkeys”, Neurochemical Journal, vol. 11, no. 2, pp. 168-175, 2017).
    DOI: 10.7868/S1027813317010034
  14. B. M. Rabin, L. L. Buhler, J. A. Joseph et al., “Effects of exposure to 56Fe particles or protons on fixed-ratio operant responding in rats”, J. Radiat. Res., vol. 43, Issue Suppl., S225-S228, 2002.
    DOI: 10.1269/jrr.43.S225
  15. B. Shukitt-Hale, A. Szprengiel, J. Pluhar et al., “Effects of proton exposure on neurochemistry and behavior”, Adv. Space Res., vol. 33, no. 8, pp. 1334–1339, 2004.
    DOI: 10.1016/j.asr.2003.10.038
  16. C. M. Davis, K. L. DeCicco-Skinner, R. D. Hienz, “Deficits in Sustained Attention and Changes in Dopaminergic Protein Levels following Exposure to Proton Radiation Are Related to Basal Dopaminergic Function”, PLoS ONE., vol. 10, no. 12, a. no. e0144556, 2015.
    DOI: 10.1371/journal.pone.0144556
  17. A. V. Latanov, L. V. Tereschenko, M. A. Ostrovsky, “Influence of Cranial Irradiation with High-Energy Protons on the Visuomotor Behavior in Monkeys”, Dokl. Biol. Sci., vol. 487, pp. 95–97, 2019.
    DOI: 10.1134/S0012496619040069
  18. L. V. Tereshchenko, V. N. Anisimov, V. V. Shul’govsky et al., “Early changes of saccade parameters in monkeys at the developments of MPTP-induced hemiparkinsonism”, Perception., vol. 44, no. 8-9, pp. 1054-1063, 2015.
    DOI: 10.1177/0301006615596868
  19. Л. В. Терещенко, А. В. Латанов, “Нарушения зрительно-моторных функций при развитии МФТП-индуцированного паркисоноподобного синдрома у обезьян”, Журн. высш. нервн. деят. им. И.П. Павлова, т. 68, no. 4, стр. 496-513, 2018. (L. V. Tereshchenko, A. V. Latanov, “Visuo Motor Impairments at the Development of MPTP-Induced Hemiparkinsonian Syndrome in Monkeys”, I.P. Pavlov Journal of Higher Nervous Activity, vol. 68, no. 4, pp. 496-513, 2018.)
    DOI: 10.1134/S0044467718040147
L.V. Tereshchenko, I.D. Shamsiev, I.V. Bondar, E.A. Krasavin, A.V. Latanov, "Disturbances in visuomotor behaviour of nonhuman primates after cranial irradiation with high-energy protons," RAD Conf. Proc, vol. 4, 2020, pp. 121–125, http://doi.org/10.21175/RadProc.2020.26


Violetta Kusheeva, Sergey Ostakh

DOI: 10.21175/RadProc.2020.27

The paper highlights topical issues of the drill cuttings radioecological safety assessment in the process of waste management. Particular attention is paid to the necessity for continuous radioecological research and well-timed receipt of their results. The conducted research allows to solve the scientific and practical problem of radioecological studies optimization during management of drilling waste by development of the new methodical approach to their processing and interpretation. The most widespread natural radionuclides Th232, Ra226, K40 were selected as the focus group. An example of experimental determining the drill cuttings radiological properties depending on the depth of drilling is given. The results of these works were analyzed using the methods of regression and correlation analysis. The regression dependence of the specific effective radioactivity on the sampling depth for the investigated well is obtained. An approach using the obtained dependences as calibration graphs for a preliminary radiological assessment of drill cuttings of a similar genesis is proposed. The logical-informational model that implements this approach is described. It is shown that the use of the logical-informational model optimizes the decision-making process on the suitability of drill cuttings for their utilization to a useful product – soil-like reclamation mixtures.
  1. E. R. Landa, “Naturally occurring radionuclides from industrial sources: characteristics and fate in the environment,” Radioactivity in the Environment, vol. 10, pp. 211-237, 2007.
    DOI: 10.1016/S1569-4860(06)10010-8
  2. M. D. A. Sharif, N. V. R. Nagalakshmi, S. S. Redd, “Drilling waste management and control the effects,” J. Adv. Chem. Eng., vol. 7, no. 1, 2017.
    DOI: 10.4172/2090-4568.1000166
  3. С. В. Мещеряков, С. В. Остах, О. С. Остах, Д. И. Рогожин, “Инжиниринговая интерактивная система по обезвреживанию нефтесодержащих отходов, загрязненных природными радионуклидами,” Безопасность труда в промышленности, № 9, C. 46-51, 2017.(S.V. Meshcheryakov, S.V. Ostakh, O.S. Ostakh, D.I. Rogozhin, “Interactive engineering system for the neutralization of oily waste contaminated with natural radionuclides,” Labor Safety in Industry, vol. 9, p. 46-51, 2017.)
    Retrieved from: https://www.elibrary.ru/download/elibrary_29991780_37741525.pdf
  4. S. I. Onwukwe, M. S. Nwakaudu, “Drilling wastes generation and management approach,” International Journal of Environmental Science and Development, vol. 3, no. 3, pp. 252-257, 2012.
    Retrieved from: http://www.ijesd.org/papers/226-D598.pdf
  5. В. А. Галактионов, В.Г. Журавлев, И.В. Павлова, В.А. Домаренко “Ранжирование техногенного радионуклидного загрязнения по критериям оценки радиоэкологического состояния при строительстве Альконского горно-металлургического комбината,” Материалы V Международной конференции. ФГАОУ ВО “Национальный исследовательский Томский политехнический университет,” c . 172-175, 2016. (V. Galaktionov, V. Juravlev, I. Pavlova, V. Domarenko “Ranging of technogenic radionuclide pollution on estimation criteria of radioecological condition for Elkon mining metallurgical plant construction,” Materials of the V International Conference. FGAOU VO “National Research Tomsk Polytechnic University” , pp. 172-175, 2016)
  6. M. F. Attallah, H. M. Abdelbary, E. A. Elsofany, Y. T. Mohamed, M. M. Abo-Aly, “Radiation safety and environmental impact assessment of sludge TENORM waste produced from petroleum industry in Egypt,” Process Safety and Environmental Protection, vol. 142, pp. 308-316, 2020.
    DOI: 10.1016/j.psep.2020.06.012
  7. F. Moatar, S. R. Shadizadeh, A. R. Karbassi et al., “Determination of naturally occurring radioactive materials (NORM) in formation water during oil exploration,” J. Radioanal. Nucl. Chem., vol. 283, pp. 3–7, 2010.
    DOI: 10.1007/s10967-009-0001-2
  8. С. В. Мещеряков, С. В. Остах, А. В. Сушкова, О. С. Остах, “Алгоритмический подход к процессам обращения с отходами бурения,” Экология и промышленность России, № 10 (21), С. 9-13, 2017. (S. V. Meshcheryakov, S. V. Ostakh, A. V. Sushkova, O. S. Ostakh, “Algorithmic Approach to the Processes of Drilling Waste Management,” Ecology and Industry of Russia, vol. 10, no. 21, pp. 9-13, 2017.)
    DOI: 10.18412/1816-0395-2017-10-9-13
  9. A. R. Ismail, A. H. Alias, W. R. W. Sulaiman, M. Z. Jaafar, I. Ismail “Drilling fluid waste management in drilling for oil and gas wells,” Chemical Engineering Transactions, vol. 56, pp. 1351-1356, 2017.
    DOI: 10.3303/CET1756226
  10. O. Ostakh, E. Uzyakova, N. Grechishcheva, V. Kusheeva “Ecotoxicological assessment of soil-like mixtures made of drill cuttings,” Journal of Engineering, Design and Technology, vol. ahead-of-print, no. ahead-of-print, 2021.
    DOI: 10.1108/JEDT-07-2020-0310
  11. ГОСТ 30108-94, “Материалы и изделия строительные. Определение удельной эффективной активности естественных радионуклидов,” М.: Стандартинформ, c. 16, 2007. (GOST 30108-94, “Building materials and products. Determination of the specific effective activity of natural radionuclides,” M.: Standartinform, p. 16, 2007.)
  12. J. Jónás, J. Somlai, A. Csordás, E. Tóth-Bodrogi, T. Kovács, “Radiological survey of the covered and uncovered drilling mud depository,” Journal of Environmental Radioactivity, vol. 188, pp. 30-37, 2018.
    DOI: 10.1016/j.jenvrad.2017.10.020
  13. А. В. Безденежных, О. С. Остах, С. В. Остах, В. Л. Заворотный, В. С. Столбовой, “Радиационно-химическая характеристика буровых шламов Западной Сибири и модернизация системы обращения с отходами бурения,” Экология и промышленность России, Т. 24, № 9, С. 16-21, 2020. (V. Bezdenezhnykh, O. S. Ostakh, S. V. Ostakh, V. L. Zavorotny, V. S. Stolbovoy, “Radiation-chemical characteristics of drilling cuttings from Western Siberia and modernization of the drilling waste management system,” Ecology and Industry of Russia, vol. 24, no. 9, pp. 16-21, 2020)
    DOI: 10.18412/1816-0395-2020-9-16-21
  14. В. Ф. Горбунов, В. М. Кузьмин, И. М. Плюснин, Б. А. Терентьев, Ю. С. Шимелевич, “Способ привязки бурового шлама к разрезу скважины,” Авторское свидетельство SU 898372 A1, 15.01.1982. Заявка № 2574891 от 30.01.1978. (V. F. Gorbunov, V. M. Kuzmin, I. M. Plyusnin, B. A. Terentyev, Yu. S. Shimelevich, “Method of attaching drill cuttings to the well section,” Inventor’s certificate SU 898372 A1, 15.01.1982, Application No. 2574891 dated 01/30/1978.)
    Retrieved from: https://www.elibrary.ru/download/elibrary_39993918_26203133.pdf
Violetta Kusheeva, Sergey Ostakh, "Data enhancement of radioecological research during drilling waste utilization to reclamation mixtures," RAD Conf. Proc, vol. 4, 2020, pp. 126–131, http://doi.org/10.21175/RadProc.2020.27


A.A. Oleshkevich, T.V. Ippolitova, S.V. Pozdnyakov, A.M. Nosovskiy

DOI: 10.21175/RadProc.2020.28

Authors developed a classifier that allows to identify the features of rhythm regulation according to the cows’ heart activity. That has become possible as a result of studying of the heart rhythm of healthy cows of different age and functional status (pregnancy, lactation) and the mathematical analysis of the results obtained. Quantitative parameters are given to estimate the tone of the autonomic nervous system, as well as the function of automatism and the stability of the regulations. The method of mathematical analysis allows to control the work of the heart, the regulation of blood circulation and other parameters. The quantitative parameters of the mathematical analysis of heart rhythm in connection with the degree of adaptation of the animal were revealed. That can serve as a scientific basis for further determination of the functional and biological characteristics of productive animals at different stages of the physiological cycle.
  1. A. A. Oleshkevich, “Mathematical analysis of cow heart rate variability,” in Book of Abstr. 8th Int. Conf. Radiation and Applications in Various Fields of Research (RAD 2020), Virtual conference, 2020, p. 16.
    Retrieved from: https://www.rad-conference.org/Book_of_Abstracts-RAD_2020.pdf
    Retrieved on: Sept. 23, 2020
  2. М. Ю. Афанасьев, “Молочная продуктивность коров в связи с особенностями их сердечно-сосудистой системы,” Автореф. дисс. на соискание уч. степени кандидата сельскохозяйственный наук, РФ, 2005, 22 с. (M. Yu. Afanasyev, “Milk productivity of cows in connection with the peculiarities of their cardiovascular systems,” Abstracts of Ph. D. dissertations, RF, 2005, p. 22)
    Retrieved from: https://www.dissercat.com/content/molochnaya-produktivnost-korov-v-svyazi-s-osobennostyami-ikh-serdechno-sosudistoi-sistemy
    Retrieved on: Oct.17, 2020
  3. А. П. Двойнина, Материалы по электрокардиографии высокопродуктивных коров: Физиологические основы электрокардиографии животных , Москва, СССР: Наука, 1958, с. 75-79. (A. P. Dvoynina, Materials on electrocardiography of highly productive cows: Physiological basis of electrocardiography of animals , Moscow, USSR: Science, 1958, pp. 75–79)
  4. Л. Г. Кротова, “Влияние уровня молочной продуктивности коров на их сердечную деятельность,” Труды Свердловского с.х. института, Свердловск, СССР: СвСХИ, 1958, с. 211-214 (L. G. Krotova, “The impact of the level of milk production of cows on their heart activity,” in Book of Proceedings of the Sverdlovsk Institute, Sverdlovsk, USSR, 1958, pp. 211–214).
  5. В. М. Покровский, “ Формирование ритма сердца в организме человека и животных”, Краснодар, РФ: Кубань–Книга, 2007, 144 с. (V. M. Pokrovsky, “ Formation of the heart rhythm in humans and animals”, Krasnodar, RF: Kuban-Book, 2007, 144 p.)
    Retrieved from: https://docplayer.ru/69145193-V-m-pokrovskiy-formirovanie-ritma-serdca-v-organizme-cheloveka-i-zhivotnyh.html
    Retrieved on: Oct.17, 2020
  6. Н. И. Шлык, Сердечный ритм и тип регуляции у детей, подростков и спортсменов, Ижевск, РФ: Удмуртский университет, 2009, 259 с. (N. I. Shlyk, Heart rate and type of regulation in children, adolescents and athletes , Izhevsk, RF: Udmurt University Publishing House, 2009, 259 p.)
    Retrieved from: http://fpbswimming.ru/file/Ритм_сердца_у_детей_подростков_и_спортсменов.pdf
    Retrieved on: Oct.17, 2020
  7. Л. А. Бокерия, О. Л. Бокерия, И. В. Волковская, “Вариабельность сердечного ритма: методы измерения, интерпретация, клиническое использование”, Анналы аритмологии, № 4, с. 21–32, 2009. (L. А. Bockeria, О. L. Bockeria, I. V. Volkovskaya, “Heart rate variability: measurement methods, interpretation, clinical use,” Annals of Arrhythmology, № 4, pp. 21-32, 2009).
  8. Р. М. Баевский и др., “Анализ вариабельности сердечного ритма при использовании различных электрокардиографических систем,” Вестник аритмологии, №24, с. 65-87, 2001. (R. M. Baevsky et. al., “Analysis of heart rate variability using different electrocardiographic systems”, Bulletin of Arrhythmology, № 24, pp. 65-87, 2001.)
    Retrieved from: https://www.dissercat.com/content/molochnaya-produktivnost-korov-v-svyazi-s-osobennostyami-ikh-serdechno-sosudistoi-sistemy
    Retrieved on: Oct.17, 2020
  9. Методические рекомендации по анализу вариабельности сердечного ритма у спортсменов в видах спорта на выносливость с применением математических методов , [электр. ресурс], Москва, РФ, 2013, 65 с. (Guidelines on the analysis of heart rate variability in athletes in sports endurance using mathematical methods [electronic resource], Moscow, RF, 2013, 65 p.)
    Retrieved from: https://docplayer.ru/37200655-Metodicheskie-rekomendacii-po-analizu-variabelnosti-serdechnogo-ritma-u-sportsmenov-v-vidah-sporta-na-vynoslivost-s-primeneniem-matematicheskih.html
    Retrieved on: Oct. 17, 2020
  10. Б. С. Никольский, “Новые данные по электрокардиографическим исследованиям крупного рогатого скота”, Всес. сов. по физиологии и биохимии с.х. животных. Москва, СССР, 1959, 312 с. (B. S. Nikolsky, “New data on electrocardiographic studies of cattle”, in Book of Abstr. of All-Union. Councils on the Physiology and Biochemistry of Animals , Moscow, USSR, 1959, 312 p.)
  11. И. В. Филатов, “Клиническая электрокардиография у сельскохозяйственных животных”, Автореф. дисс. док. вет. наук, СССР, 1959, 40 с. (I. V. Filatov “Clinical electrocardiography in farm animals”, Abstract of the Doctor Vet. Dissertation, USSR, 1956, 40 p.)
  12. А. И. Григорьев, Р. М. Баевский, Концепция здоровья и космическая медицина, Москва, РФ: Слово, 2007, 208 с. (A. I. Grigoriev, R. M. Baevsky, Concept of health and space medicine, Moscow, RF: Word, 2007, 208 p.)
    Retrieved from: https://search.rsl.ru/ru/record/01003356783
    Retrieved on: Oct. 17, 2020
  13. Р. М. Баевский, Г. Г. Иванов, “Вариабельность сердечного ритма: теоретические аспекты и возможности клинического применения”, Ультразвуковая и функциональная диагностика, № 3, с. 108-127, 2001. (R. M. Baevsky, G. G. Ivanov “Heart rate variability: theoretical aspects and possibilities of clinical use”, Ultrasound and functional diagnostics, № 3, pp. 106-127, 2001.
    Retrieved from: https://www.elibrary.ru/item.asp?id=25990135
    Retrieved on: Oct.17, 2020
  14. A. M. Wawryk, D. J. Bates, J. J. Couper “Power spectral analysis of heart rate variability in children and adolescents with IDDM”, Diabetes Care, vol. 20, no. 9, pp. 1416–1421, 1997.
    DOI: 10.2337/diacare.20.9.1416
    PMid: 9283789
  15. Р. М. Баевский, О. И. Кириллов, С. З. Клецкин, Математический анализ изменений сердечного ритма при стрессах, Москва, РФ: Наука, 1984. 220 с. (R. M. Baevsky, O. I. Kirillov, S. Z. Kletskin, Mathematical analysis of changes in heart rate during stress, Moscow, RF: Science, 1984, 220 p.)
    Retrieved from: https://search.rsl.ru/ru/record/01001228908
    Retrieved on: Oct.17, 2020
  16. Р. М. Баевский, Г. Г. Иванов, “Вариабельность сердечного ритма: основы метода и новые направления”, Новые методы электрокардиографии, Москва, РФ: Техносфера, 2007, с. 473-496. (R. M. Baevsky, G. G. Ivanov, “Heart rate variability: fundamentals of the method and new directions”, New methods of electrocardiography, Moscow, RF: Technosphere, 2007, pp. 473–496.)
    Retrieved from: http://www.technosphera.ru/lib/book/43?read=1
    Retrieved on: Oct.17, 2020
  17. Р. М. Баевский, А. П. Берсенева, Оценка адаптационных возможностей организма и риск развития заболеваний , Москва, РФ: Медицина, 1997, 236 с. (R. M. Baevsky, A. P. Berseneva, Evaluation of the adaptive capacity of the organism and the risk of developing diseases , Moscow, RF: Medicine, 1997, 265 p.)
    Retrieved from: https://studopedia.info/2-119367.html
    Retrieved on: Oct.17, 2020
  18. Отв. ред. Н. И. Шлык., Р. М. Баевский, Ритм сердца и тип вегетативной регуляции в оценке уровня здоровья населения и функциональной подготовленности спортсменов : материалы VI Всерос. симп., Ижевск, РФ: Удмуртский университет, 2016, 608 c. (ex. editor N. I. Shlyk., R. M. Baevsky, “Heart rhythm and type of autonomic regulation in the assessment of the level of health of the population and the functional preparedness of athletes,” Materials of VI All-Un. Simp., Izhevsk, RF: Udmurt University Publishing Center, 2016, 608 p.)
    Retrieved from: https://www.elibrary.ru/item.asp?id=27210254
    Retrieved on: Oct. 17, 2020
  19. С. Н. Коренева, К. Б. Петров, “Способ коррекции вегетативного баланса организма спортсменов,” Патент РФ № 2373975, РФ, ноябрь, 2009. (S. N. Koreneva, K. B. Petrov, “Method of correction of the vegetative balance of the body of athletes,” RF patent no. 2373975, RF, Nov. 2009)
    Retrieved from: http://allpatents.ru/patent/2373975.html
    Retrieved on: Oct. 17, 2020
A.A. Oleshkevich, T.V. Ippolitova, S.V. Pozdnyakov, A.M. Nosovskiy, "Main physiological parameters of the heart rhythm of cows and the mathematical analysis of its variability," RAD Conf. Proc, vol. 4, 2020, pp. 132–137, http://doi.org/10.21175/RadProc.2020.28


S.S. Danilov, A.V. Frolova, S. E. Vinokurov, S.V. Yudintsev, B.F. Myasoedov

DOI: 10.21175/RadProc.2020.29

The effective isolation of radioactive waste (RW) from the environment is the main problem for the further development of nuclear power. The main phases in titanate-based ceramics are perovskite, rutile, zirconolite and murataite. Murataite grains have a zonal structure with high content of rare earth elements at the center of structure and low content of these at edges, that precludes their leaching in contact with a solution. Murataite-based ceramics containing simulated rare earth elements of high level waste (HLW) were produced via melting of oxide mixtures in a resistance furnace at 1500°C. All samples were composed of mainly murataite and minor perovskite, crichtonite, zirconolite, and pyrophanite/ilmenite phases. Thus, murataite is the dominant host phase for a sample containing zirconium oxide. All samples were analyzed by scanning electron microscopy with an energy dispersive X-ray spectroscopy. Elemental leaching rates from the ceramic with low perovskite content were lower by one order of magnitude then leaching rates for high perovskite content.
  1. N.N. Ponomarev-Stepnoi, “Two-Component Nuclear Power System with a Closed Nuclear Fuel Cycle Based on BN and VVER Reactors,” Atomic Energy, vol. 120, no. 4, pp. 233-239, Aug. 2016.
    DOI: 10.1007/s10512-016-0123-x
  2. Yu.M. Kulyako, D.A. Malikov, T.I. Trofimov, S.A. Perevalov, K.S. Pilyushenko, S.E. Vinokurov, B.F. Myasoedov, “Separation of Americium and Curium in Nitric Acid Solutions via Oxidation of Am(III) by Bismuthate and Perxenate Ions,” Radiochemistry, vol. 62, no. 5, pp. 581-586, Jul. 2020.
    DOI: 10.1134/S1066362220050033
  3. I.W. Donald, “Immobilization of radioactive materials as a ceramic wasteform” in Waste immobilization in glass and ceramic based hosts: radioactive, toxic and hazardous wastes . John Wiley & Sons, 2010, pp. 185-212.
  4. S. V. Stefanovsky, S. V. Yudintsev “Titanates, zirconates, aluminates and ferrites as waste forms for actinide immobilization,” Russian Chemical Reviews, vol. 85, no. 9, pp. 962-994, 2016.
    DOI: 10.1070/RCR4606
  5. G.R. Lumpkin, “Ceramic host phases for nuclear waste remediation,” in Experimental and Theoretical Approaches to Actinide Chemistry, CA, USA, John Wiley & Sons Ltd, 2018, pp. 333-377.
  6. A.A. Lizin, S.V. Tomilin, S.S. Poglyad, E.A. Pryzhevskaya, S.V. Yudintsev, S.V. Stefanovsky, “Murataite: a matrix for immobilizing waste generated in radiochemical reprocessing of spent nuclear fuel” Journal of Radioanalytical and Nuclear Chemistry, vol. 318, pp. 2363, 2018.
    DOI: 10.1007/s10967-018-6236-z
  7. P.E.D. Morgan, F.J. Ryerson, “A new “cubic” crystal compound,” J. Mater. Sci. Lett., vol. 1, pp. 351-352, 1982.
  8. N.P. Laverov, S.V. Yudintsev, S.V. Stefanovsky, B.I. Omel’yanenko, B.S. Nikonov, “Murataite as a universal matrix for immobilization of actinides,” Geology of Ore Deposits, vol.48, no. 5, pp. 335-356, 2006.
    DOI: 10.1134/S1075701506050011
  9. S.V. Stefanovsky, S.V Yudintsev, B.S. Nikonov, B.I. Omel’yanenko, O.I. Stefanovsky, Patent of RF 2315381 from 22.05.2006 (2008).
    Retrieved from: https://patents.google.com/patent/RU2643362C1/ru
  10. N.P. Laverov, S.V. Yudintsev, S.V. Stefanovsky, B.S. Nikonov, B.I. Omel’yanenko, “Murataite matrices for actinide wastes,” Radiochemistry, vol. 53, no.3, pp. 229-243, 2011.
    DOI: 10.1134/S1066362211030027
  11. ГОСТ Р 52126-2003. Отходы радиоактивные. Определение химической устойчивости отвержденных высокоактивных отходов методом длительного выщелачивания. М.: Госстандарт России. Т. 3, 2003. (Radioactive waste. Determination of the chemical stability of solidified high-level waste by the long-term leaching method , Moscow: Gosstandart of Russia, GOST R. 52126, Jul. 1, 2004.)
  12. W.E. Lee, M.I. Ojovan, M.C. Stennett, N.C. Hyatt, “Immobilisation of radioactive waste in glasses, glass composite materials and ceramics,” Advances in Applied Ceramics, vol. 105, no. 1, pp. 3-12, 2006.
    DOI: 10.1179/174367606X81669
  13. G.J. de Groot, H.A. van der Sloot, “Determination of leaching characteristics of waste materials leading to environmental product certification” in Stabilization and Solidification of Hazardous, Radioactive, and Mixed Wastes : 2nd volume, ASTM International, 1992, pp. 149-170.
  14. S.V. Stefanovsky, O.I. Stefanovsky, S.S. Danilov, M.I. Kadyko “Phosphate-based glasses and glass ceramics for immobilization of lanthanides and actinides,” Ceramics International, vol. 45, no. 7, pp. 9331-9338, 2019.
    DOI: 10.1016/j.ceramint.2018.06.208
  15. A. E. Ringwood, S. E. Kesson, K. D. Reeve, D. M. Levins E. J. Ramm, “Crystalline Waste Forms. Synroc,” in Radioactive Waste Forms for the Future, Elsevier, Netherlands, 1988, ch. 2, pp. 233–334.
  16. S.A. Kulikova, S.S Danilov, K.Y. Belova, A.A. Rodionova, S.E. Vinokurov, “Optimization of the Solidification Method of High-Level Waste for Increasing the Thermal Stability of the Magnesium Potassium Phosphate Compound,” Energies, vol. 13, no. 15, article no. 3789, 2020.
    DOI: 10.3390/en13153789
  17. D.H. Moon, D. Dermatas, “An evaluation of lead leachability from stabilized/solidified soils under modified semi-dynamic leaching conditions,” Engineering Geology, vol.85, no. 1-2, pp. 67-74, 2006.
    DOI: 10.1016/j.enggeo.2005.09.028
  18. J. Torras, I. Buj, M. Rovira, J. de Pablo, “Semi-dynamic leaching tests of nickel containing wastes stabilized/solidified with magnesium potassium phosphate cements,” Journal of Hazardous Materials, vol. 186, no. 2-3, pp. 1954-1960, 2011.
    DOI: 10.1016/j.jhazmat.2010.12.093
  19. Q. Xue, P. Wang, J.-S. Li, T.-T. Zhang, S.-Y. Wang, “Investigation of the leaching behavior of lead in stabilized/solidified waste using a two-year semi-dynamic leaching test,” Chemosphere, vol. 166, pp. 1-7, 2017.
    DOI: 10.1016/j.chemosphere.2016.09.059
S.S. Danilov, A.V. Frolova, S.E. Vinokurov, S.V. Yudintsev, B.F. Myasoedov, "Titanate-based ceramic as a matrix for curium and rare earth elements fraction of radioactive waste immobilization," RAD Conf. Proc, vol. 4, 2020, pp. 138–141, http://doi.org/10.21175/RadProc.2020.29


E.I. Nazarov, A.A. Ekidin, A.V. Vasiljev, M.E. Vasyanovich, A.O. Nichiporchuk, V.A. Kozhemyakin, I.A. Kapustin, I.A. Privalov, E.V. Parkhomchuk, S.A. Rastigeev, V.V. Parkhomchuk

DOI: 10.21175/RadProc.2020.30

Field studies on the pre-operational period of a Belarusian NPP have allowed us to determine the “background” level of gamma-emitting radionuclides in individual components of the environment. The results of measuring the dose rate at the NPP construction site are from 0.048 to 0.089 μSv/h. External radiation in the surveyed area is at 96% due to 40K, 226Ra and 232Th. The radionuclides in the surface soil layer are: 40K – from 530 to 700 Bq/kg; 226Ra – from 30 to 55 Bq/kg; and 232Th – from 17 to 35 Bq/kg; 137Cs from 2 to 13 Bq/kg. The dose rate in the floodplain of the Viliya River from 0.033 to 0.082 μSv/h. The activity concentrations of the radionuclides in the surface soil layer of the floodplain of the Viliya River are: 40K – from 390 to 690 Bq/kg; 226Ra – from 33 to 50 Bq/kg; 232Th – from 15 to 50 Bq/kg; 137Cs – from 3 to 12 Bq/kg. The activity concentration of carbon-14 and tritium in the dominant vegetation species were determined to be: from 74.4 to 111.5 pMC and less than lower range limit, respectively.
  1. Environmental and Source Monitoring for Purposes of Radiation Protection , IAEA Safety Guide № RS-G-1.8., IAEA, Vienna, Austria, 2016.
    Retrieved from: https://www.pub.iaea.org/MTCD/Publications/PDF/Pub1216_web.pdf
    Retrieved on: 1 March, 2020
  2. М. М. Кадацкая, “Требования к организации радиационного мониторинга в зоне наблюдения Белорусской АЭС для целей оценки дозы репрезентативного человека”, Здоровье и окружающая среда, т.1, стр. 71 – 73, 2017.(M. M. Kadackaya, “Requirements for the organization of radiation monitoring in the monitoring area of the Belarusian NPP for the purpose of assessing the dose of a representative person”, Health and Environment, vol. 1, pp. 71-73, 2017.)
  3. D. Marčiulionienė et al., “137Cs and plutonium isotopes accumulation/retention in bottom sediments and soil in Lithuania: A case study of the activity concentration of anthropogenic radionuclides and their provenance before the start of operation of the Belarusian Nuclear Power Plant (NPP),” J. Environ. Radioact., vol. 178–179, pp. 253-264, 2017.
    DOI: 10.1016/j.jenvrad.2017.07.024
  4. Su. F. Ozmen, “Ecological assessment of Akkuyu nuclear power plant site marine sediments in terms of radionuclide and metal accumulation,” Journal of Radioanalytical and Nuclear Chemistry, vol. 325, pp. 133–145, 2020.
    DOI: 10.1007/s10967-020-07201-w
  5. R. A. Mikailova, A. V. Panov, D. N. Kurbakov, “The programme and results of the radioecological monitoring of freshwater ecosystems in the vicinity of Rooppur NPP (People’s Republic of Bangladesh),” in RAP Conf. Proc., Belgrade, Serbia, 2019, pp. 108–112.
    DOI: 10.37392/RapProc.2019.21.5
  6. F. F. Bryukhan, “Atmospheric boundary layer monitoring with the SODAR/RASS system on the Belarusian NPP site,” Atomic Energy, vol. 122, no. 1, pp. 69-74, 2017.
    DOI: 10.1007/s10512-017-0237-9
  7. Е. В. Николаенко, “Анализ основных аспектов организации радиационно-гигиенического мониторинга на этапе строительства Белорусской АЭС,” Здоровье и окружающая среда, т. 1, no. 25, стр. 71-73, 2015.(E. V. Nikolaenko, “Analysis of the main aspects for organization of the radiation-hygiene monitoring on the construction phase of the Belarusian NPP,” Health and Environment, vol. 1, no. 25, pp. 75-78, 2015.)
  8. В. Николаенко, В. В. Кляус, “Радиационно-гигиенический мониторинг для оценки "нулевого" фона вокруг Белорусской АЭС,” Здоровье и окружающая среда, ном. 26, стр. 49-53, 2016. (E. V. Nikolaenko, V. V. Klyaus, “Radiation hygienic monitoring for assessment of the background level around the Belarusian NPP,” Health and Environment, no. 26, pp. 49-53, 2016.)
  9. M. Vasyanovich, A. Ekidin, I. Yarmoshenko, “Radionuclide ratio in TENORM studies,” RAD Conf. Proc., Niš, Serbia, 2014, pp. 163-166.
    Retrieved from: https://www.rad-conference.org/Proceedings-RAD_2014.pdf
    Retrieved on: 1 March, 2020
  10. A. A. Ekidin, M. E. Vasyanovich, A. V. Nalivajko, “Gamma-Ray Spectrometry Application for Detection of Anthropogenically Uranium-Polluted Soil,” Principles of the Ecology, vol. 6, no. 2, pp. 29-35, 2013.
    DOI: 10.15393/j1.art.2013.2682
  11. A. A. Ekidin, M. V. Zhukovskii, M. E. Vasyanovich, “Identification of the main dose-forming radionuclides in NPP emissions,” Atomic Energy, vol. 120, pp. 134-137, 2016.
    DOI: 10.1007/s10512-016-0107-x
  12. М. Д. Пышкина, “Определение основных дозообразующих нуклидов в выбросах АЭС PWR и ВВЭР,” Биосферная совместимость: человек, регион, технологии, № 2(18), стр. 98-107, 2017. (M. D. Pyshkina, “The determination of main dose-forming nuclides in NPP PWR and VVER releases,” Biospheric Compatibility: Human, Region, Technologies, no. 2(18), pp. 98-107, 2017.)
  13. M. Vasyanovich, A. Vasilyev, A.Ekidin, I. Kapustin, A. Kryshev, “Special monitoring results for determination of radionuclide composition of Russian NPP atmospheric releases,” Nuclear Engineering and Technology, vol. 51, no. 4, pp. 1176-1179, 2019.
    DOI: 10.1016/j.net.2019.02.010 .
  14. M. E. Vasyanovich et al., “Determination of radionuclide composition of the Russian NPPs atmospheric releases and dose assessment to population,” J. Environ. Radioact., vol. 208-209, article no. 106006, 2019.
    DOI: 10.1016/j.jenvrad.2019.106006
  15. A. A. Ekidin et al., “Evaluation of the contribution of technogenic radionuclides to the total activity of NPP emissions on the basis of a simulation model,” Atomic energy, vol. 119, pp. 271-274, 2016.
    DOI: 10.1007/s10512-016-0059-1
  16. А. В. Васильев, А. А. Екидин, Р. И. Юсупов, А. В. Пудовкин, “Нормативно­методическое обеспечение для подтверждения критериев приемлемости радиоактивных отходов АЭС для захоронения,” АНРИ, №4(91), стр. 23-30, 2017. (A. V. Vasil`ev, A. A. Ekidin, R. I. Yusupov, A. V. Pudovkin, “Procedures for confirmation of acceptance criteria for geological disposal of NPPs radioactive waste,” ANRI, vol. 4(91) pp. 23-30, 2017.)
  17. A. А. Пыркова, А. А. Екидин, К. Л. Антонов, “Поступление инертных радиоактивных газов в атмосферу при нормальной эксплуатации АЭС,” В сборнике: Физика. Технологии. Инновации, УрФУ, Екатеринбург, Россия, 2019, стр. 279-287. (A. A. Pyrkova, A. A. Ekidin, K. L. Antonov, “Discharge of radioactive noble gases to the atmosphere during the normal NPP operation,” In proceedings: Physics. Technologies. Innovation, UrFU, Ekaterinburg, Russia, 2019, pp. 279-287.)
    Retrieved from: http://hdl.handle.net/10995/78826
    Retrieved on: March 1, 2020
  18. A. A. Ekidin, K. L. Antonov, M. E. Vasyanovich, I. A. Kapustin, I. Yu. Filatov, “Radioiodine release into the atmosphere during normal operation of nuclear power plants,” Radiochemistry, vol. 61, pp. 352-364, 2019.
    DOI: 10.1134/S1066362219030111
  19. Е. Л. Мурашова, А. С. Антушевский, М. Е. Васянович, А. А. Екидин, “Метод жидкой сцинтилляции для определения объемной активности стронция-90 в источниках выброса,” АНРИ, №1(96), стр. 17‑26, 2019. (E. L. Murashova, A. S. Antushevskij, M. E. Vasyanovich, A. A. Ekidin, “Liquid scintillation method for determination of strontium-90 concentration in airborne discharge,” ANRI, no. 1 (96), pp. 17-26, 2019.)
  20. Д. Д. Десятов, А. А. Екидин, “Оценка поступления трития в окружающую среду от выбросов АЭС,” Биосферная совместимость: человек, регион, технологии, № 1(21), стр. 88-96, 2018. (D. D. Desyatov, A. A. Ekidin, “Evaluation of tritium`s entry into the environment from nuclear power plants` emissions,” Biospheric Compatibility: Human, Region, Technologies, vol. 1 (21), pp. 88-96, 2018.)
    Retrieved from: https://www.elibrary.ru/download/elibrary_34959688_45026833.pdf
    Retrieved on: March 1, 2020
  21. Е. И. Назаров, А. А. Екидин, А. В. Васильев, “Оценка поступления углерода-14 в атмосферу, обусловленного выбросами АЭС,” Известия высших учебных заведений. Физика, Т. 61, № 12-2 (732), стр. 67-73, 2018. (Nazarov E.I., Ekidin A.A., Vasilyev A.V., “Assessment of the atmospheric carbon-14 caused by NPP emissions.” Proceedings of Higher Educational Institutions. Physics, vol. 61, no. 12-2 (732), pp. 67-73, 2018.)
  22. A. I. Kryshev et al., “Population irradiation dose assessment for14C emissions from NPP with RBMK-1000 and EGP-2 reactors,” Atomic Energy, vol. 128, pp. 53-59, 2020.
    DOI: 10.1007/s10512-020-00650-2
  23. X. Hou, “Tritium and 14C in the Environment and Nuclear Facilities: Sources and Analytical Methods,” Journal of Nuclear Fuel Cycle and Waste Technology, vol. 16, no. 1, pp. 11-39, 2018.
    DOI: 10.7733/jnfcwt.2018.16.1.11
  24. A. I. Lysikov et al., “Novel Simplified Absorption-Catalytic Method of Sample Preparation for AMS analysis designed at the Laboratory of Radiocarbon Methods of Analysis (LRMA) in Novosibirsk Akademgorodok,” International Journal of Mass-spectrometry, vol. 433, pp. 11-18, 2018.
    DOI: 10.1016/j.ijms.2018.08.003
  25. V. V. Parkhomchuk, S. A. Rastigeev, “Accelerator mass spectrometer of the center for collective use of the Siberian Branch of the Russian Academy of Sciences,” Journal of Surface Investigation, vol. 5(6), pp. 1068-1072, 2011.
    DOI: 10.1134/S1027451011110140
  26. А.О. Грубич, “Загрязнение почвы атмосферными выпадениями. Статистические свойства” Минск: ИВЦ Минфина, 230 с., 2017. (A. O. Grubich, “Soil contamination by atmospheric fallout. Statistical properties,” 230 pages, 2017.)
  27. А. Г. Подоляк, Г. В. Седукова, С. А. Исаченко, “Мониторинг содержания радионуклидов в компонентах агроэкосистем в зоне воздействия строящейся Белорусской АЭС,” В сборнике: Экологическая и радиационная безопасность объектов атомной энергетики. Материалы IV научно-практической конференции, 2017, стр. 56-60. (A. G. Podolyak, G. V. Sedukova, S. A. Isachenko, “Monitoring of radionuclide concentrations in agro-ecosystems within the impact area of under-construction Belarusian NPP,” Proceedings from Environmental and Radiation Safety of Nuclear Power Facilities , 2017, pp. 56-60.)
  28. Р. В Лукашевич, В. Д. Гузов, В. А. Кожемякин, А. В. Оборин, “Сцинтилляционные блоки-компараторы для измерений мощности кермы в воздухе в диапазоне от 0,03 нГр/с до 50 нГр/с,” Метрология и приборостроение, №1, стр. 33-37. (R. V Lukashevich, V. D. Guzov, V. A. Kozhemyakin, A. V. Oborin, “Scintillational blocks-comparators to measure kerma power in air withing the range from 0.03 nGr/s to 50 nGr/s,” Metrology and Instrumentation, vol. 1, pp. 33-37, 2017.)
  29. R. Lukashevich, Yu. Verhusha, V. Guzov, V. Kozemyakin, “Application scintillation comparators for calibration low intense gamma radiation fields by dose rate in the range of 0.03–0.1 µSv/h,” Engineering of Scintillation Materials and Radiation Technologies, pp. 221-235, 2019.
    DOI: 10.1007/978-3-030-21970-3_16
  30. Р. В Лукашевич, В. Д. Гузов, В. А. Кожемякин, “Дозиметрия полей гамма-излучения околофонового уровня с использованием высокочувствительного сцинтилляционного блока-компаратора,” АНРИ, №3(98), стр. 29-41, 2019. (R. V Lukashevich, V. D. Guzov, V. A. Kozhemyakin, “Dosimetry of photon radiation fields of near-background level using highly sensitive scintillation comparator,” ANRI, no. 3(98), pp. 29-41, 2019.)
  31. Radiation protection instrumentation – Transportable, mobile or installed equipment to measure photon radiation for environmental monitoring , IEC 61017:2016, Geneva, Intern. Electrotechnical Commiss., 86 pages, 2016.
  32. Radiation protection instrumentation – Ambient and/or directional dose equivalent (rate) meters and/ or monitors for beta, X and gamma radiation. Part 1: Portable workplace and environmental meters and monitors: IEC 60846-1:2009, Geneva: Intern. Electrotechnical Commiss., 116 pages, 2019.
E.I. Nazarov, A.A. Ekidin, A.V. Vasiljev, M.E. Vasyanovich, A.O. Nichiporchuk, V.A. Kozhemyakin, I.A. Kapustin, I.A. Privalov, E.V. Parkhomchuk, S.A. Rastigeev, V.V. Parkhomchuk, "Radiological assessment of the Belarusian nuclear power plant site in the pre-operational period," RAD Conf. Proc, vol. 4, 2020, pp. 142–148, http://doi.org/10.21175/RadProc.2020.30
Radiation Protection


Yousif Abdallah

DOI: 10.21175/RadProc.2020.31

Radiation Exposure is the main hazard in medical x-rays investigations. The objective of this work was to study the attended radiation dose measured in the Majmaah area. Furthermore, to measure the radiation dose level for different examinations in conventional x-rays. Thus, conventional x-rays examination of traumatic patients. A sample of 700 patients was evaluated using at King Khaled Hospital- Majmaah. The average and range of exposure parameters were 73.5 ± 9.1 (65.9 – 124.9) KVp and 2.7 ± 0.71 (0.2 – 9.6) mAs for X-ray exposure factors, respectively. The measured Entrance Surface Air Kerma (ESAK) dose for chest (PA), skull ((AP) and (LAT.)), Lumbosacral ((AP) and (LAT.)) In addition, knee joints ((AP) and (LAT.)) were 0.20 + 0.07 with range of (0.13-0.37) mGy, (0.86 ± 0.01) with range of (0.09 – 2.92) mGy and 0.09 + 0.02 with range of (0.04 -0.17) mGy, (0.10 ± 0.02 with range of (0.04 – 0.17) mGy and 0.1 + 0.02 with range of (0.03 -0.16) mGy and 0.86 ± 0.01 with range of (0.09 – 2.92) mGy respectively. The study was concluded that most of the procedures were done in King Khalid Hospital-Majmaah were in the permissible limits. In dose measurement techniques, the machine and patient-related factors must be fixed for accurate results.
  1. M. Mahesh, The Essential Physics of Medical Imaging, 3 rd ed., Medical Physics, 2013, pp. 100-120.
    PMid: 28524933
    DOI: 10.1118/1.4811156
  2. C.J. Martin, D.G. Sutton, C.M. West, E.G. Wright, “The radiobiology/radiation protection interface in healthcare,” J. Radiol. Prot., vol. 29, no. 2A, pp. A1-A20, Jun. 2009.
    PMid: 19454808
    DOI: 10.1088/0952-4746/29/2A/S01
  3. E.J. Dawe, E. Fawzy, J. Kaczynski, P. Hassman, S.H. Palmer, “A comparative study of radiation dose and screening time between mini C-arm and standard fluoroscopy in elective foot and ankle surgery,” Foot and Ankle Surgery, vol. 17, no. 1, pp. 33-36, Mar. 2011.
    PMid: 21276563
    DOI: 10.1016/j.fas.2010.01.001
  4. G. Compagnone, M.C. Baleni, L. Pagan, F.L. Calzolaio, L. Barozzi, C. Bergamini, “Comparison of radiation doses to patients undergoing standard radiographic examinations with conventional screen-film radiography, computed radiography and direct digital radiography,” Br. J. Radiol., vol. 79, pp. 899-904, Nov. 2006.
    PMid: 17065288
    DOI: 10.1259/bjr/57138583
  5. D. Hart, B.F. Wall, “UK population dose from medical X-ray examinations,” Eur. J. Radiol., vol. 50, no. 3, pp. 285-291, Jun. 2004.
    PMid: 15145489.
    DOI: 10.1016/S0720-048X(03)00178-5
  6. A. Herrmann et al., “Chest imaging with flat-panel detector at low and standard doses: comparison with storage phosphor technology in normal patients,” Eur. Radiol., vol. 12, pp. 385-390, 2002.
    PMid: 11870439
    DOI: 10.1007/s00330-001-1166-4
  7. D.F. Walsh, A.P. Thome, K.S. Mody, A. Eltorai, A.H. Daniels, M.K. Mulcahey, “Radiation safety education as a component of orthopedic training,” Orthopedic Reviews, vol. 11, no. 1, article no. 7883, pp. 20-23, Mar. 2019.
    PMid: 30996841
    DOI: 10.4081/or.2019.7883
  8. S. Bahari, S. Morris, D. Broe, C. Taylor, B. Lenehan, J. McElwain, “Radiation exposure of the hands and thyroid gland during percutaneous wiring of wrist and hand procedures,” Acta Orthop. Belg., vol. 72, no. 2, pp. 194-198, Apr. 2006.
    PMid: 16768265.
  9. K. Mohamad, A Abdelhalim, O. Reuqaya, A. Mohammad, “Assessment of Patient Doses Levels During X-Ray Diagnostic Imaging Using TL Dosimeters and Comparison with Local and International Levels,” Trends in Medical Research, vol. 3, no. 2, pp. 72-81, 2008.
    DOI: 10.3923/tmr.2008.72.81
  10. E. Vañó et al., “ICRP Publication 135: Diagnostic Reference Levels in Medical Imaging,” Ann. ICRP, vol. 46, no. 1, pp. 1-144, Oct. 2017.
    PMid: 29065694
    DOI: 10.1177/0146645317717209
  11. E. Vañó, M. Rosenstein, J. Liniecki, M.M. Rehani, C.J. Martin, R.J. Vetter, “ICRP Publication 113. Education and training in radiological protection for diagnostic and interventional procedures,” Ann. ICRP, vol. 39, no. 5, pp. 7-68, Oct. 2009.
    PMid: 21788173
    DOI: 10.1016/j.icrp.2011.01.002
  12. J. Valentin, “Avoidance of radiation injuries from medical interventional procedures,” Ann. ICRP, vol. 30, no. 2, pp. 7-67, Jun. 2000.
    PMid: 11459599
    DOI: 10.1016/S0146-6453(01)00004-5
  13. D. Papadimitriou et al., “Patient Dose, Image Quality and Radiographic Techniques for Common X-ray Examinations in Two Greek Hospitals and Comparison with European Guidelines,” Radiat. Prot. Dosimetry, vol. 95, no. 1, pp. 43-48, May 2001.
    DOI: 10.1093/oxfordjournals.rpd.a006521
  14. C.L. Li, Y. Thakur, N.L. Ford, “Comparison of the CTDI and AAPM report No. 111 methodology in adult, adolescent, and child head phantoms for MSCT and dental CBCT scanners,” J. Med. Imaging, vol. 4, no. 3, article no. 031212, Jul. 2017.
    PMid: 28983492
    PMCid: PMC5621782
    DOI: 10.1117/1.JMI.4.3.031212
  15. B.M. Moore, S.L. Brady, A.E. Mirro, R.A. Kaufman, “Size-specific dose estimate (SSDE) provides a simple method to calculate organ dose for pediatric CT examinations,” Med. Phys., vol. 41, no. 7, article no. 071917, Jul. 2014.
    PMid: 24989395
    PMCid: PMC5148074
    DOI: 10.1118/1.4884227
  16. C. Descamps, M. Gonzalez, E. Garrigo, A. Germanier, D. Venencia, “Measurements of the dose delivered during CT exams using AAPM Task Group Report No. 111,” J. Appl. Clin. Med. Phys., vol. 13, no. 6, pp. 293-302, Nov. 2012.
    PMid: 23149785
    PMCid: PMC5718533
    DOI: 10.1120/jacmp.v13i6.3934
  17. S. Inkoom, C. Schandorf, M. Boadu, G. Emi-Reynolds, A. Nkansah, “Adult medical X-ray dose assessments for computed tomography procedures in Ghana – A review,” Journal of Agricultural Science and Technology, vol. 19, no. 1-2, pp 1-9, 2014.
  18. W. Muhogora, M.M. Rehani, “Review of the status of radiation protection in diagnostic radiology in Africa,” J. Med. Imaging, vol. 4, no. 3, article no. 031202, Jul. 2017.
    PMid: 28630886
    PMCid: PMC5468545
    DOI: 10.1117/1.JMI.4.3.031202
  19. L.T. Dauer et al., “Status of NCRP Scientific Committee 1-23 Commentary on Guidance on Radiation Dose Limits for the Lens of the Eye,” Health Phys., vol. 110, no. 2, pp. 182-184, Feb. 2016.
    PMid: 26717175
    PMCid: PMC4697269
    DOI: 10.1097/HP.0000000000000412
  20. A. Nemto, C. Czink, D. Haba, A. Gahleitner, “Cone beam CT: A current overview of devices,” Dentomaxillofacial Radiology, vol. 42, no. 8, article no. 20120443, Jun. 2013.
    PMid: 23818529
    PMCid: PMC3922261
    DOI: 10.1259/dmfr.20120443
  21. R. Pauwels, K. Araki, J.H. Siewerdsen, S.S. Thongvigitmanee, “Technical aspects of dental CBCT: state of the art,” Dentomaxillofacial Radiology, vol. 44, no. 1, article no. 20140224, Oct. 2015.
    PMid: 25263643
    PMCid: PMC4277439
    DOI: 10.1259/dmfr.20140224
  22. W.A. Kalender, “Dose in x-ray computed tomography,” Phys. Med. Biol., vol. 59, no. 3, pp. 129-150, Jan. 2014.
    PMid: 24434792
    DOI: 10.1088/0031-9155/59/3/R129
  23. X. Tian, X. Li, W.P. Segars, E.K. Paulson, D.P. Frush, E. Samei, “Pediatric chest and abdominopelvic CT: Organ dose estimation based on 42 patient models,” Radiology, vol. 270, no. 2, pp. 535-547, Feb. 2014.
    PMid: 24126364
    PMCid: PMC4228746
    DOI: 10.1148/radiol.13122617
  24. A. Al-Abdulsalam, A. Brindhaban, “Occupational radiation exposure among the staff of departments of nuclear medicine and diagnostic radiology in Kuwait,” Med. Princ. Pract., vol. 23, no. 2, pp. 129-133, 2014.
    PMid: 24356092
    PMCid: PMC5586859
    DOI: 10.1159/000357123
  25. A. Lukasiewicz et al., “Radiation dose index of renal colic protocol CT studies in the United States: A report from the American College of Radiology National Radiology Data Registry,” Radiology, vol. 271, no. 2, pp. 445-451, May 2014.
    PMid: 24484064
    PMCid: PMC5341688
    DOI: 10.1148/radiol.14131601
  26. A. Parakh, A. Euler, Z. Szucs-Farkas, S.T. Schindera, “Transatlantic Comparison of CT Radiation Doses in the Era of Radiation Dose-Tracking Software,” Am. J. Roentgenol ., vol. 209, no. 6, pp. 1302-1307, Dec. 2017.
    PMid: 28898129
    DOI: 10.2214/AJR.17.18087
  27. D. Hart, M.C. Hillier, B.F. Wall, “National reference doses for common radiographic, fluoroscopic and dental X-ray examinations in the UK,” Br. J. Radiol., vol. 82, no. 973, pp. 1-12, 2009.
    PMid: 18852213
    DOI: 10.1259/bjr/12568539
  28. N. Muhammad, M. Abdul Karim, H. Hassan, K. Kamarudin, J. Wong, K. Hoong, “Diagnostic Reference Level of Radiation Dose and Image Quality among Paediatric CT Examinations in A Tertiary Hospital in Malaysia,” Diagnostics, vol. 10, no. 8, article no. 591, Aug. 2020.
    DOI: 10.3390/diagnostics10080591
  29. M.B. Freitas, E.M. Yoshimura, “Diagnostic reference levels for the most frequent radiological examinations carried out in Brazil,” Rev. Panam. Salud. Publica, vol. 25, no. 2, pp. 95-104, Feb. 2009.
    PMid: 19531303
    DOI: 10.1590/s1020-49892009000200001
  30. R.A. Hayda, R.Y. Hsu, J.M. DePasse, J.A. Gil, Radiation Exposure and Health Risks for Orthopaedic Surgeons,” J. Am. Acad. Orthop. Surg., vol. 26, no. 8, pp. 268-277, Apr. 2018.
    PMid: 29570497
    DOI: 10.5435/JAAOS-D-16-00342
  31. C.M. Stahl, Q.C. Meisinger, M.P. Andre, T.B. Kinney, I.G. Newton, “Radiation Risk to the Fluoroscopy Operator and Staff,” Am. J. Roentgenol., vol. 207, no. 4, pp. 737-744, Oct. 2016.
    PMid: 28829623
    DOI: 10.2214/AJR.16.16555
  32. M.L. Wang, C.E. Hoffler, A.M. Ilyas, P.K. Beredjiklian, C.F. Leinberry, “Fluoroscopic Exposure with Use of Mini-C-Arm During Routine Hand Surgery: A Prospective Comparison of Hand Versus Eye Radiation Dosage,” J. Surg. Orthop. Adv., vol. 26, no. 2, pp. 102-105, 2017.
    PMid: 28644122
  33. M.M. Vosbikian, A.M. Ilyas, D.D. Watson, C.F. Leinberry, “Radiation exposure to hand surgeons’ hands: A practical comparison of large and mini C-arm fluoroscopy,” J. Hand Surg., vol. 39, no. 9, pp. 1805-1809, Jul. 2014
    PMid: 25086796
    DOI: 10.1016/j.jhsa.2014.06.133
  34. C.B. Fuller, M.D. Wongworawat, B.B. Riedel, “Radiation Exposure and Hand Dominance Using Mini C-Arm Fluoroscopy in Hand Surgery,” Hand, vol. 11, no. 2, pp. 188-191, 2016.
    PMid: 27390561
    PMCid: PMC4920527
    DOI: 10.1177/1558944715627224
  35. J.R.M. van Rappard, T. de Jong, W.A. Hummel, M.J. Ritt, C.M. Mouës, “Radiation Exposure to Surgeon and Assistant During Flat Panel Mini C-Arm Fluoroscopy in Hand and Wrist Surgical Procedures,” J. Hand. Surg., vol. 44, no. 1, pp. 68.e1-68.e5, 2018.
    PMid: 29934087
    DOI: 10.1016/j.jhsa.2018.05.010
  36. C.N. Kesavachandran, F. Haamann, A. Nienhaus, “Radiation exposure of eyes, thyroid gland and hands in orthopaedic staff: A systematic review,” Eur. J. Med. Res., vol. 17, article no. 28, Oct. 2012.
    PMid: 23111028
    PMCid: PMC3554445
    DOI: 10.1186/2047-783X-17-28
  37. M.A. Abdelhalim, “Patient dose levels for seven different radiographic examination types,” Saudi J. Biol. Sci., vol. 17, no. 2, pp. 115-118, Apr. 2010.
    PMid: 23961066
    PMCid: PMC3730880
    DOI: 10.1016/j.sjbs.2009.12.013
  38. A. Meghzifene, D.R. Dance, D. McLean H.M. Kramer, “Dosimetry in diagnostic radiology,” Eur. J. Radiol., vol. 76, no. 1, pp. 11-14, Oct. 2010.
    PMid: 20655679
    DOI: 10.1016/j.ejrad.2010.06.032
  39. Y. Asada, T. Ichikawa, “Consideration of diagnostic reference levels for pediatric chest X-ray examinations,” Radiol. Phys. Technol., vol. 12, no. 4, pp. 382-387, Dec. 2019.
    PMid: 31473934
    DOI: 10.1007/s12194-019-00533-7
  40. A. Aroua, R. Bize, I. Buchillier-Decka, J.P. Vader, J.F. Valley, P. Schnyder, “X-ray imaging of the chest in Switzerland in 1998: A nationwide survey,” Eur. Radiol. , vol. 13, pp. 1250-1259, Jun. 2003.
    PMid: 12764639
    DOI: 10.1007/s00330-002-1682-x
  41. T. Lehnert et al., “Image-quality perception as a function of dose in digital radiography,” Am. J. Roentgenol., vol. 197, no. 6, pp. 1399-1403, Dec. 2011.
    PMid: 22109295
    DOI: 10.2214/AJR.10.6269
  42. M. Körner, C.H. Weber, S. Wirth, K.J. Pfeifer, M.F. Reiser, M. Treitl, “Advances in digital radiography: physical principles and system overview,” Radiographics, vol. 27, no. 3, pp. 675-686, 2007.
    PMid: 17495286
    DOI: 10.1148/rg.273065075
  43. C. Schaefer-Prokop, U. Neitzel, H.W. Venema, M. Uffmann, M. Prokop, “Digital chest radiography: An update on modern technology, dose containment and control of image quality,” Eur. Radiol., vol. 18, no. 9, pp. 1818-1830, 2008.
    PMid: 18431577
    PMCid: PMC2516181
    DOI: 10.1007/s00330-008-0948-3
  44. A. Sulieman, M. Vlychou, I. Tsougos, K. Theodorou, “Radiation doses to paediatric patients and comforters undergoing chest X rays,” Radiat. Prot. Dosimetry, vol. 147, no. 1-2, pp. 171-175, Sep. 2011.
    PMid: 21743069
    DOI: 10.1093/rpd/ncr295
  45. A. Suliman, E.H Elshiekh, “Radiation doses from some common paediatric X-ray examinations in Sudan,” Radiat. Prot. Dosimetry, vol. 132, no. 1, pp. 64-72, 2008.
    PMid: 18765402
    DOI: 10.1093/rpd/ncn232
Yousif Abdallah, "Estimation of radiation dosage for traumatic patients in Majmaah area, Saudi Arabia," RAD Conf. Proc, vol. 4, 2020, pp. 149–154, http://doi.org/10.21175/RadProc.2020.31
Cancer Research


Serhii Hryshchuk, Alla Harlinska, Nataliya Korneichuk

DOI: 10.21175/RadProc.2020.32

Infection with human papillomavirus (HPV) presents a serious problem for modern healthcare. The most common manifestations of the papillomavirus infection include anogenital warts, cervical intraepithelial neoplasia, cervical cancer. The purpose of the work is to determine the economic feasibility of preventing cervical cancer in Ukraine by introducing a continuous vaccination against a papilloma virus infection. Markov simulation was used to determine the incremental cost-effectiveness ratio (ICER) based on epidemiological data on morbidity and mortality from cervical cancer in Ukraine. Taking into account the accepted assumptions and limitations of the introduction of HPV vaccination in Ukraine, it will prevent 1380 cervical cancer cases, preserve 2058 quality-adjusted life years and the reduce the cost of medical care for cervical cancer in the amount of $1,479,972. The amount of additional costs for the vaccine and its introduction is $12,009,684 (all results per 100,000 vaccinated persons). The ICER index is $4,729, which is 1.4 times higher the gross domestic product in Ukraine per 1 person in 2019 ($3,464). Taking into account the actual cost of the vaccine, vaccination against HPV infection with a view of preventing cervical cancer in Ukraine is currently economically feasible.
  1. World Health Organization, Human papillomavirus (HPV).
    Retrieved from: http://www.who.int/immunization/diseases/hpv/en/
    Retrieved on: June 10, 2019
  2. A. B. Berenson, J. M. Hirth, M. Chang, “Change in Human Papillomavirus Prevalence Among U.S. Women Aged 18-59 Years, 2009-2014,” Obstetrics and Gynecology, vol. 130, no. 4, pp. 693–701, Oct. 2017.
    DOI: 10.1097/AOG.0000000000002193
  3. T. Malagón, C. Laurie, E. L. Franco, “Human papillomavirus vaccination and the role of herd effects in future cancer control planning: a review”, Expert Review of Vaccines, vol. 17, no. 5, pp. 395–409, May 2018.
    DOI: 10.1080/14760584.2018.1471986
  4. R. Luckett, S. Feldman “Impact of 2-, 4- and 9-valent HPV vaccines on morbidity and mortality from cervical cancer”, Human Vaccines & Immunotherapeutics, vol. 12, no. 6, pp. 1332–1342, Mar. 2016.
    DOI: 10.1080/21645515.2015.1108500
  5. C. Spinner et al., “Human papillomavirus vaccine effectiveness and herd protection in young women”, Pediatrics, vol. 143, no. 2, article no. e20181902, Feb. 2019.
    DOI: 10.1542/peds.2018-1902
  6. J. A. Kahn et al., “Substantial decline in vaccine-type human papillomavirus (HPV) among vaccinated young women during the first 8 years after HPV vaccine introduction in a community”, Clinical Infectious Diseases, vol. 63, no. 10, pp. 1281–1287, Nov. 2016.
    DOI: 10.1093/cid/ciw533
  7. K. Kavanagh et al., “Introduction and sustained high coverage of the HPV bivalent vaccine leads to a reduction in prevalence of HPV 16/18 and closely related HPV types”, Br. J. Cancer, vol. 110, pp. 2804–2811, May 2014.
    DOI: 10.1038/bjc.2014.198
  8. L. Ding, L. E. Widdice, J. A. Kahn, “Differences between vaccinated and unvaccinated women explain increase in non-vaccine-type human papillomavirus in unvaccinated women after vaccine introduction”, Vaccine, vol. 35, no. 52, pp. 7217–7221, Dec. 2017.
    DOI: 10.1016/j.vaccine.2017.11.005
  9. M. Brisson et al., “Population-level impact, herd immunity, and elimination after human papillomavirus vaccination: a systematic review and meta-analysis of predictions from transmission-dynamic models ”, The Lancet Public Health , vol. 1, no. 1, pp. e8–e17, Nov. 2016.
    DOI: 10.1016/S2468-2667(16)30001-9
    PMid: 29253379
  10. M. Drolet, É. Bénard, M. Boily, H. Ali, L. Baandrup, H. Bauer et al., “Population-level impact and herd effects following human papillomavirus vaccination programmes: a systematic review and meta-analysis”, The Lancet Infectious Diseases, vol. 15, no. 5, pp. 565–580, May 2015.
    DOI: 10.1016/s1473-3099(14)71073-4
    PMid: 25744474
    PMCid: PMC5144106
  11. A. Hammer, A. Rositch, F. Qeadan, P. E. Gravitt, J. Blaakaer, “Age‐specific prevalence of HPV16/18 genotypes in cervical cancer: A systematic review and meta‐analysis”, International Journal of Cancer, vol. 138, no. 12, pp. 2795–2803, Dec. 2015.
    DOI: 10.1002/ijc.29959
  12. Global Market Study HPV, World Health Organization, 2019, pp. 1–4.
    Retrieved from: https://www.who.int/immunization/programmes_systems/procurement/mi4a/platform/module2/WHO_HPV_market_study_public_summary.pdf
    Retrieved on: Mar. 10, 2019
  13. D. A Machalek et al., “Very low prevalence of vaccine human papillomavirus types among 18- to 35-year old Australian women 9 years following implementation of vaccination”, The Journal of Infectious Diseases, vol. 217, no. 10, pp. 1590–1600, May 2018.
    DOI: 10.1093/infdis/jiy075
  14. D. Mesher, K. Panwar, S. L. Thomas, S. Beddows, K. Soldan, “Continuing reductions in HPV 16/18 in a population with high coverage of bivalent HPV vaccination in England: an ongoing cross-sectional study”, BMJ Open, vol. 6, no. 2, article no. e009915, Feb. 2016.
    DOI: 10.1136/bmjopen-2015-009915
  15. S. E. Oliver, E. R. Unger, R. Lewis, D. McDaniel, J. W. Gargano, M. Steinau et al., “Prevalence of human papillomavirus among females after vaccine introduction-national health and nutrition examination survey, United States, 2003-2014”, The Journal of Infectious Diseases, vol. 216, no. 5, pp. 594–603, Sept. 2017.
    DOI: 10.1093/infdis/jix244
  16. Q. Zhang, Y. Liu, S. Hu and F. Zhao, “Estimating long-term clinical effectiveness and cost-effectiveness of HPV 16/18 vaccine in China”, BMC Cancer, vol. 16, no. 1, article no. 848, Dec. 2016.
    DOI: 10.1186/s12885-016-2893-x
  17. J. Brotherton et al., “Age-specific HPV prevalence among 116,052 women in Australia’s renewed cervical screening program: A new tool for monitoring vaccine impact”, Vaccine, vol. 37, no. 3, pp. 412–416, Jan. 2019.
    DOI: 10.1016/j.vaccine.2018.11.075
  18. R. L. Cameron et al., “Human papillomavirus prevalence and herd immunity after introduction of vaccination program, Scotland, 2009-2013”, Emerging Infectious Diseases, vol. 22, no. 1, pp. 56–64, Jan. 2016.
    DOI: 10.3201/eid2201.150736
  19. Z. Kaló, K. Landa, T. Doležal, Z. Vokó, “Transferability of National Institute for Health and Clinical Excellence recommendations for pharmaceutical therapies in oncology to Central-Eastern European countries”, Eur. J. Cancer Care, vol. 21, no. 4, pp. 442–449, Jul. 2012.
    DOI: 10.1111/j.1365-2354.2012.01351.x
    PMid: 22510226
  20. “Cancer in Ukraine, 2018-2019,” Bulletin of National Cancer Registry of Ukraine, vol. 21, 2020.
    Retrieved from: http://www.ncru.inf.ua/publications/BULL_21/index_e.htm
    Retrieved on: June 27, 2020
  21. P. Menn, R. Holle, “Comparing three software tools for implementing Markov models for health economic evaluations”, PharmacoEconomics, vol. 27, no. 9, pp. 745–753, Mar. 2009.
    DOI: 10.2165/11313760-000000000-00000
  22. Population statistics of Ukraine.
    Retrieved from: http://database.ukrcensus.gov.ua
    Retrieved on: June 05, 2020
  23. The cost of medical services in private clinics in Ukraine.
    Retrieved from: https://feofaniya.org/wp-content/uploads/2020/05/price.pdf , https://oberig.ua/media/files/Price_05.05.20.pdf , https://www.lissod.com.ua/prices/consultation
    Retrieved on: May 05, 2020
  24. Міністерство охорони здоров’я України. (квітень 02, 2014). N 236 Про затвердження та впровадження медико-технологічних документів зі стандартизації медичної допомоги при дисплазії та раку шийки матки. (Ministry of Health of Ukraine. (April 02, 2014). N 236 Unified clinical protocol of primary, secondary (specialized), tertiary (highly specialized) medical care. Dysplasia of the cervix. Cervical cancer.)
    Retrieved from: https://zakon.rada.gov.ua/rada/show/va236282-14
    Retrieved on: May 10, 2019
  25. M. Csanádi et al. “Health technology assessment implementation in Ukraine: current status and future perspectives”, International Journal of Technology Assessment in Health Care, vol. 35, no. 5, pp. 393-400, Oct. 2019.
    DOI: 10.1017/S0266462319000679
  26. A. T. Newall, M. Jit, R. Hutubessy, “Are current cost-effectiveness thresholds for low- and middle-income countries useful? Examples from the world of vaccines”, PharmacoEconomics, vol. 32, no. 6, pp. 525–531, Jun. 2014.
    DOI: 10.1007/s40273-014-0162-x
  27. M. Fesenfeld, R. Hutubessy, M. Jit, “Cost-effectiveness of human papillomavirus vaccination in low and middle income countries: a systematic review”, Vaccine, vol. 31, no. 37, pp. 3786–3804, Aug. 2013.
    DOI: 10.1016/j.vaccine.2013.06.060
  28. Data Bank World Development Indicators.
    Retrieved from: https://databank.worldbank.org/reports.aspx?source=2&country=UKR
    Retrieved on: June 10, 2020
Serhii Hryshchuk, Alla Harlinska, Nataliya Korneichuk, "The evaluation of economic feasibility of cancer prevention by vaccination from papillomavirus infection in Ukraine," RAD Conf. Proc, vol. 4, 2020, pp. 155–160, http://doi.org/10.21175/RadProc.2020.32


Kseniya Mezina, Mikhail Melgunov, Dmitriy Belyanin

DOI: 10.21175/RadProc.2020.33

Radioactive isotopes such as 7Be, 210Pb and 137Cs are used as indicators of processes associated with the transfer of matter from the atmosphere. There are no widely known data on studies of the joint seasonal atmospheric flux of 7Be and 210Pbatm, based on the study of integrated snow samples accumulated in winter periods in territory of Western Siberia. Study of snow cover can provide information on the total flux of 7Be and 210Pb to the Earth’s surface over the entire period of snow accumulation without separation of the dry or wet components. The purpose of this study is to conduct a comparative analysis of 7Be, 210Pb and 137Cs deposition as a part of the atmospheric precipitation in the Arctic and south regions of Western Siberia in winter period. As a result of the research, data on the joint deposition of 7Be, 210Pb and 137Cs in integral snow samples, including atmospheric precipitation, dust, and aerosols, in the Arctic (for 7 months) and southern (for 5 months) regions of Western Siberia were firstly obtained. A comparative analysis of the data shows that, despite the difference in geographic location, the concentration of 7Be in the snow water of the Arctic (248.0 mBq L-1) and south (265.4 mBq L-1) regions is almost equal. At the same time, the specific activity of 210Pb in the suspended matter of snow waters sampled in the southern region is 1.6 times higher, which may indicate a much higher level of dust material intake in winter.
  1. C. M. Alonso-Hernández, Y. Morera-Gómez, H. Cartas-Águila, A. Guillén-Arruebarrena, “Atmospheric deposition patterns of 210Pb and 7Be in Cienfuegos, Cuba,” J. Environ. Radioact., vol. 138, pp. 149-155, Dec. 2014.
    DOI: 10.1016/j.jenvrad.2014.08.023
  2. M. Baskaran, “Po-210 and Pb-210 as atmospheric tracers and global atmospheric Pb-210 fallout: A review,” J. Environ. Radioact., vol. 102, pp. 500-513, May 2011.
    DOI: 10.1016/j.jenvrad.2010.10.007
  3. M. Baskaran, A. S. Naidu, “210Pb-derived chronology and the fluxes of 210Pb and 137Cs isotopes into continental shelf sediments, East Chukchi Sea, Alaskan Arctic,” Geochim. Cosmochim. Acta, vol. 59, pp. 4435-4448, Nov. 1995.
    DOI: 10.1016/0016-7037(95)00248-X
  4. M. Baskaran, G. E. Shaw, “Residence time of arctic haze aerosols using the concentrations and activity ratios of 210Po, 210Pb and 7Be,” J. Aerosol Sci., vol. 32, pp. 443-452, Apr. 2001.
    DOI: 10.1016/S0021-8502(00)00093-8
  5. S. Caillet, P. Arpagaus, F. Monna, J. Dominik, “Factors controlling 7Be and 210Pb atmospheric deposition as revealed by sampling individual rain events in the region of Geneva, Switzerland,” J. Environ. Radioact., vol. 53, pp. 241-256, Mar. 2001.
    DOI: 10.1016/S0265-931X(00)00130-2
  6. J. Carroll, M. Williamson, I. Lerche, E. Karabanov, D. F. Williams, “Geochronology of Lake Baikal from 210Pb and 137Cs radioisotopes,” Appl. Radiat. Isot., vol. 50, pp. 1105-1119, Jun. 1999.
    DOI: 10.1016/S0969-8043(98)00116-X
  7. J. M. Godoy et al., “137Cs, 226, 228Ra, 210Pb and 40K concentrations in Antarctic soil, sediment and selected moss and lichen samples,” J. Environ. Radioact., vol. 41, pp. 33-45, Oct. 1998.
    DOI: 10.1016/S0265-931X(97)00084-2
  8. S. V. Hansson, J. M. Kaste, K. Chen, R. Bindler, “Beryllium-7 as a natural tracer for short-term downwash in peat,” Biogeochemistry, vol. 119, pp. 329-339, Mar. 2014.
    DOI: 10.1007/s10533-014-9969-y
  9. A. -P. Leppänen, I. G. Usoskin, G. A. Kovaltsov, J. Paatero, “Cosmogenic 7Be and 22Na in Finland: Production, observed periodicities and the connection to climatic phenomena,” J. Atmos. Sol.-Terr. Phys., vol. 74, pp. 164-180, Jan. 2012.
    DOI: 10.1016/j.jastp.2011.10.017
  10. J. Simon, J. Meresova, I. Sykora, M. Jeskovsky, K. Holy, “Modeling of temporal variations of vertical concentration profile of 7Be in the atmosphere,” Atmos. Environ., vol. 43, pp. 2000-2004, Apr. 2009.
    DOI: 10.1016/j.atmosenv.2009.01.015
  11. A. Taylor, W. H. Blake, H. G. Smith, L. Mabit, M. J. Keith-Roach, “Assumptions and challenges in the use of fallout beryllium-7 as a soil and sediment tracer in river basins,” Earth-Sci. Rev., vol. 126, pp. 85-95, Nov. 2013.
    DOI: 10.1016/j.earscirev.2013.08.002
  12. Y. Y. Yoon, С. K. Dong, Y. L. Kil, Y. C. Soo, “Seasonal variation of7Be and 3H in Korean ambient air and rain,” J. Radioanal. Nucl. Chem., vol. 307, pp. 1629-1633, 2016.
    DOI: 10.1007/s10967-015-4340-x
  13. A. Aba, A. M. Al-Dousari, A. Ismaeel, “Depositional characteristics of 7Be and 210Pb in Kuwaiti dust,” J. Radioanal. Nucl. Chem ., vol. 307, pp. 15-23, 2016.
    DOI: 10.1007/s10967-015-4129-y
  14. M. Baskaran, “A search for the seasonal variability on the depositional fluxes of 7Be and 210Pb, J. Geophys. Res. Atmos., vol. 100, pp. 2833-2840, Feb. 1995.
    DOI: 10.1029/94JD02824
  15. M. Baskaran, C. H. Coleman, P. H. Santschi, “Atmospheric depositional fluxes of 7Be and 210Pb at Galveston and College Station, Texas,J. Geophys. Res. Atmos., vol. 98, pp. 20555-20571, Nov. 1993.
    DOI: 10.1029/93JD02182
  16. E. A. Buraeva, M. G. Davydov, L. V. Zorina, V. S. Malyshevskii, V. V. Stasov, “Content of cosmogenic 7Be in the air layer at the ground at temperate latitudes,At. Energy, vol. 102, pp. 463-468, 2007.
    DOI: 10.1007/s10512-007-0073-4
  17. M. Melgunov et al., “Radioactive elements in atmospheric precipitations of the Western Siberia,E3S Web Conf., vol. 98, pp. 10003, 2019.
    DOI: 10.1051/e3sconf/20199810003
  18. K. Mezina, M. Melgunov, D. Belyanin, “7Be, 210Pb atm and 137Cs in Snow Deposits in the Arctic Part of Western Siberia (Yamal-Nenets Autonomous District),Atmosphere, vol. 11, pp. 825, 2020.
    DOI: 10.3390/atmos11080825
  19. M. Pöschl, T. Brunclík, J. Hanák, “Seasonal and inter-annual variation of Beryllium-7 deposition in birch-tree leaves and grass in the northeast upland area of the Czech Republic,J. Environ. Radioact., vol. 101, pp. 744-750, Sep. 2010.
    DOI: 10.1016/j.jenvrad.2010.05.001
  20. A. Taylor, M. J. Keith-Roach, A. R. Iurian, L. Mabit, W. H. Blake, “Temporal variability of beryllium-7 fallout in southwest UK ,J. Environ. Radioact., vol. 160, pp. 80-86, Aug. 2016.
    DOI: 10.1016/j.jenvrad.2016.04.025
  21. D. Lal, P. K. Malhotra, B. Peters, “On the production of radioisotopes in the atmosphere by cosmic radiation and their application to meteorology ,J. Atmos. Terr. Phys., vol. 12, pp. 306-328, Jul. 1958.
    DOI: 10.1016/0021-9169(58)90062-X
  22. B. L. Shcherbov, The role of forest floor in migration of metals and artificial nuclides during forest fires in Siberia,Contemp. Probl. Ecol., vol. 5, pp. 191-199, 2012.
    DOI: 10.1134/S1995425512020114
  23. Б. Л. Щербов, Е. В. Лазарева, И. С. Журкова, «Лесные пожары и их последствия», 1-е изд., Академическое издательство «Гео»: Новосибирск, Россия, стр. 38-112, 2015. (B. L. Shcherbov, E. V. Lazareva, I. S. Zhurkova, “Forest fires and their consequences,” 1st ed., Academic publishing house «Geo»: Novosibirsk, Russia, pp. 38-112, 2015.)
  24. A. Ioannidou, “Activity size distribution of 7Be in association with trace metals in the urban area of the city of Thessaloniki, Greece ,Atmos. Environ., vol. 45, pp. 1286-1290, Feb. 2011.
    DOI: 10.1016/j.atmosenv.2010.12.006
  25. J. E. Dibb, “Beryllium-7 and Lead-210 in the atmosphere and surface snow over the Greenland ice sheet in the summer of 1989,J. Geophys. Res., vol. 95, pp. 22407, 1990.
    DOI: 10.1029/jd095id13p22407
  26. J. E. Dibb, J. -L. Jaffrezo, “Beryllium-7 and lead-210 in aerosol and snow in the dye 3 gas, aerosol and snow sampling program,Atmos. Environ. Part A. Gen. Top., vol. 27, pp. 2751–2760, Dec. 1993.
    DOI: 10.1016/0960-1686(93)90307-k
  27. C. I. Davidson et al., “Chemical constituents in the air and snow at Dye 3, Greenland—I. Seasonal variations,Atmos. Environ. Part A. Gen. Top., vol. 27, pp. 2709–2722, Dec. 1993.
    DOI: 10.1016/0960-1686(93)90304-h
  28. J. S. Gaffney, K. A. Orlandini, N. A. Marley, “Measurements of 7 Be and 210Pb in Rain, Snow, and Hail,J. Appl. Meteorol., vol. 33, pp. 869-873, 1994.
    DOI: 10.1175/1520-0450(1994)033<0869:MOAIRS>2.0.CO;2
  29. A. A. Renfro, J. K. Cochran, B. A. Colle, “Atmospheric fluxes of 7Be and 210Pb on monthly time-scales and during rainfall events at Stony Brook, New York (USA),J. Environ. Radioact., vol. 116, pp. 114-123, Feb. 2013.
    DOI: 10.1016/j.jenvrad.2012.09.007
  30. V. M. Gavshin et al., “Disequilibrium between uranium and its progeny in the Lake Issyk-Kul system (Kyrgyzstan) under a combined effect of natural and manmade processes,J. Environ. Radioact., vol. 83, pp. 61-74, 2005.
    DOI: 10.1016/j.jenvrad.2005.02.012
  31. M. S. Mel’gunov et al., “Anomalies of radioactivity on the southern bank of the Ysyk-Köl Lake (Kyrgyzstan),Chem. Sustain. Dev., vol. 11, pp. 859–870, 2003.
    DOI: 10.1029/2002JD003021
Kseniya Mezina, Mikhail Melgunov, Dmitriy Belyanin, "7Be, 210Pb and 137Cs in atmospheric deposition of southern and arctic regions of western Siberia," RAD Conf. Proc, vol. 4, 2020, pp. 161–166, http://doi.org/10.21175/RadProc.2020.33


Yulia A. Stepanova, Olesya A. Chekhoeva, Viktoriya A. Kopacheva, Vlada Yu. Raguzina, Madina Kadyrova, Alexander A. Gritskevich, Tatiana P. Baytman, Irina V. Miroshkina, Zholboldu Polotbek uulu, Alina A. Chevina, Alexander A. Teplov

DOI: 10.21175/RadProc.2020.34

The aim is to study the possibilities of ultrasound diagnostics used in assessing the prevalence of the tumor process, its structure, and the degree of fixation or ingrowth of the tumor thrombus into the venous wall. The research was conducted in the Urological Department of the A.V. Vishnevsky National Medical Research Center of Surgery. 41 patients suffering from RCC complicated by the intraluminal venous invasion into the renal vein and/or IVC aged 39 – 80 years were treated. 15 women and 26 men took part in the research. The level of thrombus spreading, the extent of its fixation and ingrowth inside the vascular wall, its structure and vascularization are of major importance for the planning of operation technique and predicting treatment outcomes. An algorithm for evaluating a tumor thrombus during ultrasound examination was developed based on the analysis of data from patients with RCC with renal and/or IVC tumor invasion. The presented algorithm of ultrasound examination allows us to determine the level of spread, structure and possible invasion of a tumor thrombus most accurately, thereby determining the volume of surgical intervention and, in some cases, leading to its reduction.
  1. В.Н. Лесовой, Д.В. Щукин, Ю.А. Илюхин, Проблемы классификации внутривенозного распространения почечно-клеточного рака, Международный медицинский журнал, 2011, 4, стр. 65-68. (V.N. Lesovoy, D.V. Schukin, Yu.A. Ilyuhin, “Problems of classification of intravenous spread of renal cell carcinoma,” International Medical Journal, vol. 4, pp. 65-68, 2011).
  2. M. Al Otaibi, S. Tanguay, “Locally advanced renal cell carcinoma,” Can. Urol. Assoc J., vol. 1, no. 2, S55–S61, Jun. 2007.
    DOI: http://doi.org/10.5489/cuaj.68
  3. M. Tanaka, K. Fujimoto, E. Okajima, N. Tanaka, K. Yoshida, Y. Hirao, “Prognostic factors of renal cell carcinoma with extension into inferior vena cava,” Int. J. Urol . vol. 15, no. 5, pp. 394–398, May 2008.
    DOI: 10.1111/j.1442-2042.2008.02017.x
  4. А. Д. Каприн, В. В. Старинский, Г. В. Петрова, “Злокачественные новообразования в России в 2017 году (заболеваемость и смертность),” М.: МНИОИ им. П.А. Герцена, 2018; 250 с. (A .D. Kaprin, V. V. Starinskiy, G. V. Petrova, Malignant neoplasms in Russia in 2017 (morbidity and mortality), M.: MNIOI im. P. A. Gertsena, 2018, 250 pages.)
    Retrieved from: https://glavonco.ru/cancer_register/%D0%97%D0%B0%D0%B1%D0%BE%D0%BB_2018_%D0%AD%D0%BB%D0%B5%D0%BA%D1%82%D1%80.pdf
    Retrieved on: September 27, 2020
  5. J. I. Martínez-Salamanca et al., “Lessons learned from the International Renal Cell Carcinoma-Venous Thrombus Consortium (IRCC-VTC),” Curr. Urol. Rep., vol. 15, no. 5, article no. 404, May 2014.
    DOI: 10.1007/s11934-014-0404-7
  6. В.Б. Матвеев, Хирургическое лечение осложненного венозной инвазией и метастатического рака почки. Дисс. … докт. мед. наук. М., 2002; 198 с. (V. B. Matveev, “Surgical treatment of complicated venous invasion and metastatic kidney cancer,” PhD dissertation, 2002, 198 pages.)
  7. Клиническая онкоурология. Под ред. проф. Б.П. Матвеева. М.: Вердана, 2003; 717 с. (Clinical oncourology, B. P. Matveev, Ed., M.: Verdana, 2003, 717 pages.)
  8. М. И. Давыдов и другие, “Хирургическое лечение рака почки, осложненного опухолевым венозным тромбозом III-IV уровней,” Онкоурология, vol. 4, no. 12, pp. 21-34, 2016. (M. I. Davydov et al., “Surgical treatment of kidney cancer complicated by neoplastic venous thrombosis of III-IV levels,” Oncourology, vol. 4, no. 12, pp. 21-34, 2016.
    DOI: 10.17650/1726-9776-2016-12-4-21-34
  9. N. K. Bissada et al., “Long-term experience with management of renal cell carcinoma involving the inferior vena cava,” Urology, vol. 61, no. 1, pp. 89-92, Jan. 2003.
    DOI: 10.1016/s0090-4295(02)02119-2
  10. M. L. Blute, S. A. Boorjian, B. C. Leibovich, C. M. Lohse, I. Frank, R. J. Karnes, “Results of inferior vena caval interruption by greenfield filter, ligation or resection during radical nephrectomy and tumour thrombectomy,” J. Urol., vol. 178, pp. 440-445, 2007.
    DOI: 10.1016/j.juro.2007.03.121
  11. R. Bertini et al., “Impact of venous tumour thrombus consistency (solid vs friable) on cancer-specific survival in patients with renal cell carcinoma,” Eur. Urol., vol. 60, no. 2, pp. 358-365, Aug. 2011.
    DOI: 10.1016/j.eururo.2011.05.029
  12. V. L. Weiss et al., “Prognostic significance of venous tumour thrombus consistency in patients with renal cell carcinoma (RCC),” BJU Int. , vol. 113, no. 2, pp. 209-217, Feb. 2014.
    DOI: 10.1111/bju.12322
  13. M. L. Blute, B. C. Leibovich, C. M. Lohse, J. C. Cheville, H. Zincke, “The Mayo Clinic experience with surgical management, complications and outcome for patients with renal cell carcinoma and venous tumour thrombus,” BJU Int., vol. 94, no. 1, pp. 33-41, Jul. 2004.
    DOI: 10.1111/j.1464-410X.2004.04897.x
  14. S. P. Psutka et al., “Clinical and radiographic predictors of the need for inferior vena cava resection during nephrectomy for patients with renal cell carcinoma and caval tumour thrombus,” BJU Int., vol. 116, no. 3, pp. 388-396, Sep. 2015.
    DOI: 10.1111/bju.13005
  15. K. B. Quencer, T. Friedman, R. Sheth, R. Oklu, “Tumour thrombus: incidence, imaging, prognosis and treatment,” Cardiovasc Diagn Ther., vol. 7, no. 3, S165-S177, Dec. 2017.
    DOI: 10.21037/cdt.2017.09.16
  16. Н.Б. Вихрова, Б.И. Долгушин, В.О. Панов,В.Б. Матвеев, Н.Л. Шимановский, Е.К. Дворова, “Лучевые методы диагностики в определении структуры опухолевого тромба в нижней полой вене при раке почки,” Онкоурология, vol. 11, no. 3, pp. 40-45, 2015. (N. B. Vihrova, B. I. Dolgushin, V. O. Panov, V. B. Matveev, N. L. Shimanovsky, E. K. Dvorova, “Radiology diagnostic methods in determining the structure of a tumor thrombus in the inferior vena cava in kidney cancer,” Oncourology, vol. 11, no. 3, pp. 40-45, 2015.)
    DOI: 10.17650/1726-9776-2015-11-3-40-45
  17. J. Y. Wu et al., “Evaluating inferior vena cava wall invasion in renal cell carcinoma tumour thrombus with MRI,” Beijing Da Xue Xue Bao Yi Xue Ban., vol. 51, no. 4, pp. 673-677, Aug. 2019.
    DOI: 10.19723/j.issn.1671-167X.2019.04.013
  18. L. C. Adams et al., “Renal cell carcinoma with venous extension: prediction of inferior vena cava wall invasion by MRI,” Cancer Imaging, vol. 18, no. 1, article no. 17, May 2018.
    DOI: 10.1186/s40644-018-0150-z
    PMid: 29724245
  19. K. Sorrell, S. Harris, J. Hanna, B. Oglesby, “Renal Vein and Inferior Vena Cava Tumour Thrombus: Presentation and Mapping of Venous Extension with Color Duplex Ultrasound,” The Journal for Vascular Ultrasound, vol. 30, no. 1, pp. 9–15, 2006.
    DOI: 10.1177/154431670603000101
  20. D. C. Vergho, A. Loeser, A. Kocot, M. Spahn, H. Riedmiller, “Tumour thrombus of inferior vena cava in patients with renal cell carcinoma - clinical and oncological outcome of 50 patients after surgery,” BMC Res. Notes, vol. 5, p. 5, Jun. 2012.
    DOI: 10.1186/1756-0500-5-264
  21. S. P. Psutka, B. C. Leibovich, “Management of inferior vena cava tumour thrombus in locally advanced renal cell carcinoma,” Ther. Adv. Urol., vol. 7, no. 4, pp. 216-229, Aug. 2015.
    DOI: 10.1177/1756287215576443
  22. T. Davidson, O. Goitein, A. Avigdor, S. T. Zwas, E. Goshen, “18F- FDG-PET/CT for the diagnosis of tumour thrombosis,” Isr. Med. Assoc. J., vol. 11, no. 2, pp. 69-73, Feb. 2009.
  23. F. C. Sampson, S. W. Goodacre, S. M. Thomas, E. J. van Beek, “The accuracy of MRI in diagnosis of suspected deep vein thrombosis: systematic review and meta-analysis,” Eur. Radiol., vol. 17, no. 1, pp. 175-181, Jan. 2007.
    DOI: 10.1007/s00330-006-0178-5
  24. Ю.Г. Аляев, В.Е. Синицин, Н.А. Григорьев, Магнитно-резонансная томография в урологии. – M.: Практическая медицина. 2005; 272 c. (Yu. G Alyaev., V. E. Sinitsin, N. A. Grigorev, Magnetic resonance imaging in urology. – M.: Practical medicine, 2005; 272 pages.)
  25. Н.Б. Вихрова, Лучевые методы диагностики в оценке распространенности и структуры опухолевого тромба в нижней полой вене у больных раком почки. Российский онкологический журнал. 2014; 2: 51-56. (N. B. Vihrova, “Radiology diagnostic methods in assessing the prevalence and structure of tumor thrombus in the inferior vena cava in patients with kidney cancer,” Russian Journal of Oncology, vol. 2, pp. 51-56, 2014.)
    Retrieved from: https://cyberleninka.ru/article/n/luchevye-metody-diagnostiki-v-otsenke-rasprostranennosti-i-struktury-opuholevogo-tromba-v-nizhney-poloy-vene-u-bolnyh-rakom-pochki
    Retrieved on: September 20, 2020
  26. A. R. Khan, K. Anwar, N. Fatima, S. F. Khan, “Comparison of CT scan and colour flow Doppler ultrasound in detecting venous tumour thrombous in renal cell carcinoma,” J. Ayub. Med. Coll. Abbottabad., vol. 20, no. 3, pp. 47-50, Jul-Sep. 2008.
Yulia A. Stepanova, Olesya A. Chekhoeva, Viktoriya A. Kopacheva, Vlada Yu. Raguzina, Madina Kadyrova, Alexander A. Gritskevich, Tatiana P. Baytman, Irina V. Miroshkina, Zholboldu Polotbek uulu, Alina A. Chevina, Alexander A. Teplov, "Multimodal ultrasonic diagnosis at the treatment of renal cell carcinoma with the intraluminal venous invasion into inferior vena cava system," RAD Conf. Proc, vol. 4, 2020, pp. 167–172, http://doi.org/10.21175/RadProc.2020.34


Xinrui Zhang, Oluwaseun W. Adedoyin, Maria L. Masferrer Bertoli, Evgen V. Govor, Konstantinos Kavallieratos

DOI: 10.21175/RadProc.2020.35

As part of our efforts to develop efficient extractants for highly alkaline high-level waste at the Savannah River Site, extraction studies of Sm(III) by three types of sulfonamide ligands have been carried out. Aqueous phases of various alkalinity (pH 10 - 14) were used, while dichloromethane was the organic phase. Analysis of the aqueous phases by the Arsenazo-III UV-Vis spectrophotometric method was carried out following stripping of the organic phases with 0.1 M HNO3. The results indicate that all three types of sulfonamides exhibit strong Sm(III) extraction and recovery at pH range of 10-11.5 in the presence of an organic base (triethylamine). A UV-Vis titration study of disulfonamide (DSA-7) with Sm(III) is indicative of 1:1 M/L complexation in solution in accordance with our previously published work with analogous disulfonamides.
  1. P. V. Bonnesen, L. H. Delmau, B. A. Moyer, R. A. Leonard, “A Robust Alkaline-Side CSEX Solvent Suitable for Removing Cesium from Savannah River High Level Waste ,” Solvent Extr. Ion Exch.,vol. 18, pp. 1079-1107, May 2000.
    DOI: 10.1080/07366290008934723
  2. B. D. Roach et al., “Radiolytic Treatment of the Next- Generation Caustic-Side Solvent Extraction (NGS) Solvent and its Effect on the NGS Process ,” Solvent Extraction and Ion Exchange, vol. 33, no.2, pp. 134–151, Dec. 2014.
    DOI: 10.1080/07366299.2014.952531
  3. D. T. Hobbs, T. B. Peters, K. M. L. Taylor-Pashow, S. D. Fink, “Development of an Improved Titanate-Based Sorbent for Strontium and Actinide Separations under Strongly Alkaline Conditions ,” Seperation Science and Technology , vol. 46, No. 1, pp. 119-129, Feb. 2010
    DOI: 10.1080/01496395.2010.492772
  4. G. R. Choppin, “Lanthanide complexation in aqueous solutions,” Journal of Less Common Metals, vol. 100, pp. 141-151, Jul. 1984.
    DOI: 10.1016/0022-5088(84)90060-2
  5. Z. K. Karalova, T. I. Bukina, E. A. Devirts, B. F. Agaev, B. F. Myasoedov, “Solvent extraction of americium and europium from alkaline and carbonate solutions by 2-hydroxy-5-alkylbenzyl dilthanolamine,” Radiokhimiya, vol. 29, no. 6, pp. 767–772, Aug. 1988.
  6. I. V. Smirnov, E. S. Stepanova, A. B. Drapailo, V. I. Kalchenko, “Extraction of Americium and Europium with Functionalized Calixarenes from Alkaline Solutions ,” Radiochemistry, vol. 58, pp. 42-51, Feb. 2016.
    DOI: 10.1134/S1066362216010070
  7. J. R. Dozol et al., “A solution, for cesium removal from high-salinity acidic or alkaline liquid waste: the crown calix [4] arenes,” Separation Science and Technology, vol. 34, pp. 877-909, May 2007
    DOI: 10.1080/01496399908951072
  8. E. V. Kuzovkina, E. A. Lavrinovich, A. P. Novikov, E. S. Stepanova, M. D. Karavan, I. V. Smirnov, “Kinetics of americium and europium extraction by tert-butylthiacalix [4] arene from alkaline media,” Journal of Radioanalytical and Nuclear Chemistry, vol. 311, pp. 1983-1989, Jan. 2017
    DOI: 10.1007/s10967-017-5165-6
  9. Z. K. Karalova, L. M. Rodionova, B. F. Myasoedov, “Americium and europium extraction by aliquate 336xOH and alkylpyrocatechol from alkaline solutions in the presence of alkylphosphonic complexones ,” Radiokhimiya, vol. 24, no. 2, pp. 210-213, Jan. 1982
  10. Z. K. Karalova, L. M. Rodionova, B. F. Myasoedov, V. S. Kuznetsova, “ Possibility of element extraction separation in alkaline media. [Extraction separation of Am, Cm, Cf, Bk from La, Ce, Sm, Eu, Gd, Th, Pa, U, Pu, Zr, Nb, Cs, Ru, Fe] ,” Radiokhimiya, vol. 23, no. 1, pp. 52-57, Jan. 1981
  11. A. N. Morozov, E. V. Govor, V. A. Anagnostopoulos,K. Kavallieratos, A. M. Mebel, “1,3,5-Tris-(4-(iso-propyl)- phenylsulfamoylmethyl)benzene as a potential Am(III) extractant: experimental and theoretical study of Sm(III) complexation and extraction and theoretical correlation with Am(III),” Molecular Physics, vol. 116, no. 19-20, pp. 2719-2727, May 2018.
    DOI: 10.1080/00268976.2018.1471228
  12. E. V. Govor, A. N. Morozov, A. A. Rains, A. M. Mebel, K. Kavallieratos, “Spectroscopic and Theoretical Insights into Surprisingly Effective Sm (III) Extraction from Alkaline Aqueous Media by o-Phenylenediamine-Derived Sulfonamides ,” Inorg. Chem ., vol. 59, no. 10, pp. 6884-6894, Apr. 2020.
    DOI: 10.1021/acs.inorgchem.0c00309
  13. L. H. Amudsen, “The Benzenesulfonyl Derivatives of o-Nitroaniline and o-Phenylenediamine,” J. Am. Chem. Soc., vol. 59, no.8, pp.1466-1467, Aug. 1937
  14. R. J. Alvarado et al., “Structural Insights into the Coordination and Extraction of Pb(II) by Disulfonamide Ligands Derived from o-Phenylenediamine,” Inorg. Chem., vol. 44, no. 22, pp. 7951-7959, Sep. 2005
    DOI: 10.1021/ic051103r
  15. S. B. Savvin, “Analytical use of arsenazo III: Determination of thorium, zirconium, uranium and rare earth elements,” Talanta, vol. 8, no. 9, pp. 673-685, Sep. 1961.
    DOI: 10.1016/0039-9140(61)80164-1
Xinrui Zhang, Oluwaseun W. Adedoyin, Maria L. Masferrer Bertoli, Evgen V. Govor, Konstantinos Kavallieratos, "Sulfonamide ligand frameworks for Sm(III) extraction from alkaline high-level waste" RAD Conf. Proc, vol. 4, 2020, pp. 173–178, http://doi.org/10.21175/RadProc.2020.35
Microwave, Laser, RF and UV radiations


N. Tyutyundzhiev, Ch. Angelov, K. Lovchinov, T. Arsov, H. Nitchev

DOI: 10.21175/RadProc.2020.36

The global climate change in the recent years has increased the interest to atmospheric irradiation monitoring in wider format. Additionally to Gamma-ray and X-ray sensors, UV-C, UV-B and UV-A sensing systems has been developed to respond to the human expectations about sustainable life and to prevent them from hostile factors. The deeper penetration of UV sensor equipment and dense disperse of monitoring points will improve further the accuracy of measurements, accuracy of forecasting and will convince the citizens in the responsibility of researchers and their work. This work presents UV sensing equipment developed for remote monitoring. Solutions include complex system of narrow band UV sensors, datalogging units, wi-fi communication devices, solar PV charging and Li-Ion energy storing equipment. Most of the components and software technologies are based on opensource platforms and approaches as well as internet-shared results. The analysis of results from 3 UV sensor systems already installed in 3 high-mountain monitoring locations reveals local UV spectral variations. The performance of UV sensors has been evaluated. The collected database during two-year field measurements is prepared for training and development of algorithms for short-term UV forecasting.
  1. R. L. McKenzie, P. J. Aucamp, A. F. Bais, L. O. Björn, M. Ilyas, “Changes in biologically-active ultraviolet radiation reaching the Earth’s surface,” Photochem. Photobiol. Sci., vol. 6, pp. 218-231, 2007.
    DOI: 10.1039/b700017k
  2. L. J. Gray et al., “Solar influences on climate,” Rev. Geophys, vol. 48, no. 4, article no. RG4001, 2010.
    DOI: 10.1029/2009RG000282
  3. N. Tyutyundzhiev, Ch. Angelov, K. Lovchinov, T. Arsov, H. Nichev, Open-source tool for solar UV measurements,” AIP Conference Proceedings, vol. 2075, no. 1, paper no. 130025, 2019.
    DOI: 10.1063/1.5091310
  4. R. A. Atmoko, R. Riantini, M. K. Hasin, “IoT real time data acquisition using MQTT protocol,” Journal of Physics: Conf. Series, vol. 853, article no. 012003, 2017.
    DOI: 10.1088/1742-6596/853/1/012003
  5. Grafana 7.2.0., GrafanaLabs, 2020.
    Retrieved from: https://grafana.com/grafana/
  6. G. Pfister, R. L. McKenzie, J. B. Liley, A. Thomas, B. W. Forgan, C. N. Long, “Cloud coverage based on all-sky imaging and its impact on surface solar irradiance,” J. Appl. Meteorol., vol. 42, no. 10, pp. 1421–1434, 2003.
    DOI: 10.1175/1520-0450(2003)042%3C1421:CCBOAI%3E2.0.CO;2
  7. O. E. Malandraki, N. B. Crosby, “Solar Particle Radiation Storms Forecasting and Analysis,” Astrophysics and Space Science Library, Springer (eBook), 2017.
    DOI: 10.1007/978-3-319-60051-2
  8. T. G. Shepherd, “Dynamics, stratospheric ozone, and climate change,” Atmos.-Ocean, vol. 46, no. 1, pp. 117–138, 2008.
    DOI: 10.3137/ao.460106
  9. Q. Fu, P. Lin, S. Solomon, D. L. Hartmann, “Observational evidence of strengthening of the Brewer-Dobson circulation since 1980,” J. Geophys. Res. Atmos., vol. 120, no. 19, pp. 10,214–10,228, 2015.
    DOI: 10.1002/2015JD023657
  10. R. L. McKenzie et al., “Effects of urban pollution on UV spectral irradiances,” Atmos. Chem. Phys. Discuss., vol. 8, no. 18, pp. 5683–5697, 2008.
    DOI: 10.5194/acp-8-5683-2008
N. Tyutyundzhiev, Ch. Angelov, K. Lovchinov, T. Arsov, H. Nitchev, "Solar UV irradiation monitoring in Bulgaria using narrow-band digital sensors and open-source InfluxDB database," RAD Conf. Proc, vol. 4, 2020, pp. 179–184, http://doi.org/10.21175/RadProc.2020.36
Medical Physics


M. Mastromarco, A. Digennaro, A. Mazzone, P. Finocchiaro, J. Praena, I. Porras, N. Colonna

DOI: 10.21175/RadProc.2020.37

Since a few decades, proton therapy is being widely used for cancer treatment, with minimal dose to healthy tissues and surrounding organs. Recent studies have suggested that the efficacy of proton therapy could be enhanced if natural boron is selectively accumulated in the tumor tissues. Such an increase is attributed to the proton-boron fusion reaction that leads to the production of low-energy α-particles (~2.9 MeV), a mechanism that resembles the well-known Boron Neutron Capture Therapy. However, analytical calculations and detailed Monte Carlo simulations with GEANT4, both in a macro- and micro-dosimetry approach, indicate that the effect of the p+11B→3α reaction, at the standard Boron concentration levels (less than 100 ppm), is orders of magnitude lower than the one of the primary proton beam inside the tissues. In an attempt to solve this discrepancy, an experimental campaign will be carried out with a low-energy proton beam at the CNA laboratory, in Seville. In this talk, we present the latest results of detailed calculations and Geant4 simulations of the dose related to PBCT and describe the concept at the basis of the proposed experimental activity on the PBCT efficacy.
  1. G.A.P. Cirrone et al., “First experimental proof of Proton Boron Capture Therapy (PBCT) to enhance proton therapy effectiveness”, Sci. Rep., vol. 8, article no. 1141, 2018.
    DOI: 10.1038/s41598-018-19258-5
  2. D.-K. Yoon, J.-Y. Jung, T. S. Suh, “Application of proton boron fusion reaction to radiation therapy: A Monte Carlo simulation study”, Appl. Phys. Lett., vol. 105, no. 22, article no. 223507, 2014.
    DOI: 10.1063/1.4903345
  3. R.E. Segel, S.S. Hanna, R.G. Allas, “States in C12 between 16.4 and 19.6 MeV”, Phys. Rev., vol. 139, no. B4, article no. B818, 1965.
    DOI: 10.1103/PhysRev.139.B818
  4. V.V. Zerkina, B. Pritychenko, “The experimental nuclear reaction data (EXFOR): Extended computer database and web retrieval system”, Nucl. Instr. Meth. Phys., Research Section A, vol. 888, pp. 31–43, 2018.
    DOI: 10.1016/j.nima.2018.01.045
  5. W. Gruhle, B. Kober “The reactions 16O(p,α), 20 Ne(p,α) and 24Mg(p,α)”, Nucl. Phys. A, vol. 286, no. 3,
    pp. 523–530, 1977.
    DOI: 10.1016/0375-9474(77)90601-7
  6. L.S. Waters, “MCNPX 2.6.0 User’s Guide”, Los Alamos National Laboratory, 2008.
  7. G. Battistoni et al., “The FLUKA code and its use in hadron therapy”, Il Nuovo Cimento C, vol. 31, no. 1, pp. 69–75, 2008.
    DOI: 10.1393/ncc/i2008-10281-9
  8. S. Agostinelli et al., “GEANT4-a simulation toolkit”, Nucl. Instr. Meth. Phys., Research Section A, vol. 506, no. 3, pp. 250–303, 2003.
    DOI: 10.1016/S0168-9002(03)01368-8
  9. U. Titt, B. Bednarz, H. Paganetti, “Comparison of MCNPX and Geant4 proton energy deposition prediction for clinical use”, Phys. Med. Biol., vol. 57,
    no. 20, pp. 6381–6393, 2012.
    DOI: 10.1088/0031-9155/57/20/6381
  10. C. Robert et al., “Distribution of secondary particles in proton and carbon-ion therapy: a comparison between GATE/Geant4 and FLUKA Monte Carlo codes”, Phys. Med. Biol., vol. 58, no. 9, pp. 2879–2900, 2013.
    DOI: 10.1088/0031-9155/58/9/2879
  11. M. C. Battaglia, “Dosimetry studies for radiation therapy with photons and radiobiology using low-energy protons: 1) 2D dose verification for complex radiotherapy treatments, 2) Dosimetry of low-energy protons and first radiobiological experiment”, Ph.D. dissertation, University of Seville, Spain, 2017.
    Retrieved from: https://digital.csic.es/bitstream/10261/196356/1/Dosimetry_studies.pdf
    Retrieved on: Aug. 15, 2020
  12. W. Möller, W. Eckstein, “Trydin – A TRIM simulation code including dynamic composition changes”, Nucl. Instr. Meth. Phys., Research Section B, vol. 2, no. 1–3, pp. 814–818, 1984.
    DOI: 10.1016/0168-583X(84)90321-5
  13. T. Sato, Sh.-i. Masunaga, H. Kumada, N. Hamada, “Microdosimetric modeling of biological effectiveness for Boron Neutron Capture Therapy considering intra- and intercellular heterogeneity in 10B distribution”, Sci. Rep., vol. 8, article no. 988, 2018.
    DOI: 10.1038/s41598-017-18871-0
M. Mastromarco, A. Digennaro, A. Mazzone, P. Finocchiaro, J. Praena, I. Porras, N. Colonna, "Proton boron capture therapy: Dose calculations and a possible new measurement," RAD Conf. Proc, vol. 4, 2020, pp. 185–189, http://doi.org/10.21175/RadProc.2020.37