Volume 6, 2022 |
![]() |
Table of contents |
List of Reviewers |
ASSESSMENT OF PIGMENT CONTENT ON WILD GROWING PLANTS IN MOUSSALA PEAK
Tsveta Angelova, Nikolai Tyutyundzhiev, Christo Angelov, Svetla Gateva, Gabriele Jovtchev
Abstract | References | Cite This | Full Text (PDF)
- C. Angelov et al., “BEO Moussala: Complex for Environmental Studies”, in Sustainable Development in Mountain Regions – Southeastern Europe, G. Zhelezov, Ed., Switzerland: Springer, Cham., 2016, ch. 24, pp. 349–365.
DOI: 10.1007/978-3-319-20110-8_24 - N. Tyutyundzhiev et al., “Comparative measurements of solar UV irradiation at the high-mountain stations of BEO-Moussala (BG) and NAORozhen (BG)”, Journal of Physics: Conference Series, vol. 1492, article no. 012044, 2020.
DOI: 10.1088/1742-6596/1492/1/012044 - P. Nojarov, T. Arsov, I. Kalapov, H. Angelov, “Aerosol direct effects on global solar shortwave irradiance at high mountainous station Musala, Bulgaria”, Atmospheric Environment, vol. 244, article no. 117944, 2021.
DOI: 10.1016/j.atmosenv.2020.117944 - C. Angelov et al., “Aerosol and gamma background measurements at Basic Environmental Observatory Moussala”, Acta Scientifica Naturalis, vol. 3, no. 1, pp. 34-39, 2016.
DOI: 10.1515/asn-2016-0005 - P. Nojarov, I. Kalapov, “Air temperature regime changes at peak Moussala for the period 1933-2008”, Bul. J. Meteo & Hydro, vol. 15, no. 1, pp. 21–31, 2010.
Retrieved from: https://www.researchgate.net/publication/317168458_Air_temperature_regime_changes_at_peak_Moussala_for_the_period_1933-2008
Retrieved on: July 10, 2022 - Rila National Park Management Plan 2001–2010, Rila National Park Directorate, Blagoevgrad, Bulgaria, 2001.
Retrieved from: https://rilanationalpark.bg/assets/userfiles/Rila%20NP-en.pdf
Retrieved on: May 15, 2021 - F. Talebzadeh, C. Valeo, “Evaluating the Effects of Environmental Stress on Leaf Chlorophyll Content as an Index for Tree Health”, IOP Conf. Ser.: Earth Environ. Sci., vol. 1006, article no. 012007, 2022.
DOI: 10.1088/1755-1315/1006/1/012007 - D. I. Arnon, “Copper enzyme in isolated chloroplast polyphenol oxidase in Beta vulgaris”, Plant Phys., vol. 24, no. 1, pp. 1–15, 1949.
DOI: 10.1104/pp.24.1.1 - S. P. Gateva et al., “Effect of UV radiation and other abiotic stress factors on DNA of different wild plant species grown in three successive seasons in alpine and subalpine regions”, Phyton-International Journal of Experimental Botany, vol. 91, no. 2, pp. 293–313, 2022.
DOI: 10.32604/phyton.2022.016397 - Ts. V. Angelova, C. V. Angelov, N. Tyutyundzhiev, S. P. Gateva, G. Jovtchev, “Does altitude have an effect on pigment content of wild growing plants in Rila mountain?”, in Proc. 9th Int. Conf. on Radiation in Various Fields of Research (RAD 2021) , Herceg Novi, Montenegro, 2021, pp. 15–20.
DOI: 10.21175/RadProc.2021.03 - P. Ghosh et al., “Extraction and quantification of pigments from Indian traditional medicinal plants: A comparative study between tree, shrub and herb”, Int. J. Pharm. Sci. & Res., vol. 9, no. 7, pp. 3052–3059, 2018.
DOI: 10.13040/IJPSR.0975-8232.9(7).3052-59 - W. Zielewicz, B. Wróbel, G. Niedbała, “Quantification of chlorophyll and carotene pigments content in Mountain Melick (Melica nutans L.) in relation to edaphic variables”, Forests, vol. 11, no. 11, article no. 1197, 2020.
DOI: 10.3390/f11111197 - D. Peev, S. Ivanceva, G. Angelov, M. Kourteva, M. Delcheva, “Phytomonitoring in Rila mountain - 1995 II. Flavonoids, izoenzymes and pigments of the control populations”, in Proc. Observatoire de Montagne de Moussala, OM2, Sofia, Bulgaria, 1996, pp. 153–163.
- D. Peev, S. Ivanceva, G. Angelov, M. Kurteva, M. Delcheva, “Phytomonitoring in Rila mountain - 1996 II. Flavonoids, izoenzymes and pigments of the control populations”, in Proc. Observatoire de Montagne de Moussala, OM2, Sofia, Bulgaria, 1997, pp. 106–114.
- M. Kurteva, M. Delcheva, D. Peev, “Changes of the Pigmental Content in the Phytomonitors from Control Populations in Rila Mountain”, in Proc. Observatoire de Montagne de Moussala, OM2, Sofia, Bulgaria, 1998, pp. 181–188.
- K. Rajalakshmi, N. Banu, “Extraction and Estimation of Chlorophyll from Medicinal Plants”, International Journal of Science and Research (IJSR), vol. 4, no. 11, Paper ID: NOV151021, pp. 209–212, 2015.
Retrieved from: https://www.researchgate.net/publication/286927770_Extraction_and_estimation_of_chlorophyll_from_medicinal_plants
Retrieved on: December 11, 2022 - C. Singh, N. Chauhan, S. Gupta, A. Rani, S. Tomar, “Analysis of chlorophyll content in Adiantum Cappillus-veneris L. growing in different habitats in doon valley and nearby areas”, Asian Journal of Science and Technology, vol. 9, no. 8, pp. 8497–8501, 2018.
Retrieved from: https://www.researchgate.net/publication/330282022_analysis_of_cholophyll_content_in_adiantum_capillus-veneris_l_growing_in_different_habitats_in_doon_valley_and_nearby_areas
Retrieved on: July 11, 2022
A NEW PRODUCTION METHOD OF HIGH SPECIFIC ACTIVITY RADIONUCLIDES TOWARDS INNOVATIVE RADIOPHARMACEUTICALS: THE ISOLPHARM PROJECT
E. Vettorato, L. Morselli, M. Ballan, A. Arzenton, O. S. Khwairakpam, M. Verona, D. Scarpa, S. Corradetti, P. Caliceti, V. Di Marco, F. Mastrotto, G. Marzaro, N. Realdon, A. Zenoni, A. Donzella, M. Lunardon, L. Zangrando, M. Asti, G. Russo, E. Mariotti, D. Maniglio, A. Andrighetto
Abstract | References | Cite This | Full Text (PDF)
- D. R. Vera, C. K. Hoh, R. C. Stadalnik, K. A. Krohn, "Radiopharmaceuticals for the Study of Liver and Renal Function," in Handbook of radiopharmaceuticals: radiochemistry and applications, M. J. Welch, C. S. Redvanly, Eds., Hoboken (NJ), USA: John Wiley & Sons, ch. 8, 2003, p. 848.
DOI: 10.1002/0470846380.ch28 - W. A. Van Hook, “Isotope Separation,” in Handbook of Nuclear Chemistry, vol. 5, A. Vértes, S. Nagy, Z. Klencsár, R. G. Lovas, F. Rösch, Eds., 2nd edition, Boston (MA), USA: Springer, 2011, ch. 51, pp. 2369–2402.
DOI: 10.1007/978-1-4419-0720-2 - C. Decristoforo, O. Neels, M. Patt, “Emerging radionuclides in a regulatory framework for medicinal products – how do they fit?,” Frontiers in Medicine, vol. 8, article no. 678452, 2021.
DOI: 10.3389/fmed.2021.678452 - L. F. Mausner, K. L. Kolsky, V. Joshi, S. C. Srivastava, “Radionuclide development at BNL for nuclear medicine therapy,” Applied Radiation and Isotopes vol. 49, no. 4, pp. 285-294, 1998.
DOI: 10.1016/S0969-8043(97)00040-7 - A. Andrighetto et al., “Spes: An intense source of Neutron-Rich Radioactive Beams at Legnaro,” Journal of Physics: Conference Series, vol. 966, article no. 012028, 2018.
DOI: 10.1088/1742-6596/966/1/012028 - S. Corradetti, M. Manzolaro, A. Andrighetto, P. Zanonato, S. Tusseau-Nenez, “Thermal conductivity and emissivity measurements of uranium carbides,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 360, pp. 46–53, 2015.
DOI: 10.1016/j.nimb.2015.07.128 - A. Monetti et al., “The RIB production target for the SPES project,” The European Physical Journal A, vol. 51, article no. 128, 2015.
DOI: 10.1140/epja/i2015-15128-6 - M. Manzolaro, G. Meneghetti, A. Andrighetto, “Thermal–electric numerical simulation of a surface ion source for the production of radioactive ion beams,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 623, no. 3, pp. 1061–1069, 2010.
DOI: 10.1016/j.nima.2010.08.087 - F. Borgna et al., “A preliminary study for the production of high specific activity radionuclides for nuclear medicine obtained with the isotope separation on line technique,” Applied Radiation and Isotopes, vol. 127, pp. 214–226, 2017.
DOI: 10.1016/j.apradiso.2017.06.022 - F. Borgna et al., “Early evaluation of copper radioisotope production at ISOLPHARM,” Molecules, vol. 23, article no. 2437, 2018.
DOI: 10.3390/molecules23102437 - M. Ballan et al., “Preliminary evaluation of the production of non-carrier added 111Ag as core of a therapeutic radiopharmaceutical in the framework of ISOLPHARM_Ag experiment,” Applied Radiation and Isotopes, vol. 164, article no. 109258, 2020.
DOI: 10.1016/j.apradiso.2020.109258 - A. Andrighetto et al., “The ISOLPHARM project: A New ISOL production method of high specific activity beta-emitting radionuclides as radiopharmaceutical precursors,” in International Journal of Modern Physics: Conference Series, vol. 48, article no. 1860103, 2018.
DOI: 10.1142/S2010194518601035 - S. Chattopadhyay et al., “Preparation and evaluation of a new radiopharmaceutical for radiosynovectomy, 111Ag-labelled hydroxyapatite (HA) particles,” Applied Radiation and Isotopes, vol. 66, no. 3, pp. 334–339, 2008.
DOI: 10.1016/j.apradiso.2007.09.003 - M. Tosato et al., “Chemical purification of 111Ag from isobaric impurity 111Cd by solid phase extraction chromatography: a proof of concept study,” Applied Radiation and Isotopes, vol. 164, article no. 109263, 2020.
DOI: 10.1016/j.apradiso.2020.109263 - D. Scarpa et al., “Neutron-rich isotope production using the uranium carbide multi-foil SPES target prototype,” European Physical Journal A, vol. 47, article no. 32, 2011.
DOI: 10.1140/epja/i2011-11032-5 - D. Scarpa et al., “New solid state laser system for SPES: Selective Production of Exotic Species project at Laboratori Nazionali di Legnaro,” Rev. Sci. Instrum., vol. 93, no. 8, article no. 083001, 2022.
DOI: 10.1063/5.0078913 - A. Andrighetto et al., “The ISOLPHARM project: ISOL-based production of radionuclides for medical applications,” Journal of Radioanalytical and Nuclear Chemistry, vol. 322, pp. 73–77, 2019.
DOI: 10.1007/s10967-019-06698-0 - M. Ballan et al., “Development of implantation substrates for the collection of radionuclides of medical interest produced via ISOL technique at INFN-LNL,” Applied Radiation and Isotopes, vol. 175, article no. 109795, 2021.
DOI: 10.1016/j.apradiso.2021.109795 - M. Tosato et al., “Chelation of Theranostic Copper Radioisotopes with S-Rich Macrocycles: From Radiolabelling of Copper-64 to In Vivo Investigation,” Molecules, vol. 27, no. 13, article no. 4158, 2022.
DOI: 10.3390/molecules27134158 - R. Alberto et al., “Silver(I) complexes of the derivatized crown thioether ligands 3,6,9,12,15,18-hexathianonadecanol and 3,6,9,13,16,19-hexathiaicosanol. Determination of stability constants and the crystal structures of [Ag(19-aneS6-OH)][CF3SO3] and [Ag(20-aneS6-OH)][BF4],” Inorganic Chemistry, vol. 35, no. 11, pp. 3420–3427, 1996.
DOI: 10.1021/ic951421y - M. Tosato et al., “Highly stable silver(I) complexes with cyclen-based ligands bearing sulfide arms: A step toward silver-111 labeled radiopharmaceuticals,” Inorganic Chemistry, vol. 59, no. 15, pp. 10907–10919, 2020.
DOI: 10.1021/acs.inorgchem.0c01405 - M. Tosato et al., “Copper coordination chemistry of sulfur pendant cyclen derivatives: an attempt to hinder the reductive-induced demetalation in 64/67Cu radiopharmaceuticals,” Inorganic Chemistry, vol. 60, no. 15, pp. 11530–11547, 2021.
DOI: 10.1021/acs.inorgchem.1c01550 - M. Tosato et al., “Toward novel sulphur-containing derivatives of tetraazacyclododecane: synthesis, acid–base properties, spectroscopic characterization, DFT calculations, and cadmium(II) complex formation in aqueous solution,” New Journal of Chemistry, vol. 44, pp. 8337–8350, 2020.
DOI: 10.1039/D0NJ00310G - M. W. Konijnenberg et al., “Therapeutic application of CCK2R-targeting PP-F11: influence of particle range, activity and peptide amount,” EJNMMI Research, vol. 4, article no. 47, 2014.
DOI: 10.1186/s13550-014-0047-1 - L. Aloj et al., “Comparison of the binding and internalization properties of 12 DOTA-coupled and 111In-labelled CCK2/gastrin receptor binding peptides: a collaborative project under COST Action BM0607,”European Journal of Nuclear Medicine and Molecular Imaging, vol. 38, pp. 1417–1425, 2011.
DOI: 10.1007/s00259-011-1816-y - Ch. Wayua, P. S. Low, “Evaluation of a nonpeptidic ligand for imaging of cholecystokinin 2 receptor-expressing cancers,” Journal of Nuclear Medicine, vol. 56, no. 1, pp. 113–119, 2015.
DOI: 10.2967/jnumed.114.144998 - Ch. Wayua, J. Roy, K. S. Putt, P. S. Low, “Selective tumor targeting of desacetyl vinblastine hydrazide and tubulysin B via conjugation to a cholecystokinin 2 receptor (CCK2R) ligand,” Molecular Pharmaceutics, vol. 12, no. 7, pp. 2477–2483, 2015.
DOI: 10.1021/acs.molpharmaceut.5b00218 - M. Verona et al., “Preliminary study of a 1,5-benzodiazepine-derivative labelled with indium-111 for CCK-2 receptor targeting,” Molecules, vol. 26, no. 4, article no. 918, 2021.
DOI: 10.3390/molecules26040918
METHOD OF SETTING OPTIMAL OPERATING VOLTAGE FOR RADIATION DETECTORS CONTAINING THIN PLASTIC SCINTILLATORS
Aleš Jančář, Jiří Čulen, Filip Mravec, Zdeněk Matěj
Abstract | References | Cite This | Full Text (PDF)
-
S. Hohara et al., “A simple method of energy calibration for thin plastic
scintillator,” IEEE Transactions on Nuclear Science, vol. 48, no.
4, pp. 1172–1176, Aug. 2001.
DOI: 10.1109/23.958745 -
N. Kudomi, “Energy calibration of plastic scintillators for low energy
electrons by using Compton scatterings of rays,”
Nuclear Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment,
vol. 430, no. 1,
pp. 96–99, Jun. 1999.
DOI: 10.1016/S0168-9002(99)00200-4 -
G. Knoll, “Scintillation Detector Principles,” in Radiation Detection and Measurement, 4th ed., Danvers
(MA), USA: John Wiley & Sons, 2010, ch. 8,
pp. 223–275.
Retrieved from: https://www-f9.ijs.si/~golob/sola/seminar/scintilatorji/Leo.pdf
Retrieved on: Jun. 15, 2022 - P. Nicholson, “Pulse Shaping Methods for Spectrometry” in Nuclear Electronics, Norwich, UK: John Wiley & Sons, 1974, ch. 3, pp. 88–95.
-
M. Veškrna et al., “Digitalized two parametric system for gamma/neutron
spectrometry,” in Proc. ANS RPSD 2014 – 18th
Topical Meeting of the Radiation Protection and Shielding Division,
Knoxville (TN), USA, 2014.
Retrieved from: https://is.muni.cz/repo/1210637/RPSD2014_-_Digitalized_two_parametric_system_for_gammaneutron_spectrometry.pdf
Retrieved on: Jun. 15, 2022 -
M. Pavelek et al., “Fast digital spectrometer for mixed radiation fields,”
in Proc. 2017 IEEE Sensors, Glasgow, UK, 2017, pp. 1–3.
DOI: 10.1109/ICSENS.2017.8234012 -
J. Gerndt, Detektory ionizujícího záření, 1. vyd., Praha, Česká
republika, Vydavatelství ČVUT, 1996.
(J. Gerndt, Ionizing Radiation Detectors, 1st ed., Prague, Czech Republic, Czech Technical University Press, 1996.) -
S. Flyckt, C. Marmonier, Photomultiplier tubes: Principles & applications, Brive,
France, Photonis, 2002.
Retrieved from: https://www2.pv.infn.it/~debari/doc/Flyckt_Marmonier.pdf
Retrieved on: Dec. 6, 2022 -
M. Höök, “Study of the pulse shape as a means to identify neutrons and
gammas in a NE213 detector,” diploma thesis, Uppsala University, Department
of Neutron Research, Uppsala, Sweden, 2006.
Retrieved from: https://www.diva-portal.org/smash/get/diva2:342845/FULLTEXT01.pdf
Retrieved on: Dec. 6, 2022 -
Plastic Scintillators Database, Eljen Technology, Sweetwater (TX), USA.
Retrieved from: https://eljentechnology.com
Retrieved on: Dec. 6, 2022
FEASIBILITY OF IN SITU RADON MONITORING USING COMMON GM COUNTERS
Atanas Terziyski, Ludmil Tsankov, Stoyan Tenev, Vedrin Jeliazkov
Abstract | References | Cite This | Full Text (PDF)
-
A. El-Taher, “An Overview of Instrumentation for Measuring Radon in
Environmental Studies”, Journal of Radiation and Nuclear Applications, vol. 3, no. 3, pp.
135–141, 2018.
DOI: 10.18576/jrna/030302 -
N. Morales-Simfors, R. A. Wyss, J. Bundschuh, “Recent progress in
radon-based monitoring as seismic and volcanic precursor: A critical
review”, Critical Reviews in Environmental Science and Technology,
vol. 50, no. 10, pp. 979–1012, 2020.
DOI: 10.1080/10643389.2019.1642833 -
V. Jobbágy, T. Altzitzoglou, P. Malo, V. Tanner, M. Hult, “A brief overview
on radon measurements in drinking water”, Journal of Environmental Radioactivity, vol. 173, pp. 18–24, 2017.
DOI: 10.1016/j.jenvrad.2016.09.019 -
I. Čeliković et al, “Outdoor Radon as a Tool to Estimate Radon
Priority Areas—A Literature Overview”, Int. J. Environ. Res. Public Health, vol. 19, no. 2, pp. 662–682, 2022.
DOI: 10.3390/ijerph19020662 -
L. Tomassino, “Radon monitoring by alpha track detection”,
International Journal of Radiation Applications and Instrumentation.
Part D. Nuclear Tracks and Radiation Measurements
, vol. 17, no. 1, pp 43–48, 1990.
DOI: 10.1016/1359-0189(90)90147-p -
M. P. Silverman, “Method to Measure Indoor Radon Concentration in an Open
Volume with Geiger-Mueller Counters: Analysis from First Principles”, World Journal of Nuclear Science and Technology, vol. 6, no. 4,
pp. 232–260, 2016.
DOI: 10.4236/wjnst.2016.64024 -
RD200M : High-performance radon sensor, FTLab, Gyeonggi-do, South Korea.
Retrieved from: http://radonftlab.com/radon-sensor-product/radon-sensor/rd200m/
Retrieved on: May 18, 2022 -
SBM-20 Geiger-Muller Tube (Счетчик Гейгера-Мюллера СБМ-20), MightyOhm LLC.
Retrieved from: https://www.gstube.com/data/2398/
Retrieved on: May 18, 2022 -
Meter.ac: an open data network for environmental monitoring.
Retrieved from: https://meter.ac/
Retrieved on: May 18, 2022
EXPERIMENTAL MEASUREMENT OF SECONDARY NEUTRONS ON PARTICLE ACCELERATORS
Aleš Jančář, Zdeněk Kopecký, Jiří Čuleň, Filip Mravec, Zdeněk Matěj
Abstract | References | Cite This | Full Text (PDF)
-
A. Jančář et al., “Pulse-shape discrimination of the new plastic scintillators in neutron–gamma mixed field using fast digitizer card,” Radiation Physics and Chemistry, vol. 116, pp. 60–64, Nov.2015.
DOI: 10.1016/j.radphyschem.2015.05.007 -
F. D. Brooks, “A scintillation counter with neutron and gamma-ray
discriminators,” Nucl. Instr. Meth., vol. 4, no. 3, pp.
151–163, Apr. 1959.
DOI: 10.1016/0029-554X(59)90067-9 -
R. A. Winyard, J. E. Lutkin, G. W. McBeth, “Pulse shape discrimination
in inorganic and organic scintillators. I,” Nucl. Instr. Meth., vol. 95, no. 1, pp. 141–153, Aug. 1971.
DOI: 10.1016/0029-554X(71)90054-1 -
Z. Matěj at al., “Digital two-parametric processing of the output data
from radiation detectors,” Prog. Nucl. Sci. Tech., vol. 4, pp.
670–674, Sep. 2014.
DOI: 10.15669/pnst.4.670 -
G. Dietze, H. Klein, “Gamma-calibration of NE 213 scintillation
counters,” Nucl. Instr. Meth. Phys. Res., vol. 193, no. 3, pp.
549–556, Mar. 1982.
DOI: 10.1016/0029-554X(82)90249-X -
N. Nakao et al., “Measurements of response function of organic liquid scintillator for neutron energy range up to 135 MeV,” Nucl. Instr. Meth. Phys. Res. A, vol. 362, no. 2–3, pp.
454–465, Aug. 1995.
DOI: 10.1016/0168-9002(95)00193-X -
C. J. Werner et al., MCNP Version 6.2 Release Notes, Technical
Report LA-UR-18-20808, Los Alamos National Laboratory, Los Alamos (NM),
USA, 2018.
DOI: 10.2172/1419730 -
C. J. Werner, Ed., MCNP® User’s Manual, Technical
Report LA-UR-17-29981, Los Alamos National Laboratory, Los Alamos (NM),
USA, 2017.
Retrieved from: https://mcnp.lanl.gov/pdf_files/TechReport_2017_LANL_LA-UR-17-29981_WernerArmstrongEtAl.pdf
Retrieved on: Jun. 15, 2022
ISO 4037 2019: ESTABLISHMENT OF X-RAY NARROW-SPECTRUM SERIES USED IN THE NATIONAL SECONDARY STANDARD DOSIMETRY LABORATORY OF MOROCCO
Omaima Essaad Belhaj, Hamid Boukhal, El Mahjoub Chakir, Khaoula Laazouzi, Maryam Hadouachi, Younes Sadeq, Siham Belhaj, Meryem Bellahsaouia, Said Soudjay
Abstract | References | Cite This | Full Text (PDF)
-
Radiological protection — X and gamma reference radiation for
calibrating dosemeters and doserate meters and for determining their
response as a function of photon energy — Part 1: Radiation
characteristics and production methods
, ISO 4037-1:2019, Jan. 1, 2019.
Retrieved from: https://www.iso.org/standard/66872.html
Retrieved on: Jun. 1, 202 -
Radiological protection — X and gamma reference radiation for
calibrating dosemeters and doserate meters and for determining their
response as a function of photon energy — Part 2: Dosimetry for
radiation protection over the energy ranges from 8 keV to 1,3 MeV and 4
MeV to 9 MeV
, ISO 4037-2:2019, Jan. 1, 2019.
Retrieved from: https://www.iso.org/standard/66873.html
Retrieved on: Jun. 1, 2022 -
Radiological protection — X and gamma reference radiation for
calibrating dosemeters and doserate meters and for determining their
response as a function of photon energy — Part 3: Calibration of area
and personal dosemeters and the measurement of their response as a
function of energy and angle of incidence
,
ISO 4037-3:2019, Jan. 1, 2019.
Retrieved from: https://www.iso.org/standard/66874.html
Retrieved on: Jun. 1, 2022 -
Radiological protection — X and gamma reference radiation for
calibrating dosemeters and doserate meters and for determining their
response as a function of photon energy — Part 4: Calibration of area
and personal dosemeters in low energy X reference radiation fields
, ISO 4037-4:2019, Jan. 1, 2019.
Retrieved from: https://www.iso.org/standard/66165.html
Retrieved on: Jun. 1, 2022 -
D. Kurkova, L. Judas, “X-ray tube spectra measurement and correction using
a CdTe detector and an analytic response matrix for photon energies up to
160 keV,” Radiation Measurements, vol. 85, pp. 64–72, Feb. 2016.
DOI:: 10.1016/j.radmeas.2015.12.008 -
Physical aspects of irradiation: recommendations of the International
Commission on Radiological Units and Measurements (ICRU), Report 10b,
National Bureau of Standards – Handbook 85, Washington (DC), USA, 1964.
Retrieved from: https://nvlpubs.nist.gov/nistpubs/Legacy/hb/nbshandbook85.pdf
Retrieved on: Jun. 5, 2022 -
G. Poludniowski, P. Evans, “Calculation of x-ray spectra emerging from an
x-ray tube. Part I. electron penetration characteristics in x-ray target,” Med. Phys., vol. 34, no. 6, part 1, pp. 2164–2174, Jun. 2007.
DOI:: 10.1118/1.2734725 -
G. Poludniowski, “Calculation of x-ray spectra emerging from an x-ray tube.
Part II. X-ray production and filtration in x-ray targets,” Med. Phys., vol. 34, no. 6, part 1, pp. 2175–2186, Jun. 2007.
DOI:: 10.1118/1.2734726 -
G. Poludniowski, G. Landry, F. DeBlois, P. M. Evans, F. Verhaegen,
“SpekCalc: a program to calculate photon spectra from tungsten anode x-ray
tubes,” Phys. Med. Biol., vol. 54, no. 19, pp. 433–438, Sep. 2009.
DOI:: 10.1088/0031-9155/54/19/n01 -
G. Poludniowski, A. Omar, R. Bujila, P. Andreo, “Technical Note: SpekPy
v2.0—a software toolkit for modeling x-ray tube spectra,” Med. Phys., vol. 48, no. 7, pp. 3630–3637, Jul. 2021.
DOI:: 10.1002/mp.14945 -
R. Bujila, A. Omar, G Poludniowski, “A validation of SpekPy: A software
toolkit for modelling X-ray tube spectra,” Phys. Med., vol. 75,
pp. 44–54, Jul. 2020.
DOI:: 10.1016/j.ejmp.2020.04.026 -
A. Omar, P. Andreo, G. Poludniowski, “A model for the energy and angular
distribution of x rays emitted from an x-ray tube. Part I. Bremsstrahlung
production,” Med. Phys., vol. 47, no. 10, pp. 4763–4774, Oct.
2020.
DOI:: 10.1002/mp.14359 -
A. Omar, P. Andreo, G. Poludniowski, “A model for the energy and angular
distribution of x rays emitted from an x-ray tube. Part II. Validation of
x-ray spectra from 20 to 300 kV,” Med. Phys., vol. 47, no. 9, pp.
4005–4019, Sep. 2020.
DOI:: 10.1002/mp.14360 -
A. Omar, P. Andreo, G. Poludniowski, “A model for the emission of K and L x
rays from an x-ray tube,”
Nuclear Instruments and Methods in Physics Research Section B: Beam
Interactions with Materials and Atoms
, vol. 437, pp. 36–47, Dec. 2018.
DOI:: 10.1016/j.nimb.2018.10.026 -
G. Poludniowski, “Calculation of x-ray spectra emerging from an x-ray tube.
Part II. X-ray production and filtration in x-ray targets,” Med. Phys., vol. 34, no. 6, pp. 2175–2186, Jun. 2007.
DOI:: 10.1118/1.2734726 -
G. Poludniowski, P. Evans, “Calculation of x-ray spectra emerging from an
x-ray tube. Part I. Electron penetration characteristics in x-ray targets,” Med. Phys., vol. 34, no. 6, part 1, pp. 2164–2174, Jun. 2007.
DOI:: 10.1118/1.2734725 -
G. Poludniowski, G. Landry, F. DeBlois, P. Evans, F. Verhaegen, “ SpekCalc: a program to calculate photon spectra from tungsten anode x-ray tubes,” Phys. Med. Biol., vol. 54, no. 19, article no.
433, Sep. 2009.
DOI:: 10.1088/0031-9155/54/19/N01 -
A. Omar, P. Andreo, G. Poludniowski, “Performance of different theories for
the angular distribution of bremsstrahlung produced by keV electrons
incident upon a target,” Radiat. Phys. Chem., vol. 148, pp. 73–85,
Jul. 2018.
DOI:: 10.1016/j.radphyschem.2018.02.009 -
P. Arce, P. Rato, M. Canadas, J. I. Lagares, “GAMOS: A GEANT4-based easy
and flexible framework for nuclear medicine applications,” in Proc. IEEE Nuclear Science Symposium Conference Record, Dresden, Germany, 2008, pp. 3162–3168.
DOI:: 10.1109/NSSMIC.2008.4775023 -
O. E. Belhaj, H. Boukhal, E. M. Chakir, “Monte Carlo and Medical Physics,”
in
The Monte Carlo Methods - Recent Advances, New Perspectives and
Applications
, A. A. Jaoudé, Ed., London, UK: IntechOpen, 2021, ch. 5, pp. 155–176.
DOI:: 10.5772/intechopen.100121 -
I. Kawrakow, E. Mainegra-Hing, D.W.O. Rogers,
F. Tessier, B.R.B. Walters,
The EGSnrc Code System: Monte Carlo Simulation of Electron and Photon
Transport
, NRCC Report PIRS–701, National Research Council of Canada, Ottawa,
Canada, 2000.
Retrieved from: https://nrc-cnrc.github.io/EGSnrc/doc/pirs701-egsnrc.pdf
Retrieved on: April 15, 2021 -
W. R. Nelson, H. Hirayama, D. W. O. Rogers, The EGS4 code system,
Report SLAC–265, Stanford Linear Accelerator Center, Menlo Park (CA), USA,
1985.
Retrieved from: https://www.osti.gov/biblio/6137659
Retrieved on: April 15, 2021 -
L. Zhe et al., “Establishment of radiation in (10-40) kV narrow spectrum
series,” in Proc. 14th IEEE Int. Conf. Electron. Meas. Instr. (ICEMI 2019),
Changsha, China, 2019, pp. 1454–1459.
DOI:: 10.1109/ICEMI46757.2019.9101438 -
S. M. Seltzer, “An overview of ETRAN Monte Carlo methods,” In Monte Carlo Transport of Electrons and Photons, T. M. Jenkins, W.
R. Nelson, A. Rindi, Eds., Ettore Majorana International Science Series
vol. 38, New York (NY), USA: Springer-Plenum Press, 1988, ch. 7, pp.
153–182.
DOI:: 10.1007/978-1-4613-1059-4_7 -
MCNP—A general Monte Carlo N-particle transport code, Version 5 -
Volume 1: Overview and theory
, Report LA-UR-03-1987, Los Alamos National Laboratory, Los Alamos (NM),
USA, 2003.
Retrieved from: https://mcnp.lanl.gov/pdf_files/TechReport_2003_LANL_LA-UR-03-1987Revised212008_SweezyBoothEtAl.pdf
Retrieved on: Aug. 2, 2022 -
PENELOPE-2006: A Code System for Monte Carlo Simulation of Electron and
Photon Transport
, Nuclear Energy Agency, Paris, France: OECD Publishing, 2006.
Retrieved from: https://www.oecd-nea.org/upload/docs/application/pdf/2019-12/nea6222-penelope.pdf
Retrieved on: Jul. 7, 2022 -
R. Taleei, M. Shahriari, “Monte Carlo simulation of X-ray spectra and
evaluation of filter effect using MCNP4C and FLUKA code,” Applied Radiation and Isotopes, vol. 67, no. 2, pp. 266–271, Feb.
2009.
DOI:: 10.1016/j.apradiso.2008.10.007 -
A. Arectout et al., “Calculation of X-ray spectra characteristics and kerma
to personal dose equivalent Hp(10) conversion
coefficients: Experimental approach and Monte Carlo modeling,” Nucl. Eng. Technol., vol. 54, no. 1, pp. 301–309, Jan. 2022.
DOI:: 10.1016/j.net.2021.07.028 -
R. Antoni, L. Bourgois,
Physique appliquée à l’ exposition externe. Dosimétrie et
radioprotection
, París, France: Springer,2012.
(R. Antoni, L. Bourgois, Physics applied to external exposure. Dosimetry and radiation protection , France: Paris, France: Springer, 2012.)
DOI:: 10.1007/978-2-8178-0311-1 -
Detectors for Ionizing Radiation, Including Codes of Practice, Detector Catalog, PTW, Freiburg, Germany, 2013.
Retrieved from: http://www.ptw.de/online_brochures.html
Retrieved on: Aug. 5, 2022 -
S. Principi, C. Guardiola, M. A. Duch, M. Ginjaume, “Air kerma to Hp (3) conversion coefficients for IEC 61267 RQR X-ray
radiation qualities: Application to dose monitoring of the lens of the eye
in medical diagnostics,” Radiation Protection Dosimetry, vol. 170,
no. 1–4, pp. 45–48, Sep. 2016.
DOI:: 10.1093/rpd/ncv435 -
N. Melhem, H. El Balaa, G. Younes, Z. Al Kattar, “Characteristics of the
narrow spectrum beams used in the Secondary standard dosimetry laboratory
at the Lebanese atomic energy commission,” Radiation Protection Dosimetry, vol. 175, no. 2, pp. 252–259, Jun.
2017.
DOI:: 10.1093/rpd/ncw293 -
O. E. Belhaj et al., “Dose metrology: TLD/OSL dose accuracy and energy
response performance,” Nuclear Engineering and Technology,
accepted for publication.
DOI:: 10.1016/j.net.2022.10.029
HYDROPONICAL GROWTH AND RADIONUCLIDE ACCUMULATION SPECIFICITIES OF THUJA OCCIDENTALIS IN ARARAT VALLEY AND DILIJAN FOREST ZONE CONDITIONS
Kh. Mayrapetyan, A. Hakobjanyan, L. Ghalachyan, A. Karapetyan, A. Ghahramanyan, S. Eloyan, A. Yeghiazaryan, A. Tadevosyan
Abstract | References | Cite This | Full Text (PDF)
-
S. Caruntu et al., “Thuja occidentalis L. (Cupressaceae):
Ethnobotany, phytochemistry and biological activity,” Molecules,
vol. 25, no. 22, article no. 5416, Jan. 2020.
DOI: 10.3390/molecules25225416 -
E. F. Gilman, D. G. Watson, Thuja occidentalis: white cedar, Publication no. ENH-787, Environmental Horticulture
Department, UF/IFAS Extension, University of Florida, Gainesville (FL),
USA, 1994.
Retrieved from: https://edis.ifas.ufl.edu/publication/ST629
Retrieved on: Feb. 10, 2022 -
W. F Johnston, “Thuja occidentalis L. – Northern white-cedar”, Silvics of North America, vol. 1, no. 10, pp. 580–589, 1990.
Retrieved from: http://dendro.cnre.vt.edu/dendrology/usdafssilvics/118.pdf
Retrieved on: Feb. 10, 2022 -
B. Naser, C. Bodinet, M. Tegtmeier, U. Lindequist, “ Thuja occidentalis (Arbor vitae): A review of its pharmaceutical,
pharmacological and clinical properties,”Evidence-based Complementary and Alternative Medicine, vol. 2, no . 1, pp. 69–78,
Feb. 2005.
DOI: 10.1093/ecam/neh065 -
V. Bopp, N. Mistrartova, Y. Gurevich, “Western thuja ( Thuja occidentalis L.): introduction in Siberia and use of
nanoparticles in increasing the green cuttings rhizogenic activity,” BIO Web of Conferences, vol. 24, article no. 00013, Sep. 2020.
DOI: 10.1051/bioconf/20202400013 -
Р. А. Иванов, Е. Ю. Матвиенко, “Туя Западная в озеленении города
Новочеркасска,” Успехи современного естествознания, но. 8. с. 122,
2014.
(R. A. Ivanov, E. Yu. Matvienko, “Thuja Western in the greening of the city of Novocherkassk,” Achievements of Modern Natural Sciences, no. 8, p. 122, 2014).
Retrieved from: https://s.natural-sciences.ru/pdf/2014/8/34076.pdf
Retrieved on: Feb. 20, 2022 -
P. Chaudhary, B. Gauni, K. Mehta, “Carotenoid and Antibacterial Analysis of
Thuja Occidentalis,” Indian Journal of Applied Research, vol. 5,
no. 7, pp. 112–114, Jul. 2015.
Retrieved from: https://www.worldwidejournals.com/indian-journal-of-applied-research-(IJAR)/fileview/July_2015_1435754117__30.pdf
Retrieved on: Feb. 20, 2022 -
M. Ota, J. Koarashi, “Contamination processes of tree components in
Japanese forest ecosystems affected by the Fukushima Daiichi Nuclear Power
Plant accident 137Cs fallout,” Science of The Total Environment, no. 816, article no. 151587,
Apr. 2022.
DOI: 10.1016/j.scitotenv.2021.151587 -
Г. Б. Бабаян, “Почвы и природные условия Дилижанкой лесной агрохимической
станции (ДИЛАС),” Сообщения института Агрохимических проблем и гидропоники, но. 21,
с. 21–25, 1980.
(G.B. Babayan, “Soils and natural conditions of the Dilijan Forest Agrochemical Station (DILAS),” Communications of the Institute of Agrochemical Problems and Hydroponics , no. 21, pp. 21–25, 1980.).
Retrieved from: https://arar.sci.am/dlibra/publication/282592/edition/259388/content
Retrieved on: Feb. 20, 2022 -
Լ. Վալեսյան, “Հայաստանի ազգային ատլաս”. Երևան, «Գեոդեզիայի և
քարտեզագրության կենտրոն» ՊՈԱԿ, հատոր Ա, 2007, 230 էջ
(L. Valesyan, National Atlas of Armenia. Editor, Yerevan, vol. A, 2007, 232 pages).
Retrieved from: https://online.fliphtml5.com/qgxio/flkz/#p=1
Retrieved on 12.01.2022 -
Г. С. Давтян, “Гидропоника,” Справочная книга по химизации сельского хозяйства, под ред.
В. М. Борисова, Изд. 2-е, Москва, Россия: Колос, 1980, с. 382–385.
(G.S. Davtyan, “Hydroponics,” in Directory book about chemicalization of agriculture, V. M. Borisova, Ed., 2nd ed., Moscow, Russia: Kolos, 1980, pp. 382–385). -
Ф. И. Павлоцкая, “Методы определения 90Sr и других изотопов,” Физико-химические методы исследования почв, Москва, Россия: Изд-во
“Наука”, 1966, с. 126.
(F. I. Pavlotskaya, “Methods of determining 90 Sr and other isotopes,” in Physiological-chemical methods of soil study, Moscow, Russia, 1966, p. 126. -
C. Larouche, J.-C. Ruel, J.-M. Lussier, “Factors affecting northern
white-cedar (Thuja occidentalis) seedling establishment and early
growth in mixedwood stands,” Canadian Journal of Forest Research,
vol. 41, no. 3, pp. 568–582, Feb. 2011.
DOI: 10.1139/X10-233 -
T. J. Givnish, “Adaptive significance of evergreen vs. deciduous leaves:
solving the triple paradox,” Silva Fennica, vol. 36, no. 3, pp.
703–743, Dec. 2002.
DOI: 10.14214/sf.535 -
B. A. Harlow, R. A. Duursma, J. D. Marshall, “Leaf longevity of western red
cedar (Thuja plicata) increases with depth in the canopy,” Tree Physiology, vol. 25, no. 5, pp. 557–562, May 2005.
DOI: 10.1093/treephys/25.5.557
RADIATION SHIELDING PROPERTIES OF 5% HDPE/BORON COMPOSITES
Selcen Uzun Duran, Ümit Alver, Brunilda Mucogllava, Bilge Demirköz, Fatih Özkalayci
Abstract | References | Cite This | Full Text (PDF)
-
K. Nedunchezhian, N. Aswath, M. Thiruppathy, T. Sarumathi, “Boron neutron capture therapy – A literature review,” Journal of Clinical and Diagnostic Research, vol. 10, no. 12, pp. ZE01–ZE04, Dec. 2016.
DOI: 10.7860/JCDR/2016/19890.9024 -
A. Tengattini, N. Lenoir, E. Andò, G. Viggiani, “Neutron imaging for
geomechanics: A review,” Geomechanics for Energy and the Environment,
vol. 27, article no. 100206, Sep. 2021.
DOI: 10.1016/j.gete.2020.100206 -
E. B. Podgoršak, “Interactions of Neutrons with Matter,” in
Radiation Physics for Medical Physicists. Biological and Medical
Physics, Biomedical Engineering
, Berlin-Heidelberg, Germany: Springer, 2009, ch. 9, pp. 429–449.
DOI: 10.1007/978-3-642-00875-7_9 -
“The 2007 Recommendations of the International Commission on Radiological
Protection. ICRP publication 103,” Ann. ICRP, vol. 37, no. 2–4, pp. 1–332, 2007.
DOI: 10.1016/j.icrp.2007.10.003 -
S. Th. Abdulrahman, Z. Ahmad, S. Thomas,
A. A. Rahman, “Chapter 1 – Introduction to neutron-shielding materials,” in
Micro and Nanostructured Composite Materials for Neutron Shielding
Applications, Woodhead Publishing Series in Composites Science and
Engineering
,
S. Th. Abdulrahman, S. Thomas, Z. Ahmad, Eds., Sawston, UK: Woodhead
Publishing, 2020, ch. 1, pp. 1–23.
DOI: 10.1016/B978-0-12-819459-1.00001-5 -
V. More, Z. Alsayed, M. S. Badawi, A. A. Thabet, P. P. Pawar, “Polymeric composite materials for radiation shielding: a review,” Environmental Chemistry Letters, vol. 19, pp. 2057–2090, Feb. 2021.
DOI: 10.1007/s10311-021-01189-9 -
P.A. Zyla et al., “Review of Particle Physics,” Progress of Theoretical and Experimental Physics, vol. 2020, no.
8, pp. 612–617, Aug. 2020.
DOI: 10.1093/ptep/ptaa104 -
D. Toyen, K. Saenboonruang, “Development of paraffin and paraffin/bitumen
composites with additions of B2O3 for thermal neutron
shielding applications,” Journal of Nuclear Science and Technology, vol. 54, no. 8, pp. 871–877, May 2017.
DOI: 10.1080/00223131.2017.1323688 -
K. Ninyong, E. Wimolmala, N. Sombatsompop,
K. Saenboonruang, “Potential use of NR and wood/NR composites as thermal
neutron shielding materials,” Polymer Testing, vol. 59, pp.
336–343, May 2017.
DOI: 10.1016/j.polymertesting.2017.02.020 -
J. Kim, B. C. Lee, Y. R. Uhm, W. H. Miller, “Enhancement of thermal neutron
attenuation of nano-B4C, -BN dispersed neutron shielding polymer
nanocomposites,” Journal of Nuclear Materials,
vol. 453, no. 1–3, pp. 48–53. Oct. 2014.
DOI: 10.1016/j.jnucmat.2014.06.026 -
K. Okuno, M. Kawai, H. Yamada, “Development of Novel Neutron Shielding
Concrete,” Nuclear Technology, vol. 168, no. 2, pp. 545–552, 2009.
DOI: 10.13182/NT09-A9241 -
M. Gönen, E. Nyankson, R. B. Gupta., “Boric acid production from
colemanite together with ex situ CO2 sequestration,” Industrial & Engineering Chemistry Research, vol. 55, no. 17,
pp. 5116–5124, 2016.
DOI: 10.1021/acs.iecr.6b00378 -
G. Celik, T. Depci, A. M. Kılıc, “New lightweight colemanite-added perlite
brick and comparison of its physico mechanical properties with other
commercial lightweight materials,” Construction and Building Materials, vol. 62, pp. 59–66, Jul.
2014.
DOI: 10.1016/j.conbuildmat.2014.03.031 -
O. M. Kalfa, Z. Üstündağ, İ. Özkırım, Y. K. Kadıoğlu, “Analysis of tincal
ore waste by energy dispersive X-ray fluorescence (EDXRF) Technique,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol.
103, no. 2, pp. 424–427, Jan. 2007.
DOI: 10.1016/j.jqsrt.2006.02.059 -
F. Demir, A. Un, “Radiation transmission of colemanite, tincalconite and
ulexite for 6 and 18 MV
X-rays by using linear accelerator,” Applied Radiation and Isotopes, vol. 72, pp. 1–5, Feb. 2013.
DOI: 10.1016/j.apradiso.2012.09.020 -
T. Korkut et al., “Investigation of neutron shielding properties depending
on number of boron atoms for colemanite, ulexite and tincal ores by
experiments and FLUKA Monte Carlo simulations,” Applied Radiation and Isotopes, vol. 70, no. 1, pp. 341–345, Jan.
2012.
DOI: 10.1016/j.apradiso.2011.09.006 -
H. Binici, O. Aksogan, A. H. Sevinc, A. Kucukonder, “Mechanical and
radioactivity shielding performances of mortars made with colemanite,
barite, ground basaltic pumice and ground blast furnace slag,” Construction and Building Materials, vol. 50,
pp. 177–183, Jan. 2014.
DOI: 10.1016/j.conbuildmat.2013.09.033 -
G. Cosansu, C. Cogun, “An investigation on use of colemanite powder as
abrasive in abrasive waterjet cutting (AWJC),” Journal of Mechanical Science and Technology, vol. 26, pp.
2371–2380, Aug. 2012.
DOI: 10.1007/s12206-012-0619-9 -
C. Kaynak, N. A. Isitman, “Synergistic fire retardancy of colemanite, a
natural hydrated calcium borate, in high-impact polystyrene containing
brominated epoxy and antimony oxide,” Polymer Degradation and Stability, vol. 96, no. 5, pp. 798–807,
May 2011.
DOI: 10.1016/j.polymdegradstab.2011.02.011 -
N. A. Isitman, C. Kaynak, “Effect of partial substitution of aluminum
hydroxide with colemanite in fire retarded low-density polyethylene,” Journal of Fire Sciences, vol. 31, no. 1, pp. 73–84, 2013.
DOI: 10.1177/0734904112454835 -
R. Bagheri, S. P. Shirmardi, R. Adeli, “Study on Gamma-Ray Shielding
Characteristics of Lead Oxide, Barite, and Boron Ores Using MCNP-4C Monte
Carlo Code and Experimental Data,” Journal of Testing and Evaluation, vol. 45, no. 6, pp. 2259–2266,
2017.
DOI: 10.1520/JTE20160284 -
S. Kalay, Z. Yilmaz, M. Çulha, “Synthesis of boron nitride nanotubes from
unprocessed colemanite,” Beilstein Journal of Nanotechnology, vol.
4, pp. 843–851, 2013.
DOI: 10.3762/bjnano.4.95 -
Ö. Sallı Bideci, “The effect of high temperature on lightweight concretes
produced with colemanite coated pumice aggregates,” Construction and Building Materials, vol. 113, pp. 631–640, Jun.
2016.
DOI: 10.1016/j.conbuildmat.2016.03.113 -
T. Uysal, H. S. Mutlu, M. Erdemoğlu, “Effects of mechanical activation of
colemanite (Ca2B6O11·5H2O) on
its thermal transformations,” International Journal of Mineral Processing, vol. 151, pp. 51–58,
Jun. 2016.
DOI: 10.1016/j.minpro.2016.04.006 -
F. Demir, “Determination of mass attenuation coefficients of some boron ores at 59.54keV by using scintillation detector,” Applied Radiation and Isotopes, vol. 68, no. 1, pp. 175–179, Jan. 2010.
DOI: 10.1016/j.apradiso.2009.09.003 -
K. Okuno, “Neutron shielding material based on colemanite and epoxy resin,” Radiation Protection Dosimetry, vol. 115, no. 1–4, pp. 258–261, Dec. 2005.
DOI: 10.1093/rpd/nci154 -
T. Korkut et al., “Neutron dose transmission measurements for several new
concrete samples including colemanite,” Annals of Nuclear Energy,
vol. 37, no. 7, pp. 996–998, Jul. 2010.
DOI: 10.1016/j.anucene.2010.04.005 -
S. M. Malkapur et al., “Neutron radiation shielding properties of polymer
incorporated self-compacting concrete mixes,” Applied Radiation and Isotopes,
vol. 125, pp. 86–93, Jul. 2017.
DOI: 10.1016/j.apradiso.2017.03.029 -
A. Mesbahi, G. Alizadeh, G. Seyed-Oskoee,
A.-A. Azarpeyvand, “A new barite–colemanite concrete with lower neutron
production in radiation therapy bunkers,” Annals of Nuclear Energy, vol. 51,
pp. 107–111, Jan. 2013.
DOI: 10.1016/j.anucene.2012.07.039 -
T. Korkut et al., “Investigation of neutron shielding properties depending
on number of boron atoms for colemanite, ulexite and tincal ores by
experiments and FLUKA Monte Carlo simulations,” Applied Radiation and Isotopes, vol. 70, no. 1, pp. 341–345, Jan.
2012.
DOI: 10.1016/j.apradiso.2011.09.006 -
E. M. Derun, A. S. Kipcak, “Characterization of some boron minerals against
neutron shielding and 12 year performance of neutron permeability,” Journal of Radioanalytical and Nuclear Chemistry, vol. 292,
pp. 871–878, 2012.
DOI: 10.1007/s10967-011-1528-6 -
T. Bel, C. Arslan, N. Baydogan, “Radiation shielding properties of poly
(methyl methacrylate) / colemanite composite for the use in mixed
irradiation fields of neutrons and gamma rays,” Materials Chemistry and Physics, vol. 221, pp. 58–67, Jan. 2019.
DOI: 10.1016/j.matchemphys.2018.09.014 -
A. Albarodi, P. Uslu Kiçeci, S. Uzun Duran,
B. Demirköz, “Monte-Carlo (MC) analysis of borated materials for neutron
shielding applications,” Eurasian Journal of Science Engineering and Technology, vol. 3,
no. 2, pp. 63–70, Dec. 2022.
DOI: 10.55696/ejset.1102371 -
N. Demirkıran, A. Künkül, “Dissolution kinetics of ulexite in perchloric
acid solutions,” International Journal of Mineral Processing, vol.
83, no. 1–2, pp. 76–80, Jul. 2007.
DOI: 10.1016/j.minpro.2007.04.007 -
A. I. Topuz , I. A. Reyhancan, “Neutronic Analysis of a Nuclear-Chicago NH3
Neutron Howitzer,” eprint arXiv:1806.05255, Jun. 2018.
DOI: 10.48550/arXiv.1806.05255 -
M. E. Mahmoud et al., “Fabrication, characterization and gamma rays
shielding properties of nano and micro lead oxide-dispersed-high density
polyethylene composites,” Radiation Physics and Chemistry,
vol. 145, pp. 160–173, Apr. 2018.
DOI: 10.1016/j.radphyschem.2017.10.017
RADIOACTIVITY OF MINERAL AND SPRING WATERS FROM BULGARIA
Radoslava Lazarova, Milena Hristozova, Ivanka Yordanova
Abstract | References | Cite This | Full Text (PDF)
-
Правителство на Република България. (28 март 2001 г.).
Наредба № 9 за качеството на водата, предназначена за питейно-битови
цели
.
(Government of the Republic of Bulgaria. (March 28, 2001). Regulation N0. 9 on water quality intended for drinking and household purposes.)
Retrieved from: https://eea.government.bg/bg/legislation/water/naredba9_21.pdf
Retrieved on: Oct. 26, 2022 -
Правителство на Република България. (3 август 2004 г.).
Наредба за изискванията към бутилираните натурални минерални, изворни и
трапезни води, предназначени за питейни цели.
(Government of the Republic of Bulgaria. (August 3, 2004). Regulation on the requirements for bottled natural mineral, table and spring waters intended for drinking purposes.)
Retrieved from: https://www.lex.bg/laws/ldoc/2135488818
Retrieved on: Oct. 26, 2022 -
Министерство на здравеопазването на република България. (05 октомври 2022). Регистър на издадените сертификати за минерална вода.
(Ministry of Health of the Republic of Bulgaria. (Oct. 5, 2022). Register of the issued certificates for mineral waters.)
Retrieved from: https://www.mh.government.bg/bg/administrativni-uslugi/registri/registr-na-izdadenite-sertifikati-za-mineralna-voda/
Retrieved on: Nov. 5, 2022 -
General requirements for the competence of testing and calibration
laboratories
, Standard No. BDS EN ISO/IEC 17025, Jan. 29, 2018.
Retrieved from: https://bds-bg.org/en/project/show/bds:proj:102413
Retrieved on: Mar. 20, 2018 -
Water quality - Radon-222 - Part 2: Test method using gamma-ray
spectrometry
, Standard No. ISO 13164, Sept. 2013.
Retrieved from: https://www.iso.org/standard/56108.html
Retrieved on: Mar. 20, 2018 -
Water quality — Gross alpha activity — Test method using thick source
, Standard No. BDS EN ISO 9696, Sept. 26,2017
Retrieved from: https://bds-bg.org/bg/project/show/iso:proj:66766
Retrieved on: Nov. 15, 2017 -
Water quality - Gross beta activity - Test method using thick source
, Standard No. BDS EN ISO 9697, Aug. 15, 2019.
Retrieved from: https://bds-bg.org/bg/project/show/bds:proj:107568
Retrieved on: Nov. 15, 2019 -
Water quality - Polonium 210 - Test method using alpha spectrometry
, Standard No. BDS EN ISO 13161, Oct. 14, 2020.
Retrieved from: https://bds-bg.org/bg/project/show/bds:proj:105459
Retrieved on: Jan. 21, 2021 -
C. Di Carlo et al., “Radon concentration in self-bottled mineral spring waters as a possible public health issue,” Scientific Reports, vol. 9, article no. 14252, Oct. 2019.
DOI: 10.1038/s41598-019-50472-x -
D. Pressyanov, I. Dimitrova, S. Georgiev, E. Hristova, K. Mitev, “Measurement of radon-222 in water by absorption in Macrofol,” Nucl. Instrum. Methods. Phys. Res. A, vol. 574, no. 1, pp. 202–204, Apr. 2007.
DOI: 10.1016/j.nima.2007.01.098 -
K. Ivanova et al., “Analysis of exposure to radon in Bulgarian rehabilitation hospitals,” Environ. Sci. Pollut. Res., vol. 29, pp. 19098–19108, Oct. 2021.
DOI: 10.1007/s11356-021-17143-9 -
J. K. Ottn, The geology of radon, Washington (DC), USA: U.S. Government Printing Office, 1992.
DOI: 10.3133/7000018 -
E. Fonollosa, A. Peñalver, F. Borrull, C. Aguilar, “Radon in spring waters in the south of Catalonia,” J. Environ. Radioact., vol. 151, part 1, pp. 275–281, Jan. 2016.
DOI: 10.1016/j.jenvrad.2015.10.019 -
K. Somlai et al., “222Rn concentrations of water in the Balaton
Highland and in the southern part of Hungary, and the assessment of the
resulting dose,” Radiat. Meas., vol. 42, no. 3,
pp. 491–495, Mar. 2007.
DOI: 10.1016/j.radmeas.2006.11.005 -
A. M. Sánchez, M. R. Montero, V. G. Escobar, M. J. Vargas, “Radioactivity in bottled mineral waters,” Appl. Radiat. Isot., vol. 50, no. 6, pp. 1049–1055, Jun. 1999.
DOI: 10.1016/S0969-8043(98)00126-2 -
R. Rusconi, M. Forte, G. Abbate, R. Gallini, G. Sgorbat, “Natural radioactivity in bottled mineral waters: A survey in Northern Italy,” Journ. Radional. Nucl. Chem., vol. 260, pp. 421–427, May 2004.
DOI: 10.1023/B:JRNC.0000027119.15777.46 -
M. Rožmarić, M. Rogić, L. Benedik, M. Štrok, “Natural radionuclides in
bottled drinking waters produced in Croatia and their contribution to
radiation dose,” Sci. Total Environ., vol. 437, pp. 53–60, Oct.
2012.
DOI: 10.1016/j.scitotenv.2012.07.018 -
D. Desideri et al., “238U, 234U, 226Ra, 210Po concentrations of bottled mineral waters in Italy and
their dose contribution,” J. Environ. Radioact, vol. 94,
no. 2, pp. 86–97, May 2007.
DOI: 10.1016/j.jenvrad.2007.01.005 -
A. Milena-Pérez et al., “Determination and dose contribution of uranium
isotopes and 210Po activity concentrations of natural spring
waters in the province of Granada, Spain”, Radiat. Prot. Dosimetry, vol. 181, no. 4, pp. 350–359, Nov. 2018.
DOI: 10.1093/rpd/ncy034
BEAM MODELING OF ELEKTA AGILITY MLC FOR MONTE CARLO AND COLLAPSED CONE CONVOLUTION COMPUTATIONAL ALGORITHMS IN MONACO TREATMENT PLANNING SYSTEM
Vasile Petru Virag, Diana Maria Ghemiș
Abstract | References | Cite This | Full Text (PDF)
-
M. Roche, R. Crane, M. Powers, T. Crabtree, “Agility MLC transmission optimization in the Monaco treatment planning system,” J. Appl. Clin. Med. Phys., vol. 19, no. 5, pp. 473–482, Sep. 2018.
DOI: https://doi.org/10.1002/acm2.12399 -
P Kinsella, L. Shields, P. McCavana, B. McClean, B. Langan, “Determination of MLC model parameters for Monaco using commercial diode arrays,” J. Appl. Clin. Med. Phys., vol. 17, no. 4, pp. 37–47, Jul. 2016.
DOI: https://doi.org/10.1120/jacmp.v17i4.6190 -
S. Gholampourkashi, J. E. Cygler, J. Belec, M. Vujicic,
E. Heath, “Monte Carlo and analytic modeling of an Elekta Infinity linac
with Agility MLC: Investigating the significance of accurate model
parameters for small radiation fields,” J. Appl. Clin. Med. Phys.,
vol. 20, no. 1, pp. 55–67, Jan. 2019.
DOI: https://doi.org/10.1002/acm2.12485 -
Y. Zhang et al., “Modeling Elekta VersaHD using the Varian Eclipse
treatment planning system for photon beams: A single-institution
experience,” J. Appl. Clin. Med. Phys., vol. 20, no. 10, pp. 33–42, Oct. 2019
DOI: https://doi.org/10.1002/acm2.12709 -
S. Can, D. Karaçetin, N. Meriç, “Beam modeling and commissioning for Monte
Carlo photon beam on an Elekta Versa HD LINAC,” App. Rad. Iso.,
vol. 180, article no. 110054, Feb. 2022.
DOI: https://doi.org/10.1016/j.apradiso.2021.110054
RADON-222 CONCENTRATION LEVELS IN SOIL AND WATER IN DIFFERENT REGIONS OF GEORGIA – RADON MAPPING
N. Kapanadze, G. Melikadze, J. Vaupotič, A. Tchankvetadze, M. Todadze, T. Jimsheladze, E. Chikviladze, Sh. Gogichaishvili, L. Chelidze
Abstract | References | Cite This | Full Text (PDF)
-
A. Amiranashvili, T. Chelidze, G. Melikadze, I. Trekov, M. Todadze,
“Quantification of the radon distribution in various geographical areas of
West Georgia,” Journals of Georgian Geophysical Society, vol. 12,
no. 1, pp.65–69, 2008.
Retrieved from: http://openjournals.gela.org.ge/index.php/GGS/article/view/652
Retrieved on: Jan. 18, 2023 -
A. Amiranashvili et al., “Radon Distribution and Prevalence of Lung Cancer
in Several Areas of West Georgia”, in
Papers of the International Conference International Year of the Planet
Earth “Climate, Natural Resources, Disasters in the South Caucasus,”
Transactions of the Institute of Hydrometeorology vol. 115
, Tbilisi, Georgia, 18-19 November 2008,
pp. 349–353.
Retrieved from: https://dspace.nplg.gov.ge/bitstream/1234/83441/1/Shromebi_2008_Tomi_N115.pdf
Retrieved on: Jan. 18, 2023 -
А. Амиранашвили и др., «Предварительные результаты анализа содержания
радона в почве и воде в различных регионах Западной Грузии», Труды Института геофизики им. М. Нодиа,
вып. 60, С. 213–218, 2008.
(A. Amiranashvili et al., “Preliminary results of the analysis of radon content in the soil and water in different regions of west Georgia,” Proceedings of the M. Nodia Institute of Geophysics, vol. 60, pp. 213–218, 2008.)
Retrieved from: http://openlibrary.ge/handle/123456789/315
Retrieved on: Jan. 18, 2023 -
G. Melikadze et al., “Radon Distribution on the Territory of West Georgia,” Journals of Georgian Geophysical Society, vol. 23, no. 2, pp.
10–13, 2020.
DOI: https://doi.org/10.48614/ggs2320202716 -
J. Vaupotič et al., “Radon and thoron measurements in West Georgia,” Journals of Georgian Geophysical Society, vol. 15, pp. 128–137,
2011-2012.
Retrieved from: https://openjournals.ge/index.php/GGS/article/view/37
Retrieved on: Jan. 18, 2023 - AlphaGUARD PQ2000 PRO Portable Radon Monitor User Manual 08/2012, Saphymo GmbH, Frankfurt, Germany, 2012.
- AlphaPUMP, Technical Description, User manual, Genitron Instruments, Frankfurt, Germany, 2001.
- AlphaKIT, Accessory for radon in water measurement in combination with the radon monitor AlphaGUARD . User Manual, Genitron Instruments, Frankfurt, Germany, 1997.
-
Soil Gas Measurements – Short instructions for the use of the Soil Gas
Probe in combination with the radon monitor AlphaGUARD
. User Manual, Genitron Instruments, Frankfurt, Germany, 2001.
Retrieved from: https://www.bertin-instruments.com/wp-content/uploads/secured-file/Soil-gas-Measurements_E.pdf
Retrieved on: Jan. 18, 2023
RADIOLOGICAL STATUS OF DRINKING WATER FROM THE EASTERN RHODOPES REGION, BULGARIA
Milena Hristozova, Radoslava Lazarova, Ivanka Yordanova
Abstract | References | Cite This | Full Text (PDF)
-
Д. Симеонов, Д. Симеонова,
География на България - стопански, социални и регионални особености,
В. Търново, България: Унив. изд. “Св. св. Кирил и Методий”, 2021.
(D. Simeonov, D. Simeonova, Geography of Bulgaria – economic, social and regional features, Veliko Tarnovo, Bulgaria: Univ. ed. “St. St. Cyril and Methodius”, 2021). -
P. Sengupta, “Potential health impacts of hard water,” Int. J. Prev. Med., vol. 4, no. 8, pp. 866–875 Aug. 2013.
PMID: 24049611
PMCID: PMC3775162
Retrieved from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3775162/
Retrieved on: June 15, 2022 -
Л. Райков, Радиоактивни елементи в почвата и усвояването им от растенията,
София, България: Земиздат, 1978.
(L Raykov, Radioactive elements in the soil and their absorption by plants, Sofia, Bulgaria: Zemizdat, 1978). -
Fifth National Report on the Implementation of the Convention on
Biological Diversity
, Ministry of Environment and Water, Sofia, Bulgaria, 2013.
Retrieved from: https://www.cbd.int/doc/world/bg/bg-nr-05-en.pdf
Retrieved on: June 15, 2022 -
Общи изисквания за компетентността на лаборатории за изпитване и
калибриране
, Стандартен но. ISO/IEC 17025:2017, 15 януари 2018.
( General requirements for the competence of testing and calibration laboratories , Standard no. ISO/IEC 17025:2017, Jan. 15, 2018). -
Качество на водата. Обща алфа-активност. Метод за изпитване с
концентриран източник
, Стандартен но. ISO 9696:2017, 14 декември 2017.
( Water quality - Gross alpha activity - Test method using thick source , Standard no. ISO 9696:2017, Dec. 14, 2017). -
Качество на водата. Обща бета активност. Метод за изпитване с
използване на концентриран източник
, Стандартен но. ISO 9697:2018, 2 ноември 2018.
( Water quality - Gross beta activity - Test method using thick source , Standard no. ISO 9697:2018, Nov. 2, 2018). -
Правителство на Република България. (28 март 2001 г.).
Наредба № 9 за качеството на водата, предназначена за питейно-битови
цели
.
(Government of the Republic of Bulgaria. (March 28, 2001). Regulation N0. 9 on water quality intended for drinking and household purposes.)
Retrieved from: https://eea.government.bg/bg/legislation/water/naredba9_21.pdf
Retrieved on: Jun. 15, 2022 -
The Council of European Union. (Oct. 22, 2013).
Council Directive 2013/51/EURATOM laying down requirements for the
protection of the health of the general public with regard to
radioactive substances in water intended for human consumption
.
Retrieved from: http://extwprlegs1.fao.org/docs/pdf/eur128382.pdf
Retrieved on: Jun. 15, 2022 -
M.E. Wrenn et al. “Metabolism of ingested U and Ra,” Health Physics, vol. 48, no. 5, pp. 601–633, May, 1985.
DOI: 10.1097/00004032-198505000-00004 -
K. Ivanova, Z. Stojanovska, V. Badulin, B. Kunovska, M. Yovcheva,
“Radiological impact of surface water and sediment near uranium mining
sites,” Journal of Radiological Protection, vol. 35, no. 4, pp.
819–834, 2015.
DOI: 10.1088/0952-4746/35/4/819 -
Ionizing Radiation, Levels and Effects, United Nations Scientific
Committee on the Effects of Atomic Radiation (UNSCEAR) 1972 Report,
Report to the General Assembly with Scientific Annexes, UNSCEAR,
New York (NY), USA, 1972.
DOI: 10.18356/5513731d-en -
Б. Христов, М. Христова, “Възстановяване на нарушени от уранодобива земи,” Минно Дело и Геология, кн. 54 но. 4, стр. 32–36, 1999.
(B. Hristov, M. Hristova, “Land reclamation of disturbed by uranium mining territory,” Minno Delo i Geologiya, vol. 54, no. 4, pp. 32–36, 1999.) -
I. Yordanova, D. Staneva, Tz. Bineva, N. Stoeva, “Dynamics of the
radioactive pollution in the surface layer of soils in Bulgaria twenty
years after the Chernobyl nuclear power plant accident,” Journal of Central European Agriculture, vol. 8, no. 4, pp.
407–412, 2007.
DOI: 10.5513/JCEA.V8I4.478 -
I. Yordanova, D. Staneva, L. Misheva, Ts. Bineva,
M. Banov, “Technogenic radionuclides in undisturbed Bulgarian soils,” Journal of Geochemical Exploration, vol. 142, pp. 69–74, Jul.
2014.
DOI: 10.1016/j.gexplo.2014.01.011 -
I. Yordanova, M. Banov, L Misheva, D. Staneva,
T. Bineva, “Natural radioactivity in virgin soils and soils from some areas
with closed uranium mining facilities in Bulgaria,” Open Chemistry, vol. 13, pp. 600–605, 2015.
DOI: 10.1515/chem-2015-0065 -
M. Hristozova, R. Lazarova, “Radiation status of soils from the region of
the Eastern Rhodopes (Southern Bulgaria),” BioRisk, vol. 17, pp.
45–57, Apr. 2022.
DOI: 10.3897/biorisk.17.77432
AN INTERCOMPARISON OF MULTIPLE BEAM MATCHED LINEAR ACCELERATORS COMMISSIONED ACCORDING TO THE ACCELERATED GO LIVE PROGRA
Vasile Petru Virag, Diana Maria Ghemiș
Abstract | References | Cite This | Full Text (PDF)
-
D. Sjöström, U. Bjelkengren, W. Ottosson, C. F. Behrens, “A beam‐matching concept for medical linear accelerators,” Acta Oncologica, vol. 48, no. 2, pp. 192–200, 2009.
DOI: 10.1080/02841860802258794 -
N. Wen et al., “IMRT and RapidArc commissioning of a TrueBeam linear accelerator using TG-119 protocol cases,” J. Appl. Clin. Med. Phys., vol. 15, no. 5, pp. 74–88, Sep. 2014.
DOI: 10.1120/jacmp.v15i5.4843 -
Z. Xu et al., “Assessment of beam-matched linacs quality/accuracy for interchanging SBRT or SRT patient using VMAT without replanning,” J. Appl. Clin. Med. Phys., vol. 20, no. 1, pp. 68–75, Jan. 2019.
DOI: 10.1002/acm2.12492 -
Radiation Oncology Physics: A Handbook for Teachers and Students, E.B. Podgorsak, Ed., IAEA, Vienna, Austria, 2005.
Retrieved from: https://www-pub.iaea.org/mtcd/publications/pdf/pub1196_web.pdf
Retrieved on: Jul. 15, 2022 -
I. J. Das et al., “Accelerator beam data commissioning equipment and procedures: Report of the TG-106 of the Therapy Physics Committee of the AAPM,” Med. Phys., vol. 35, no. 9, pp. 4186–4215, Sep. 2008.
DOI: 10.1118/1.2969070 -
J. Shafiq, M. Barton, D. Noble, C. Lemer, L. J. Donaldson, “An international review of patient safety measures in radiotherapy practice,” Radiotherapy & Oncology, vol. 92, no. 1, pp. 15–21, Jul. 2009.
DOI: 10.1016/j.radonc.2009.03.007 - AGL Data Book Reference Data for Versa HD – AGL Machine, Document ID: LRMMON0014/1.0, Elekta, Stockholm, Sweden, 2018.
-
K. Homkhaow, T. Liamsuwan, S. Suntiwong, N. Rattanarungruangchai, W. Sudchai, “Measurement of the distribution of neutrons produced by a 15 MV linear accelerator in a solid water phantom using CR-39 detectors,” Journal of Associated Medical Sciences, vol. 54, no. 3, pp. 48–56, 2021.
Retrieved from: https://he01.tci-thaijo.org/index.php/bulletinAMS/article/view/248619
Retrieved on: Jul. 25, 2022
THE STUDY OF GROSS BETA-RADIOACTIVITY OF ELEUTHEROCOCCUS SENTICOSUS AND SOME OTHER MEDICINAL PLANTS THAT HAD BEEN GROWN IN HYDROPONICS AND ON SOILS IN THE ARARAT VALLEY AND DILIJAN FOREST ZONE
А.P. Vardanyan, L.M. Ghalachyan, A.H. Tadevosyan, M.Kh. Daryadar, A.S. Stepanyan, A.A. Hakobjanyan, Kh.S. Mairapetyan, A.A. Sardaryan
Abstract | References | Cite This | Full Text (PDF)
-
O.A. Belyaeva, K.I. Pyuskyulyan, N.E. Movsisyan,
L.V. Sahakyan, A.K. Saghatelyan, “Radioecological Studies in Armenia: A
Review,”
National Academy of Sciences of RA: Electronic Journal of Natural
Sciences
, vol. 34, no. 1, pp. 34–40, 2020.
Retrieved from: http://www.cens.am/uploads/pdf/cens-article-0100.pdf
Retrieved on: Aug. 6, 2022 -
J. Ferdous, S. Biswas, A. Begum, N. Ferdous, “Study of Gross Alpha and
Gross Beta Radioactivity in Environmental Samples,” Journal of Scientific Research, vol. 7, no. 1–2, pp. 35–44, 2015.
DOI: 10.3329/jsr.v7i1-2.22479 -
S. Biira, P. Ochom, B.Oryema, “Evaluation of radionuclide concentrations and average annual committed
effective dose due to medicinal plants and soils commonly consumed by
pregnant women in Osukuru, Tororo (Uganda),” Journal of Environmental Radioactivity, vol. 227, article no.
106460, Feb. 2021.
DOI: 10.1016/j.jenvrad.2020.106460 -
C. Shahzadi, M. Rafique, A. Jabbar, “Natural and Fall out Radionuclide
Concentrations in Medicinal Plants: An Overview,” Journal of Radiation and Nuclear Applications, vol. 5, no. 1, pp.
29–41, Jan. 2020.
DOI: 10.18576/jrna/050105 -
L.A. Najam, N.F. Tafiq, F.H. Kitah, “Estimation of Natural Radioactivity of
Some Medicinal or Herbal Plants Used in Iraq,” Detection, vol. 3,
no. 1, pp. 1–7, Jan. 2015.
DOI: 10.4236/detection.2015.31001 -
S. Lubis, M.A. Shibdawa, H. Adamu, “Determination of natural radioactive
elements in vegetables irrigated with water from tin mining ponds around
Dorowa in Barkin Ladi, Plateau State, Nigeria,” Science Forum (Journal of Pure and Applied Sciences), vol. 16, pp.
60–65, 2019.
DOI: 10.5455/sf.16982 -
R.L. Njinga, S.A. Jonah, M. Gomina, “Preliminary investigation of naturally
occurring radionuclides in some traditional medicinal plants used in
Nigeria,” Journal of Radiation Research and Applied Sciences, vol.
8, no. 2, pp. 208-215, 2015.
DOI: 10.1016/j.jrras.2015.01.001 -
E. Oprea et al., “Radionuclides content in some medicinal plants commonly
used in Romania,” Farmacia, vol. 62,
no. 4, pp. 658–663, 2014.
Retrieved from: https://farmaciajournal.com/wp-content/uploads/2014-04-art-04-Oprea-658-663.pdf
Retrieved on: Aug. 6, 2022 -
V. Pintilie, A. Ene, L. Georgescu, D.I. Moraru, A. Pintilie, “Determination
of Gross Alpha, Gross Beta, and Natural Radionuclides (210Po, 210Pb, 238U, 232Th and 40K)
Activity Concentrations in Bread and Their Contribution to the Effective
Dose,” Romanian Journal of Physics, vol. 63, no. 1–2, article no. 801, Feb.
2018.
Retrieved from: https://rjp.nipne.ro/2018_63_1-2/RomJPhys.63.801.pdf
Retrieved on: Jul. 6, 2022 -
Л.М. Сапегин, Н.М. Дайнеко, С.Ф. Тимофеев, “Содержание 137Cs и 90Sr в лекарственных и других хозяйственно ценных видах растений
Кормянского района Гомельской области Республики Беларусь,” Радиационная гигиена, Том 4, но. 2, стр. 104–108, 2011.
(L.M. Sapegin, N.M. Daineko, S.F. Timofeev, “Content of 137Cs and 90Sr in the medicinal and other economically valuable plant species from the Kormyansky district of the Gomel region of the Belarus Republic”, Radiation Hygiene, vol. 4, no. 2, pp. 104–108, 2011.)
Retrieved from: https://www.radhyg.ru/jour/article/view/198?locale=en_US
Retrieved on: May 2, 2022 -
F.V. Sussa, S.R. Damatto, M.M. Alencar, B.P. Mazzilli, P.S.C. Silva,
“Natural radioactivity determination in samples ofPeperomia pellucida commonly used as a medicinal herb,” Journal of Environmental Radioactivity, vol. 116, pp. 148–151,
Feb. 2013.
DOI: 10.1016/j.jenvrad.2012.09.012 -
L. Tettey-Larbi et al., “Gross Alpha and Beta Activity and Annual Committed
Effective Doses due to Natural Radionuclides in some Medicinal Plants
commonly used in Ghana,” International Journal of Science and Technology, vol. 3, no. 4,
pp. 217–229, 2013.
Retrieved from: https://www.researchgate.net/publication/326546292
Retrieved on: May 2, 2022 -
L.M. Ghalachyan, A.H. Tadevosyan, “Accumulation of Artificial Radionuclides
in Ecosystem of Irrigation Water-Soil-Herb in Anthropogenic Zones of
Armenian NPP,” Bulletin of the State Agrarian University of Armenia,
vol. 4, pp. 5–7, 2016.
Retrieved from: https://library.anau.am/images/stories/grqer/Izwestiya/4_2016/Ghalachyan.pdf
Retrieved on: May 3, 2022 -
Լ.Մ. Ղալաչյան գ.գ.թ., Ա.Հ. Թադևոսյան կ.գ.թ.,
Ա.Պ. Վարդանյան կ.գ.թ., Ա.Ա. Հակոբջանյան կ.գ.թ., "ԲԱՆՋԱՐԱԲՈՒՅՍԵՐԻ ԵՎ
ԴԵՂԱԲՈՒՅՍԵՐԻ ԲԵՏԱ-ՌԱԴԻՈԱԿՏԻՎՈՒԹՅՈՒՆԸ ԱՐԱՐԱՏՅԱՆ ՀԱՐԹԱՎԱՅՐԻ ԲԱՑՕԴՅԱ
ՀԻԴՐՈՊՈՆԻԿ ԵՎ ՀՈՂԱՅԻՆ ՄՇԱԿՈՒԹՅԱՆ ՊԱՅՄԱՆՆԵՐՈՒՄ," ԱԳՐՈԳԻՏՈՒԹՅՈՒՆ ԵՎ
ՏԵԽՆՈԼՈԳԻԱ, N (67) 3/2019.
(L.M. Ghalachyan, A.H. Tadevosyan, A.P. Vardanyan, A.A. Hakobjanyan, “The Study of Beta-Radioactivity of Vegetable and Medicinal Plants in Conditions of Hydroponic and Soil Cultivation at the Ararat Valley”, AgriScience and Technology, vol. 67, no. 3, pp. 65–69, 2019.)
Retrieved from: https://library.anau.am/images/stories/grqer/agro-tex/2019-3/ghanalchyan.pdf
Retrieved on: March 1, 2022 -
Г.Б. Бабаян, “Почвы и природные условия Дилижанкой лесной агрохимической
станции (ДИЛАС),” Сообщения института Агрохимических проблем и гидропоники, но. 21,
с. 21–25, 1980.
(G.B. Babayan, “Soils and natural conditions of the Dilijan Forest Agrochemical Station (DILAS),” Communications of the Institute of Agrochemical Problems and Hydroponics , no. 21, pp. 21–25, 1980.)
Retrieved from։ https://arar.sci.am/dlibra/publication/282592/edition/259388/content
Retrieved on: Feb. 20, 2022 -
Լ. Վալեսյան, “Հայաստանի ազգային ատլաս”. Երևան, «Գեոդեզիայի և
քարտեզագրության կենտրոն» ՊՈԱԿ, հատոր Ա, 2007, 230 էջ
(L. Valesyan, National Atlas of Armenia. Editor, Yerevan, vol. A, 2007, 232 pages).
Retrieved from։ https://online.fliphtml5.com/qgxio/flkz/#p=1
Retrieved on: Jan. 12, 2022 -
Г. С. Давтян, “Гидропоника,” Справочная книга по химизации сельского хозяйства, под ред.
В. М. Борисова, Изд. 2-е, Москва, Россия: Колос, 1980, с. 382–385.
(G.S. Davtyan, “Hydroponics,” in Directory book about chemicalization of agriculture, V. M. Borisova, Ed., 2nd ed., Moscow, Russia: Kolos, 1980, pp. 382–385). -
Ф. И. Павлоцкая, “Методы определения 90Sr и других изотопов,” Физико-химические методы исследования почв, Москва, Россия: Изд-во
“Наука”, 1966, с. 126.
(F. I. Pavlotskaya, “Methods of determining 90 Sr and other isotopes,” in Physiological-chemical methods of soil study, Moscow, Russia, 1966, p. 126.) -
Министерство здравоохранения Российской Федерации. (6 июля 2011 года).
СанПиН 2.3.2.1078-01. Гигиенические требования безопасности и пищевой
ценности пищевых продуктов
.
Ministry of Health of the Russian Federation. (Nov. 6, 2001). SanPiN 2.3.2.1078-01. Hygienic requirements for safety and nutrition value of foodstuff. Sanitary Rules and Regulations . -
WHO guidelines for assessing quality of herbal medicine with reference
to contaminants and residues
, WHO, Geneva, Switzerland, 2007.
Retrieved from: https://apps.who.int/iris/handle/10665/43510
Retrieved on: May 18, 2022 -
Guidelines for Drinking-water Quality, (4th edition), WHO,
Geneva, Switzerland, 2011.
Retrieved from: https://apps.who.int/iris/bitstream/handle/10665/44584/9789241548151_eng.pdf?sequence=1
Retrieved on: May 18, 2022 -
К.В. Кузнецов, Г.И. Горшков, "Элеутерококк колючий (Eleutherococcus
senticosus) – адаптоген, стимулятор функций организма животных и
иммуномодулятор." Международный журнал прикладных и фундаментальных исследований,
но. 11, с. 477–485. Март 2016.
(K.V. Kuznecov, G.I. Gorshkov, “Siberian ginseng ( Eleutherococcus senticosus) – adaptogen, stimulants functions animals and immunomodulators”, International Journal of Applied and Fundamental Research, no. 11, pp. 477–485, Mar. 2016.)
Retrieved from: https://s.applied-research.ru/pdf/2016/11-3/10522.pdf
Retrieved on: May 2, 2022 -
S. Yan-Lin, L. Lin-De, H. Soon-Kwan, “Eleutherococcus senticosus
as a crude medicine: Review of biological and pharmacological effects,” Journal of Medicinal Plants Research, vol. 5, no. 25, pp.
5946–5952, 2011.
Retrieved from: https://academicjournals.org/journal/JMPR/article-full-text-pdf/52E417620889
Retrieved on: Mar. 15, 2022 -
A.E. Al-Snafi, “Medical importance of Cichorium intybus – A
review,” IOSR Journal of Pharmacy, vol. 6, no. 3,
pp. 41–56, Mar. 2016.
Retrieved from: https://www.iosrphr.org/papers/v6i3/E0634156.pdf
Retrieved on: May 15, 2022 -
P.K. Mukherjee et al., “Withania somnifera (L.) Dunal - Modern
perspectives of an ancient Rasayana from Ayurveda,” Journal of Ethnopharmacology, vol. 264, article no. 113157, Jan.
2021.
DOI: 10.1016/j.jep.2020.113157 -
N. Tandon, S.S. Yadav, “Safety and clinical effectiveness of Withania Somnifera (Linn.) Dunal root in human ailments,” vol.
255, article no. 112768, Jun. 2020.
DOI: 10.1016/j.jep.2020.112768 -
A. Saggam et al., “Withania somnifera (L.) Dunal: Opportunity for
Clinical Repurposing in COVID-19 Management”, Front. Pharmacol.,
vol. 12, article
no. 623795, May 2021.
DOI: 10.3389/fphar.2021.623795 -
A. Shokri et al., “Antileishmanial Activity of Lavandula angustifolia and Rosmarinus Officinalis
Essential Oils and Nano-emulsions on Leishmania major
(MRHO/IR/75/ER)”, Iranian Journal of Parasitology, vol. 12, no. 4,
pp. 622–631, 2017.
Retrieved from։ https://ijpa.tums.ac.ir/index.php/ijpa/article/view/1937
Retrieved on։ May 15, 2022 -
K. Chandrashekara, H.M. Somashekarappa, “Estimation of radionuclides
concentration and average annual committed effective dose due to ingestion
for some selected medicinal plants of South India,” Journal of Radiation Research and Applied Sciences, vol. 9, no. 1,
pp. 68–77, Jan. 2016.
DOI: 10.1016/j.jrras.2015.09.005
EVALUATION OF THE ELECTROMAGNETIC FIELD AND SAFETY ZONES OF EXISTING BASE STATIONS UPGRADED WITH 5G MASSIVE MIMO ANTENNAS
Ts. Shalamanova, Hr. Petkova, M. Israel, M. Ivanova, V. Zaryabova
Abstract | References | Cite This | Full Text (PDF)
-
The Council of the European Union. (Jul. 12, 1999).
1999/519/EC: Council Recommendation on the limitation of exposure of
the general public to electromagnetic fields (0 Hz to 300 GHz)
.
Retrieved from: http://data.europa.eu/eli/reco/1999/519/oj
Retrieved on: Mar. 17, 2021 -
ICNIRP, “Guidelines for limiting exposure to electromagnetic fields (100
kHz to 300 GHz),” Health Physics, vol. 118, no. 5, pp. 483–524,
May 2020.
DOI: 10.1097/HP.0000000000001210 -
Министерство на здравеопазването/Министерство на околната среда. (Май 3, 1991).
Наредба № 9 от
14 март 1991 г. за пределно допустими нива на електромагнитни полета в
населени територии и определяне на хигиенно-защитни зони около
излъчващи обекти
.
(Ministry of Health/Ministry of Environment and Water. (May 3, 1991). Ordinance No. 9 of 14 March 1991. on the limit values of electromagnetic fields in populated areas and the identification of hygienic-protective zones around radiating objects .)
Retrieved from: https://lex.bg/laws/ldoc/-551794688
Retrieved on: October 26, 2022 -
B. Thors, A. Furuskär, D. Colombi, C. Törnevik, “Time-Averaged Realistic
Maximum Power Levels for the Assessment of Radio Frequency Exposure for 5G
Radio Base Stations Using Massive MIMO,” IEEE Access, vol. 5, pp.
19711–19719, 2017.
DOI: 10.1109/ACCESS.2017.2753459 -
Determination of RF field strength, power density and SAR in the
vicinity of radiocommunication base stations for the purpose of
evaluating human exposure
,
IEC 62232:2017, Aug. 23, 2017.
Retrieved from: https://webstore.iec.ch/publication/28673
Retrieved on: Jan. 19, 2021 -
Case studies supporting IEC 62232 – Determination of RF field strength,
power density and SAR in the vicinity of radiocommunication base
stations for the purpose of evaluating human exposure
, Technical Report IEC TR 62669:2019, IEC, Geneva, Switzerland, 2019.
Retrieved from: https://webstore.iec.ch/publication/62014#additionalinfo
Retrieved on: Dec. 10, 2020 -
“Методика за изчисляване напрегнатостта и плътността на енергийния поток на
електромагнитните полета около излъчващи обекти, работещи в обхвата от 30
kHz до 30 GHz,” Служебен бюлетин на МА и НИХПЗ, София, България,
1991.
(“Method for calculating the strength and power flux density of electromagnetic fields around emitting sources operating in the range from 30 kHz to 30 GHz”, Official Bulletin of Medical Academy and National Institute for Hygiene and Occupational Diseases , Sofia, Bulgaria, 1991.) -
T. Shalamanova, M. Israel, H. Petkova, V. Zaryabova, M. Ivanova, “Determination of RF field strength and safety zone, regarding
the specificity of the 5G technology,” Bulgarian Journal of Public Health, vol. 13, no. 4, Supplement,
pp. 67–78, 2021.
Retrieved from: https://ncpha.government.bg/uploads/pages/3029/4S-2021_BG_Journal.pdf
Retrieved on: Mar. 17, 2022 -
Basic standard for the calculation and measurement of electromagnetic
field strength and SAR related to human exposure from radio base
stations and fixed terminal stations for wireless telecommunication
systems (110 MHz - 40 GHz)
, DIN EN 50383 VDE 0848-383:2011-06; Jun. 2011.
Retrieved from: https://www.vde-verlag.de/standards/0848042/din-en-50383-vde-0848-383-2011-06.html
Retrieved on: Mar. 17, 2022
APPLICATION OF THE INAA METHOD FOR THE DETECTION OF SEIZED ILLEGALLY TRANSPORTED DRUGS: RELEVANT RADIATION PROTECTION ASPECTS
Jozef Sabol
Abstract | References | Cite This | Full Text (PDF)
-
S.K. Samanta et al., “Intercomparison studies of Instrumental Neutron
Activation Analysis using singles and gamma–gamma coincidence spectrometry
for trace element determination in sodalime glass and sediment matrices and
utilization of coincidence method for rapid automobile glass forensics,” Nuclear Instruments and Methods in
Physics – Research Section A,
vol. 1006, article no. 165429, Aug. 2021.
DOI: 10.1016/j.nima.2021.165429 -
M.D. Bordas, H.A. Das, “Use of an annular 241Am−Be neutron
source for INAA of some major constituents in large samples,” Journal of Radioanalytical and Nuclear
Chemistry, vol. 207, pp. 325–330, Jul. 1996.
DOI: 10.1007/BF02071238 - T. Tassema, Application of Neutron Activation Analysis and NORM Measurement: Radiation Detectors Calibration, NAA of food samples, medicinal plants, geological samples and NORM measurement , Atlanta (GA), USA: Scholars’ Press, 2017.
-
J. Heimann, A. R. Barron, “Neutron Activation Analysis (NAA),” in Physical Methods in Chemistry and Nano Science, N.V. Pavan, A.R.
Barron, Eds., Houston (TX), USA: Rice University, 2019, ch. 1, sec. 9, pp. 62–72.
Retrieved from: https://hdl.handle.net/1911/112293
Retrieved on: Sep. 1, 2022. -
L.A. Hamidatou, “Overview of neutron activation analysis,” In:
Advanced technologies and applications of neutron activation analysis,
L.A. Hamidatou, Ed., London, UK: IntechOpen Limited, 2019, ch. 1.
DOI: 10.5772/intechopen.85461 -
M.E. Malainey, “Instrumental neutron activation analysis (INAA and NAA),”
In:
A Consumer’s Guide to Archaeological Science. Manuals in Archaeological
Method, Theory and Technique
, New York (NY), USA: Springer, 2011, pp. 427–432.
DOI: 10.1007/978-1-4419-5704-7_32 -
J. Kučera a spol., “Stanovení prvkového složení drog neutronovou aktivační
analýzou pro zjišťování jejich původu - studie proveditelnosti,” ve
Sborník příspěvků z mezinárodní vědecké kriminalistické konference
Pokroky v kriminalistice 2017
, Praha, Česká republika, 2017, s. 101–110.
(J. Kučera et al., “Provenancing of drugs based on their elemental composition determined by neutron activation analysis,” in Proceedings from the Conference “Progress in Criminology,” Prague, Czech Republic, 2017, pp. 101–110.)
Retrieved from: http://www.nusl.cz/ntk/nusl-390110
Retrieved on: Sep. 1, 2022. -
J. Kameník, M. Kuchař, J. Kučera, J. Sabol, I. Krausová, “Potential of INAA
in elemental analysis of heroin, cocaine, and methamphetamine,” in Book of Abstracts from RadChem 2022
Conference, Prague, Czech
Republic – Online, 2022, p. 76.
Retrieved from: https://indico.fjfi.cvut.cz/event/195/contributions/3607/
Retrieved on: Sep. 15, 2022. -
“Proceedings of the Fifth International Symposium on the System of
Radiological Protection,” Annals of the ICRP, vol. 49, no. S1,
Adelaide, Australia, 2019.
Retrieved from: https://www.icrp.org/docs/ICRP%202019%20Proceedings.pdf
Retrieved on: Sep. 15, 2022. -
“ICRU Report 85: Fundamental quantities and units for ionizing radiation,” Journal of the ICRU, vol. 11,
no. 1, Apr. 2011.
DOI: 10.1093/jicru_ndr007 -
Radiation Protection and Safety of Radiation Sources: International
Basic Safety Standards
, IAEA Safety Standards Series No. GSR Part 3, IAEA, Vienna, Austria, 2014.
Retrieved from: https://www-pub.iaea.org/mtcd/publications/pdf/pub1578_web-57265295.pdf
Retrieved on: Sep. 15, 2022. -
The Council of European Union. (Dec. 5, 2013).
Council Directive 2013/59/Euratom of 5 December 2013 laying down basic
safety standards for protection against the dangers arising from
exposure to ionising radiation, and repealing Directives
89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and
2003/122/Euratom
.
Retrieved from: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32013L0059
Retrieved on: Sep. 15, 2022. -
J. Sabol, “Basic radiation protection for the safe use of radiation and
nuclear technologies. In: Applications of isotope sciences and technologies
in supporting life sustainability,” in Radiation Therapy [Working Title],
Th. J. FitzGerald, Ed., London, UK: IntechOpen, 2022.
DOI: 10.5772/intechopen.108379 -
J. Sabol, B. Šesták, “Quantification of the risk-reflecting stochastic and
deterministic radiation effects,” in
Proc. 5th Int. Conf. Radiation and Applications in Various
Fields of Research (RAD 2017)
, Budva, Montenegro, 2017,
pp. 104–108.
DOI: http://doi.org/10.21175/RadProc.2017.22 -
“The 2007 Recommendations of the International Commission on Radiological
Protection – Publication 103,” Annals of the ICRP, vol. 37, no. 2–4, 2007.
Retrieved from: https://journals.sagepub.com/doi/pdf/10.1177/ANIB_37_2-4
Retrieved on: Aug 10, 2022. -
A.W.K. Yeung, “The “As Low As Reasonably Achievable” (ALARA) principle: a
brief historical overview and a bibliometric analysis of the most cited
publications,” Radioprotection, vol. 54, no. 2, pp. 103–109, Apr.-Jun. 2019.
DOI: 10.1051/radiopro/2019016 -
J. Sabol, “Quantification of stochastic effects: can we be too exact?,” Radiation Protection Dosimetry,
vol. 173, no. 4, pp. 414–415, Apr. 2017.
DOI: 10.1093/rpd/ncw011
DEFINITION AND SENSITIVITY ANALYSIS OF A CFD MODEL FOR THE STUDY OF RADON ENTRY AND ACCUMULATION IN BUILDINGS
Isabel Sicilia, Borja Frutos, Jesús García, Héctor Alonso, Lluis Font, Victoria Moreno, Carlos Sainz, Luis Santiago Quindós, Marta García-Talavera
Abstract | References | Cite This | Full Text (PDF)
-
European atlas of natural radiation, G. Cinelli,
M. De Cort, T. Tollefsen, Eds., 1st ed., Luxemburg: Publication
Office of the European Union, 2019.
DOI: 10.2760/46388 -
WHO Handbook on Indoor Radon: A Public Health Perspective, WHO, Geneva,
Switzerland, 2009.
Retrieved from: https://www.who.int/publications/i/item/9789241547673
Retrieved on: May 15, 2022. -
A. L. Robinson, “Radon Entry into Buildings : Effects of Atmospheric
Pressure Fluctuations and Building Structural Factors,” PhD dissertation,
Lawrence Berkeley National Lab. (LBNL), Berkeley (CA), USA, 1996.
DOI: 10.2172/266673 -
M. Fuente et al., “Investigation of gas flow through soils and granular
fill materials for the optimisation of radon soil depressurisation
systems,” J. Environ. Radioact., vol. 198, pp. 200–209, Mar. 2019.
DOI: 10.1016/j.jenvrad.2018.12.024 -
A. V. Vasilyev, M. V. Zhukovsky, “Determination of mechanisms and
parameters which affect radon entry into a room,” J. Environ. Radioact., vol. 124,
pp. 185–190, 2013.
DOI: 10.1016/j.jenvrad.2013.04.014 -
W. E. Clements, M. H. Wilkening, “Atmospheric pressure effects on222Rn transport across the Earth-air interface,” J. Geophys. Res., vol. 79, no. 33,
pp. 5025–5029, 1974.
DOI: 10.1029/jc079i033p05025 -
W. W. Nazaroff, B. A. Moed, R. G. Sextro, “Soil as a Source of Indoor
Radon, Generation, Migration and Entry,” in Radon and its decay products in indoor air, W.W. Nazaroff, A.V.
Nero Jr., Eds., New York (NY), USA: Wiley and Sons, 1988, pp. 57–112.
Retrieved from: https://www.aivc.org/sites/default/files/airbase_4881.pdf
Retrieved on: May 20, 2022. -
Ll. Font, C. Baixeras, “The RAGENA dynamic model of radon generation, entry
and accumulation indoors,” Sci. Total Environ., vol. 307, no. 1–3,
pp. 55–69, 2003.
DOI: 10.1016/S0048-9697(02)00462-X -
C. E. Andersen, “Numerical modelling of radon-222 entry into houses: An
outline of techniques and results,” Sci. Total Environ., vol. 272,
no. 1–3, pp. 33–42, 2001.
DOI: 10.1016/S0048-9697(01)00662-3 -
T. M. O. Diallo, B. Collignan, F. Allard, “2D Semi-empirical models for
predicting the entry of soil gas pollutants into buildings,” Build. Environ., vol. 85, pp. 1–16, Feb. 2015.
DOI: 10.1016/j.buildenv.2014.11.013 -
M. Jiranek, Z. Svoboda, “Numerical modelling as a tool for optimisation of
sub-slab depressurisation systems design,” Build. Environ., vol.
42, no. 5, pp. 1994–2003, May 2007.
DOI: 10.1016/j.buildenv.2006.04.002 -
Ll. Font Guiteras, “Radon generation, entry and accumulation indoors,” PhD
dissertation, Physics Department, University of Barcelona, Barcelona,
Spain, pp. 5–48, 2011.
Retrieved from: https://www.tdx.cat/bitstream/handle/10803/3397/lfg1de2.pdf
Retrieved on: Jun. 5, 2022. -
E. Muñoz, B. Frutos, M. Olaya, J. Sánchez, “A finite element model
development for simulation of the impact of slab thickness, joints, and
membranes on indoor radon concentration,” J. Environ. Radioact.,
vol. 177, pp. 280–289, Oct. 2017.
DOI: 10.1016/j.jenvrad.2017.07.006 -
B. Frutos et al., “A full-scale experimental study of sub-slab pressure
fields induced by underground perforated pipes as a soil depressurisation
technique in radon mitigation,” J. Environ. Radioact., vol. 225,
article no. 106420, Mar. 2020.
DOI: 10.1016/j.jenvrad.2020.106420 -
B. F. Vázquez, M. O. Adán, L. S. Quindós Poncela,
C. S. Fernandez, I. F. Merino, “Experimental study of effectiveness of four
radon mitigation solutions, based on underground depressurization, tested
in prototype housing built in a high radon area in Spain,” J. Environ. Radioact., vol. 102, no. 4, pp. 378–385, Apr. 2011.
DOI: 10.1016/j.jenvrad.2011.02.006 -
B. Frutos Vázquez, “Estudio experimental sobre la efectividad y la
viabilidad de distintas soluciones constructivas para reducir la
concentración de gas radón en edificaciones,” Tesis doctoral, Departamento
de Construcción y Tecnología Arquitectónica, Escuela Técnica Superior de
Arquitectura, Universidad Politécnica de Madrid (UPM), Madrid, España,
2009.
(B. Frutos Vázquez, “Experimental study of effectiveness and viability of different construction solutions to reduce radon concentration in buildings,” PhD dissertation, Department of Construction and Architectural Technology, Higher Technical School of Architecture, Polytechnic University of Madrid, Madrid, Spain, 2009.
DOI: 10.20868/UPM.thesis.22535
GENERAL PUBLIC AND WORKERS PROTECTION ON USING OPTICAL RADIATION SOURCES FOR COSMETIC PURPOSES
M. Ivanova, M. Israel, Ts. Shalamanova, Hr. Petkova, V. Zaryabova, M. Stoynovska
Abstract | References | Cite This | Full Text (PDF)
-
International Commission on Non-Ionizing Radiation Protection (ICNIRP),
“Intended Human Exposure to Non-ionizing Radiation for Cosmetic Purposes,” Health Physics, vol. 118, no. 5, pp. 562–579, 2020
DOI: 10.1097/HP.0000000000001169 - Photobiological safety of lamps and lamp systems, Standard no. EN 62471:2008, Mar. 1, 2009.
- Professional indoor sun exposure services – Part 1: Requirements for the provision of training , Standard no. EN 16489-1:2014, Jul. 31, 2014.
- Professional indoor UV exposure services – Part 2: Required qualification and competence of the indoor UV exposure consultant , Standard no. EN 16489-2:2014, Mar. 31, 2015.
- Professional indoor UV exposure services – Part 3: Requirements for the provision of services , Standard no. EN 16489-3, Mar. 31, 2015.
- Household and similar electrical appliances - Safety - Part 2-27: Particular requirements for appliances for skin exposure to ultraviolet and infrared radiation , Standard no. EN 60335-2-27:2013, Mar. 13, 2014.
-
Министерство на труда и социалната политика/Министерство на
здравеопазването. (Юни 29, 2010).
Наредба №5 от 11 юни 2010 г. за минималните изисквания за осигуряване
на здравето и безопасността на работещите при рискове, свързани с
експозиция на изкуствени оптични лъчения
(Ministry of Labor and Social Policy/Ministry of Health. (Jun. 29, 2010). Ordinance no. 5 of 11 June 2010 on the minimum health and safety requirements regarding the exposure of workers to risks arising from exposure to artificial optical radiation. )
Retrieved from: https://www.mh.government.bg/media/filer_public/2015/04/20/naredba5-ot-11-06-2010g-bezopastnost-raboteshti-pri-riskove.doc
Retrieved on: Nov. 1, 2022 -
The European Parliament and the Council of the European Union. (Apr. 5,
2006).
Directive of the European Parliament and of the Council on the minimum
health and safety requirements regarding the exposure of workers to
risks arising from physical agents (artificial optical radiation) (19th
individual Directive within the meaning of Article 16(1) of Directive
89/391/EEC)
.
Retrieved from: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:114:0038:0059:en:PDF
Retrieved on: Oct. 15, 2022 -
Lasers and Intense Pulsed Light (IPL) sources used for cosmetic
purposes
, ARPANSA, Melbourne, Australia, 2019.
Retrieved from: https://www.arpansa.gov.au/understanding-radiation/radiation-sources/more-radiation-sources/intense-pulsed-light-sources-used-for-cosmetic-purposes
Retrieved on: Nov. 1, 2022 -
Use of strong light sources in cosmetics associated with risks, Federal Office for Radiation Protection (BfS), Salzgitter, Germany, 2018.
Retrieved from: https://www.bfs.de/SharedDocs/Pressemitteilungen/BfS/EN/2018/007.html
Retrieved on: Oct. 15, 2022 -
Artificial tanning devices: public health interventions to manage
sunbeds
, World Health Organization (WHO), Geneva, Switzerland, 2017.
Retrieved from: https://www.who.int/publications/i/item/9789241512596
Retrieved on: Nov. 1, 2022 -
The International Commission on Non-Ionizing Radiation Protection (ICNIRP),
“Health issues of ultraviolet tanning appliances used for cosmetic
purposes,” Health Physics, vol. 84, no. 1, pp. 119–127, Jan. 2003.
DOI: 10.1097/00004032-200301000-00015 -
Opinion on biological effects of ultraviolet radiation relevant to
health with particular reference to sunbeds for cosmetic purposes
, SCHEER, Luxembourg, 2017.
Retrieved from: https://ec.europa.eu/health/scientific_committees/scheer/docs/scheer_o_003.pdf
Retrieved on: Oct. 15, 2022 -
“Solar and ultraviolet radiation,” in
IARC Monographs on the Evaluation of Carcinogenic Risks to Humans Vol.
100 D – Radiation: A review of human carcinogens
, 1st edition, Lyon, France: International Agency for Research
on Cancer, 2012, pp. 35–102.
Retrieved from: https://publications.iarc.fr/121
Retrieved on: Nov. 1, 2022 -
Exposure to artificial UV radiation and skin cancer, IARC Working Group Report Vol. 1, IARC, Lyon, France, 2006.
Retrieved from: https://www.iarc.who.int/wp-content/uploads/2018/07/ArtificialUVRadSkinCancer.pdf
Retrieved on: Nov. 1, 2022 -
M. Ivanova, M. Israel, “Legislation on human health protection on using
solaria,” Bulgarian Journal of Public Health, Supplement, vol. 7,
no. 2(1), pp. 270-275, 2015.
Retrieved from: https://ncpha.government.bg/uploads/pages/3023/BGJPH_2015_02_S.pdf
Retrieved on: Nov. 1, 2022
OXIDATIVE DISSOLUTION OF TRIURANIUM OCTAOXIDE IN HYDROXIDE-PEROXIDE MEDIA
N.M. Chervyakov, A.V. Boyarintsev, I.A. Teplov, N.D. Chalysheva, S.I. Stepanov
Abstract | References | Cite This | Full Text (PDF)
-
H. Tomiyasu, Y. Asano, “Environmentally acceptable nuclear fuel cycle
development of a new reprocessing system,” Prog. Nucl. Energ.,
vol. 32, no. 3–4, pp. 421–427, 1998.
DOI: 10.1016/S0149-1970(97)00037-1 - G. S. Goff et al., “Development of a novel alkaline based process for spent nuclear fuel recycling,” AIChE Annual Meeting, Nuclear Engineering Division, Salt Lake City (UT), USA, 2007.
- K. W. Kim et al., “A study on a process for recovery of uranium alone from spent nuclear fuel in a high alkaline carbonate media”, NRC 7, Budapest, Hungary, 2008.
-
S. I. Stepanov, A. M. Chekmarev, “Concept of spent nuclear fuel
reprocessing,” Dokl. Chem., vol. 423, pp. 276–278, 2008.
DOI: 10.1134/S0012500808110037 -
C. Z. Soderquist et al., “Dissolution of irradiated commercial UO2 fuels in ammonium carbonate and hydrogen peroxide,” Ind. Eng. Chem. Res., vol. 50, no. 4, pp. 1813–1818, 2011.
DOI: 10.1021/ie101386n -
N. Asanuma, M. Harada, Y. Ikeda, H. Tomiyasu, “New approach to the nuclear
fuel reprocessing in non–acidic aqueous solutions,” J. Nucl. Sci. Technol., vol. 38, no. 10, pp. 866–871, 2001.
DOI: 10.1080/18811248.2001.9715107 -
K. W. Kim et al., “A conceptual process study for recovery of uranium alone
from spent nuclear fuel by using high-alkaline carbonate media,” Nucl. Technol., vol. 166, no. 2, pp. 170–179, 2009.
DOI: 10.13182/NT09-A7403 -
G.S. Goff et al., “First identification and thermodynamic characterization
of the ternary U(VI) species, UO2(O2)(CO3)24–, in UO2–H2O2–K2CO3 solutions,” Inorg. Chem., vol. 47, no. 6, pp. 1984–1990, 2008.
DOI: 10.1021/ic701775g -
T. Watanabe, Y. Ikeda, “A study on identification of uranyl complexes in
aqueous solutions containing carbonate ion and hydrogen peroxide,” Energy Proc., vol. 39, pp. 81–95, 2013.
DOI: 10.1016/j.egypro.2013.07.194 -
P. L. Zanonato, P. D. Bernardo, Z. Szabo, I. Grenthe, “Chemical equilibria
in the uranyl(VI)-peroxide-carbonate system; identification of precursors
for the formation of poly-peroxometallates,” Dalton Transactions,
vol. 41, pp. 11635–11641, 2012.
DOI: 10.1039/C2DT31282D -
R. P. Larsen, “Dissolution of uranium metal and its alloys,” Anal. Chem., vol. 31, no. 4, pp. 545–549, 1959.
DOI: 10.1021/ac50164a026 -
D. Dong, G. F. Vandegrift, “Kinetics of dissolution of uranium metal foil
by alkaline hydrogen peroxide,” Nucl. Sci. Eng., vol. 124, no. 3,
pp. 473–481, 1996.
DOI: 10.13182/NSE96-A17925 -
A. V. Mondino, M. V. Wilkinson, A. C. Manzini, “A new method for alkaline
dissolution of uranium metal foil”, J. Radioanal. Nucl. Chem.,
vol. 247, pp. 111–114, 2001.
DOI: 10.1023/A:1006771232672 - C. A. Laue, D. Gates-Anderson, T. E. Fitch, “Dissolution of metallic uranium and its alloys Part I. Review of analytical and process-scale metallic uranium dissolution,” J. Radioanal. Nucl. Chem., vol. 261, no. 3, pp. 709–717, 2004.
-
S. Hickam et al., “Complexity of uranyl peroxide cluster speciation from
alkali-directed oxidative dissolution of uranium dioxide,” Inorg. Chem., vol. 57, no. 15, pp. 9296–9305, 2018.
DOI: 10.1021/acs.inorgchem.8b01299 -
S. Hickam, J. Breier, Y. Cripe, E. Cole, P. C. Burns, “Effects of H 2O2 concentration on formation of uranyl peroxide
species probed by dissolution of uranium nitride and uranium dioxide,” Inorg. Chem., vol. 58, no. 9, pp. 5858–5864, 2019.
DOI: 10.1021/acs.inorgchem.9b00231 -
P. L. Zanonato, P. D. Bernardo, I. Grenthe, “Chemical equilibria in the
binary and ternary uranyl(vi)-hydroxide-peroxide systems,” Dalton Transactions, vol. 41, pp. 3380–3386, 2012.
DOI: 10.1039/c1dt11276g -
P. L. Zanonato, P. D. Bernardo, I. Grenthe, “A calorimetric study of the
hydrolysis and peroxide complex formation of the uranyl(VI) ion,” Dalton Transactions, vol. 43, pp. 2378–2383, 2014.
DOI: 10.1039/c3dt52922c -
S. Meca et al., “Determination of the equilibrium formation constants of
two U(VI)–peroxide complexes at alkaline pH”, Dalton Transactions,
vol. 40, pp. 7976–7982, 2011.
DOI: 10.1039/c0dt01672a -
P. Miró et al., “Self-assembly of uranyl-peroxide nanocapsules in basic
peroxidic environments,” Chemistry, vol. 22, no. 25, pp.
8571–8478, 2016.
DOI: 10.1002/chem.201600390 -
E. M. Wylie et al., “Processing used nuclear fuel with nanoscale control of
uranium and ultrafiltration,” J. Nucl. Mater., vol. 473, pp.
125−130, 2016.
DOI: 10.1016/j.jnucmat.2016.02.013 - W. Walenta, “On studtite and its composition,” Am. Mineral., vol. 59, pp. 166–171, 1974.
- M. Deliens, P. Piret, “Metastudtite, UO4·2H2O, a new mineral from Shinkolobwe, Shaba, Zaire,” Am. Mineral., vol. 68, pp. 456–458, 1983.
-
R. J. Finch, R. C. Ewing, “The corrosion of uraninite under oxidizing
conditions,” J. Nucl. Mater., vol. 190, pp. 133–156, 1992.
DOI: 10.1016/0022-3115(92)90083-W -
P. C. Burns, K. A. Hughes, “Studtite, [(UO2)(O2)(H 2O)2](H2O)2: The first
structure of a peroxide mineral,” Am. Mineral., vol. 88, no. 7,
pp. 1165–1168, 2003.
DOI: 10.2138/am-2003-0725 - A. I. Moskvin, “The question of the complex formation of U(VI) and Np(IV) with hydrogen peroxide and of Np(IV) in oxalate solutions,” Radiokhimiya, vol. 10, pp. 13–21, 1968.
-
В. К. Марков, А. В. Виноградов, С. В. Елинсон, Уран, методы его определения, Москва, Россия:
Атомиздат, 1960.
(V. K. Markov, E. A. Vernyi, A. V. Vinogradov, Uranium, methods of its definition, Moscow, Russia: Atomizdat, 1960.) - Analytical Spectroscopy Library Volume 10: Separation, preconcentration, and spectrophotometry in inorganic analysis , Z. Marczenko, M. Balcerzak, Eds., 1st ed., New York (NY), USA: Elsevier Science, 2000.
-
J. A. Ghormley, A. C. Stewart, “Effects of γ-radiation on ice,” J. Am. Chem. Soc., vol. 78, no. 13, pp. 2934–2939, 1956.
DOI: 10.1021/ja01594a004 - A. I. Vogel, A textbook of quantitative inorganic analysis, London, UK: Lowe & Brydone Ltd., 1960.
-
S. I. Stepanov, A. V. Boyarintsev, “Reprocessing of spent nuclear fuel in
carbonate media: Problems, achievements, and prospects,” Nucl. Eng. Technol., vol. 54, no. 7, pp. 2339–2358, 2022.
DOI: 10.1016/j.net.2022.01.009 -
N. M. Chervyakov, A. V. Boyarintsev, A. V. Andreev, S. I. Stepanov,
“Oxidative dissolution of triuranium octoxide in carbonate solutions,” in Proc.
9th Int. Conf. on Radiation in Various Fields of Research
(RAD 2021)
, Herceg Novi, Montenegro, 2021, pp. 68–74.
DOI: 10.21175/RadProc.2021.13 - H. P. B. Lee, A-H. A. Park, C. W. Oloman, “Stability of hydrogen peroxide in sodium carbonate solutions,” Tappi Journal, vol. 83, no. 8, 2000.
- H. U. Suess, J. D. Kronis, “Impact of carbonate ions on H2O2 performance in pulp bleaching,” Intn. Pulp Bleaching Conf., Portland (OR), United States, 2002.
-
K. W. Kim et al., “Precipitation characteristics of uranyl ions at
different pHs depending on the presence of carbonate ions and hydrogen
peroxide,” Env. Sci. Technol., vol. 43, no. 7, pp. 2355–2361,
2009.
DOI: 10.1021/es802951b -
S. M. Peper et al., “Kinetic study of the oxidative dissolution of UO 2 in aqueous carbonate media,” Ind. Eng. Chem. Res.,
vol. 43, no. 26, pp. 8188–8193, 2004.
DOI: 10.1021/ie049457y -
D. Y. Chung et al., “Oxidative leaching of uranium from SIMFUEL using Na2CO3–H2O2 solution,” J. Radioanal. Nucl. Chem., vol. 284, pp. 123–129, 2010.
DOI: 10.1007/s10967-009-0443-6 -
S. I. Stepanov, A. V. Boyarintsev, A. M. Chekmarev, “Physicochemical
foundations of spent nuclear fuel leaching in carbonate solutions,” Dokl. Chem., vol. 427, pp. 202–206, 2009.
DOI: 10.1134/S0012500809080060
KINETIC STUDY OF THE OXIDATIVE DISSOLUTION OF URANIUM DIOXIDE AND TRIURANIUM OCTOXIDE IN CARBONATE MEDIA
N.M. Chervyakov, A.V. Boyarintsev, I.A. Teplov, S.I. Stepanov
Abstract | References | Cite This | Full Text (PDF)
- J. B. Hiskey, “Hydrogen peroxide leaching of uranium in carbonate solutions,” Trans. Instn. Min. Met., vol. 89, pp. C145–C152, 1980.
-
N. Asanuma et al., “Anodic dissolution of UO2 pellet containing
simulated fission products in ammonium carbonate solution,” J. Nucl. Sci. Technol., vol. 43, no. 3, pp. 255–262, 2006.
DOI: 10.1080/18811248.2006.9711087 -
S. M. Peper et al., “Kinetic study of the oxidative dissolution of UO 2 in aqueous carbonate media,” Ind. Eng. Chem. Res.,
vol. 43, no. 26, pp. 8188–8193, 2004.
DOI: 10.1021/ie049457y -
S. C. Smith, S. M. Peper, M. Douglas, K. L. Ziegelgruber, E. C. Finn,
“Dissolution of uranium oxides under alkaline oxidizing conditions,” J. Radioanal. Nucl. Chem., vol. 282, pp. 617–621, 2009.
DOI: 10.1007/s10967-009-0182-8 -
D. Y. Chung et al., “Oxidative leaching of uranium from SIMFUEL using Na2CO3–H2O2 solution,” J. Radioanal. Nucl. Chem., vol. 284, pp. 123–129, 2010.
DOI: 10.1007/s10967-009-0443-6 -
S. I. Stepanov, A. V. Boyarintsev, A. M. Chekmarev, “Physicochemical
foundations of spent nuclear fuel leaching in carbonate solutions,” Dokl. Chem., vol. 427, pp. 202–206, 2009.
DOI: 10.1134/S0012500809080060 -
S. I. Stepanov, A. V. Boyarintsev, “Reprocessing of spent nuclear fuel in
carbonate media: Problems, achievements, and prospects,” Nucl. Eng. Technol.,
vol. 54, no. 7, pp. 2339–2358, 2022.
DOI: 10.1016/j.net.2022.01.009 -
N. M. Chervyakov, A. V. Boyarintsev, A. V. Andreev, S. I. Stepanov,
“Oxidative dissolution of triuranium octoxide in carbonate solutions,” in Proc.
9th Int. Conf. on Radiation in Various Fields of Research
(RAD 2021)
, Herceg Novi, Montenegro, 2021, pp. 68–74.
DOI: 10.21175/RadProc.2021.13 -
C. Z. Soderquist et al., “Dissolution of irradiated commercial UO2 fuels in ammonium carbonate and hydrogen peroxide,” Ind. Eng. Chem. Res., vol. 50, no. 4, pp. 1813–1818, 2011.
DOI: 10.1021/ie101386n -
B. Kweto, D. R. Groot, E. Stassen, J. Suthiram,
J. R. Zeevaart, “Kinetic study of uranium residue dissolution in ammonium
carbonate media,”
J. Radioanal. Nucl. Chem., vol. 302, pp. 131–137, 2014.
DOI: 10.1007/s10967-014-3396-3 -
L. Stassen, J. Suthiram, “Initial development of an alkaline process for
recovery of uranium from 99Mo production process waste residue,” J. Radioanal. Nucl. Chem., vol. 305, pp. 41–50, 2015.
DOI: 10.1007/s10967-015-3974-z -
C. Z. Soderquist, B. K. McNamara, B. Oliver, “Dissolution of uranium metal
without hydride formation or hydrogen gas generation,” J. Nucl. Mater., vol. 378, no. 3, pp. 299–304, 2008.
DOI: 10.1016/j.jnucmat.2008.05.014 -
K. W. Kim et al., “Recovery of uranium from (U,Gd)O2 nuclear
fuel scrap using dissolution and precipitation in carbonate media,” J. Nucl. Mater., vol. 418, no. 1–3,
pp. 93–97, 2011.
DOI: 10.1016/j.jnucmat.2011.06.019 -
이일희, 이근영, 정동용, 김광욱, 이근우, 문제권, "우라늄 함유 석회침전물의 용해 및 침전에 의한 U 제거,"
한국방사성폐기물학회지, 10권 2호, 77~85쪽, 2012.
(E. H. Lee, K. Y. Lee, D. Y. Chung, K. W. Lee, J. K. Moon, “Removal of uranium from U-bearing lime-precipitate using dissolution and precipitation methods,” J. Korean Radioact. Waste Soc., vol. 10, no. 2, pp. 77–85, 2012.)
DOI: 10.7733/jkrws.2012.10.2.077 -
이일희, 양한범, 이근영, 김광욱, 정동용, 문제권, "알카리화 및 산성화에 의한 우라늄 함유 슬러지의 열분해 고체 폐기물로부터 우라늄
제거," 한국방사성폐기물학회지, 11권 2호, 85~93쪽, 2013.
E. H. Lee et al., “Removal of uranium by an alkalization and an acidification from the thermal decomposed solid waste of uranium-bearing sludge,” J. Korean Radioact. Waste Soc., vol. 11, no. 2, pp. 85–93, 2013.
DOI: 10.7733/jkrws.2013.11.2.85 -
I. Casas, J. Giménez, V. Martí, M. E. Torrero, J. de Pablo, “Kinetic
studies of unirradiated UO2 dissolution under oxidizing
conditions in batch and flow experiments,” Radiochim. Acta, vol.
66–67, no. s1, pp. 23–28, 1994.
DOI: 10.1524/ract.1994.6667.s1.23 -
J. de Pablo et al., “The oxidative dissolution mechanism of uranium
dioxide. I. The effect of temperature in hydrogen carbonate medium,” Geochim. et Cosmochim. Acta, vol. 63, no. 19–20, pp. 3097–3103,
1999.
DOI: 10.1016/S0016-7037(99)00237-9 - G. S. Goff et al., “Development of a novel alkaline based process for spent nuclear fuel recycling,” AIChE Annual Meeting, Nuclear Engineering Division, Salt Lake City (UT), USA, 2007.
-
T. Suzuki, A. Abdelouas, B. Grambow, T. Mennecart, G. Blondiaux, “Oxidation
and dissolution rates of UO2(s) in carbonate-rich solutions
under external alpha irradiation and initially reducing conditions,” Radiochim. Acta, vol. 94, no. 9–11, pp. 567–573, 2006.
DOI: 10.1524/ract.2006.94.9-11.567 -
J. S. Goldik, J. J. Noel, D. W. Shoesmith, “Surface electrochemistry of UO 2 in dilute alkaline hydrogen peroxide solutions: Part II.
Effects of carbonate ions,” Electrochim. Acta, vol. 51, no. 16,
pp. 3278–3286, 2006.
DOI: 10.1016/j.electacta.2005.09.019 -
G. Satonnay et al., “Alpha-radiolysis effects on UO2 alteration
in water,” J. Nucl. Mater., vol. 288, no. 1,
pp. 11–19, 2001.
DOI: 10.1016/S0022-3115(00)00714-5 - K. Walenta, “On studtite and its composition,” Am. Mineral., vol. 59, pp. 166–171, 1974.
- M. Deliens, P. Piret, “Metastudtite, UO4·2H2O, a new mineral from Shinkolobwe, Shaba, Zaire,” Am. Mineral., vol. 68, pp. 456–458, 1983.
-
R. J. Finch, R. C. Ewing, “The corrosion of uraninite under oxidizing
conditions,” J. Nucl. Mater., vol. 190,
pp. 133–156, 1992.
DOI: 10.1016/0022-3115(92)90083-W -
P. C. Burns, K. A. Hughes, “Studtite, [(UO2)(O2)(H 2O)2](H2O)2: The first
structure of a peroxide mineral,” Am. Mineral., vol. 88, no. 7,
pp. 1165–1168, 2003.
DOI: 10.2138/am-2003-0725 -
J. Goldik, H. Nesbitt, J. Noël, D. Shoesmith, “Surface electrochemistry of
UO2 in dilute alkaline hydrogen peroxide solutions,” Electrochim. Acta, vol. 49, no. 11, pp. 1699–1709, 2004.
DOI: 10.1016/j.electacta.2003.11.029 -
R. Pehrman, “Oxidative dissolution of spent nuclear fuel under the
influence of ionizing radiation: Expansion of elementary reactions from UO 2 to (U,Pu,FP)O2,” PhD dissertation, University of
Helsinki, Faculty of Science, Department of Chemistry, Helsinki, Finland,
2012.
Retrieved from: http://urn.fi/URN:ISBN:978-952-10-8147-7
Retrieved on: Apr. 15, 2022 -
В. К. Марков, А. В. Виноградов, С. В. Елинсон, Уран, методы его определения, Москва, Россия: Атомиздат, 1960.
(V. K. Markov, E. A. Vernyi, A. V. Vinogradov, Uranium, methods of its definition, Moscow, Russia: Atomizdat, 1960.) -
С. Б. Саввин,
Арсеназо III: Методы фотометрического определения редких и актинидных
элементов
, Москва, Россия: Атомиздат, 1966.
(S. B. Savvin, Arsenazo III: Methods for the photometric determination of rare elements and actinides , Moscow, Russia: Atomizdat, 1966.) - Analytical Spectroscopy Library Volume 10: Separation, preconcentration, and spectrophotometry in inorganic analysis , Z. Marczenko, M. Balcerzak, Eds., 1st ed., New York (NY), USA: Elsevier Science, 2000.
-
J. A. Ghormley, A. C. Stewart, “Effects of γ-radiation on ice,” J. Am. Chem. Soc., vol. 78, no. 13, pp. 2934–2939, 1956.
DOI: 10.1021/ja01594a004 - A. I. Vogel, A textbook of quantitative inorganic analysis, London, UK: Lowe & Brydone Ltd., 1960.
-
A. Chauhan, P. Chauhan, “Powder XRD Technique and its Applications in
Science and Technology,” J. Anal. Bioanal. Tech., vol. 5, no. 5,
article no. 212, 2014.
DOI: 10.4172/2155-9872.1000212 -
S. Brunauer, P. H. Emmett, E. Teller, “Adsorption of gases in
multimolecular layers,” J. Am. Chem. Soc.,
vol. 60, no. 2, pp. 309–319, 1938.
DOI: 10.1021/ja01269a023 -
Б. Дельмон, Кинетика гетерогенных реакций, Mосква, Россия: Мир,
1972.
(B. Delmon, Kinetics of heterogeneous reactions, Moscow, Russia: Mir, 1972.). -
H. Y. Sohn, “Fundamentals of the kinetics of heterogeneous reaction systems
in extractive metallurgy,” in: Rate Processes of Extractive Metallurgy, H. Y. Sohn, M. E.
Wadsworth, Eds., Boston (MA), USA: Springer, 1979.
DOI: 10.1007/978-1-4684-9117-3_1 -
J. Janeczek, R. C. Ewing, “Phosphatian coffinite with rare earth elements
and Ce-rich françoisite-(Nd) from sandstone beneath a natural fission
reactor at Bangombé, Gabon,” Mineral. Mag., vol. 60, no. 401,
pp. 665–669, 1996.
DOI: 10.1180/minmag.1996.060.401.14 -
M. Fayek, P. Burns, Y-X. Guo, R. C. Ewing, “Micro-structures associated
with uraninite alteration,” J. Nucl. Mat., vol. 277, no. 2–3, pp.
204–210, 2000.
DOI: 10.1016/S0022-3115(99)00199-3 -
A. V. Boyarintsev et al., “Reprocessing of simulated voloxidized
uranium-oxide SNF in the CARBEX process,” Nucl. Eng. Technol.,
vol. 51, no. 7,
pp. 1799–1804, 2019.
DOI: 10.1016/j.net.2019.05.020 -
C. Hou et al., “Ultrasonic-assisted dissolution of U3O 8 in carbonate medium,” Nucl. Eng. Technol., vol. 55,
no. 1, pp. 63–70, 2023.
DOI: 10.1016/j.net.2022.09.025
ASSOCIATION OF MARKER OF INFLAMMATION, HEPATIC ENZYMES AND LIPID PROFILE IN TYPE 2 DIABETES
Šaćira Mandal
Abstract | References | Cite This | Full Text (PDF)
-
V. M. G. Regufe, C. M. C. B. Pinto, P. M. V. H. C. Perez, “Metabolic
syndrome in type 2 diabetic patients: a review of current evidence,” Porto Biomed. J., vol. 5, no. 6, article no. e101, Nov/Dec. 2020.
DOI: 10.1097/j.pbj.0000000000000101 -
H. Jeong et al., “C reactive protein level as a marker for dyslipidaemia,
diabetes and metabolic syndrome: results from the Korea National Health and
Nutrition Examination Survey,” BMJ Open, vol. 9, no. 8, article
no. e029861, Aug. 2019.
DOI: 10.1136/bmjopen-2019-029861 -
N.H. Cho et al., “Abnormal liver function test predicts type 2 diabetes: a
community-based prospective study,” Diabetes Care, vol. 30, no.
10, pp. 2566-2568, Oct. 2007.
DOI: 10.2337/dc07-0106 -
Š. Mandal, “Free fatty acids and hepatic activity in Type 2 diabetes ,” RAD Conf. Proc., vol. 4, Virtual Conf., 2020, pp. 90–94.
DOI: doi.org/10.21175/RadProc.2020.19 -
B. Filipovic et al., “The new therapeutic approaches in the treatment of
non-alcoholic fatty liver disease,” Int. J. Mol. Sci., vol. 22,
no. 24, article no. 13219, Dec. 2021.
DOI: 10.3390/ijms222413219 -
Y. L. Wang, W. P. Koh, J. M. Yuan, A. Pan, “Association between liver
enzymes and incident type 2 diabetes in Singapore Chinese men and women,” BMJ Open Diabetes Research and Care, vol. 4, no. 1, article
no. e000296, Sep. 2016.
DOI: 10.1136/bmjdrc-2016-000296 -
L. Guan et al., “Prevalence and risk factors of metabolic-associated fatty
liver disease during 2014–2018 from three cities of Liaoning Province: an
epidemiological survey,” BMJ Open, vol. 12, article no. e047588,
Feb. 2022.
DOI: 10.1136/bmjopen-2020-047588 -
A.-L. Kurniawan et al., “Association of two indices of insulin resistance
marker with abnormal liver function tests: a cross-sectional population
study in Taiwanese adults,” Medicina, vol. 58, no. 1, article no.
4, Dec. 2021.
DOI: 10.3390/medicina58010004 -
Y. Li et al., “Serum alanine transaminase levels predict type 2 diabetes
risk among a middle-aged and elderly Chinese population,” Annals of Hepatology, vol. 18,
no. 2, pp. 298–303, Mar.-Apr. 2019.
DOI: 10.1016/j.aohep.2017.02.001 -
S. Scapaticci, E. D’Adamo, A. Mohn, F. Chiarelli, C. Giannini,
“Non-alcoholic fatty liver disease in obese youth with insulin resistance
and type 2 diabetes,” Front. Endocrinol., vol. 12, article no.
639548, Apr. 2021.
DOI: 10.3389/fendo.2021.639548 -
American Diabetes Association, “Classification and diagnosis of diabetes:
Standards of medical care in diabetes—2021,” Diabetes Care, vol.
44, Suppl. 1,
pp. S15–S33, Jan. 2021.
DOI: 10.2337/dc21-S002 -
W. T. Friedewald, R. I. Levy, D. S. Fredrickson, “Estimation of the
concentration of low-density lipoprotein cholesterol in plasma,” Clin. Chem., vol. 18, no. 6, pp. 499–502, Jun. 1972.
DOI: 10.1093/clinchem/18.6.499 -
Š. Mandal, A. Čaušević, “The correlation between
C-reactive protein and regulation of glycemia in Type-2 diabetic patients,”
Bulletin of the Chemists and Technologists of Bosnia and Herzegovina
, vol. 48,
pp. 5–8, Jun. 2017.
Retrieved from: http://hemija.pmf.unsa.ba/glasnik/files/Issue%2048%20new/5-5-8-Mandal.pdf
Retrieved on: Nov. 29, 2022 -
S. Ebtehaj, E. G. Gruppen, M. Parvizi, U. J. F. Tietge, R. P. F. Dullaart,
“The anti-inflammatory function of HDL is impaired in type 2 diabetes: role
of hyperglycemia, paraoxonase-1 and low grade inflammation,” Cardiovasc. Diabetol., vol. 16, article
no. 132, Oct. 2017.
DOI: 10.1186/s12933-017-0613-8 -
W.-T. Hsu et al., “Investigation of non-HDL cholesterol and C-reactive
protein in diabetes patients,” Biomarkers and Genomic Medicine,
vol. 5, no. 3, pp. 107–109,
Sep. 2013.
DOI: 10.1016/j.bgm.2013.08.002 -
M. Webber, A. Krishnan, N. G. Thomas, B. M. Cheung, “Association between
serum alkaline phosphatase and C-reactive protein in the United States National Health and Nutrition
Examination Survey 2005-2006,” Clin. Chem. Lab. Med., vol. 48, no.
2, pp. 167–173, Feb. 2010.
DOI: 10.1515/CCLM.2010.052 -
Y. Xing, J. Chen, J. Liu, H. Ma, “Associations between GGT/HDL and MAFLD: A
cross-sectional study,” Diabetes Metab. Syndr. Obes., vol. 15, pp.
383–394, Feb. 2022.
DOI: 10.2147/DMSO.S342505 -
G. Feng, L. Feng, Y. Zhao, “Association between ratio of γ-glutamyl
transpeptidase to high-density lipoprotein cholesterol and prevalence of
nonalcoholic fatty liver disease and metabolic syndrome: A cross-sectional
study,” Ann. Transl. Med., vol. 8, no. 10, article no. 634, May
2020.
DOI: 10.21037/atm-19-4516 -
Z. Zhu et al., “Associations of lipid parameters with non-alcoholic fatty
liver disease in type 2 diabetic patients according to obesity status and
metabolic goal achievement,” Front. Endocrinol., vol. 13, article
no. 1002099, Sep. 2022.
DOI: 10.3389/fendo.2022.1002099 -
S. K. Kunutsor, A. Abbasi, T. A. Apekey, “Aspartate aminotransferase – risk
marker for type-2 diabetes mellitus or red herring?,” Front. Endocrinol., vol. 5, article no. 189, Nov. 2014.
DOI: 10.3389/fendo.2014.00189 -
J. Y. Wan, L. Z. Yang, “Liver enzymes are associated with hyperglycemia in
diabetes: A three-year retrospective study,” Diabetes Metab. Syndr. Obes., vol. 15,
pp. 545–555, Feb. 2022.
DOI: 10.2147/DMSO.S350426