Volume 7, 2023 |
Table of contents |
List of Reviewers |
PHOTOACTIVATION STUDY OF 163TB β-DECAY
Anastasiia Chekhovska, David Chvátil, Tamara Krasta, Ivana Krausova, Vaclav Olšanský, Daina Riekstiņa
Received: 20 OCT 2023, Received revised: 13 DEC 2023, Accepted: 24 DEC 2023, Published online: 22 JAN 2024
Abstract | References | Cite This | Full Text (PDF)
- M. Arnould, S. Goriely, “The p-process of stellar
nucleosynthesis: astrophysics and nuclear physics status”,
Physics Reports, 384(1–2), 1-84, 2003.
https://doi.org/10.1016/S0370-1573(03)00242-4 - L. Funke, H. Graber, K.-H. Kaun, H. Sodan, G. Geske, J.
Frána, “Der Zerfall von 162Tb und 163Tb”, Nuclear Physics,
84(2), 424-442, 1966.
https://doi.org/10.1016/0029-5582(66)90381-6 - N. Kaffrell, G. Herrmann, “Der Zerfall des 163Tb”, Z.
Physik, 245, 451–470 (1971).
https://doi.org/10.1007/BF01395284 - C.W. Reich, B. Singh, “Evaluated Nuclear Data File
(ENDF)”, 111, 1211, 2010.
Retrieved from: https://www-nds.iaea.org - O. S. Deiev, I. S. Timchenko, S. N. Olejnik, S. M. Potin, V.
A. Kushnir, V. V. Mytrochenko, S. A. Perezhogin, V. A.
Bocharov, “Photonuclear reactions natNi(γ,xn)57Ni and
natNi(γ,xn)56Ni in the energy range Eγmax = 35–94 MeV”,
Nuclear Physics A, 1028, 122542, 2022.
https://doi.org/10.1016/j.nuclphysa.2022.122542 - H. Naik et al., “Photo-neutron cross-section of natGd in the
bremsstrahlung end-point energies of 12–16 MeV and
60–70 MeV”, Eur. Phys. J. A, 58, 92, 2022.
https://doi.org/10.1140/epja/s10050-022-00736-4 - T. Bengtsson, I. Ragnarsson, “Rotational bands and
particle-hole excitations at very high spin”, Nuclear
Physics A, 436(1), 14-82, 1985.
https://doi.org/10.1016/0375-9474(85)90541-X - I. Ragnarsson, A. Sobiczewski, R. K. Sheline, S. E.
Larsson, B. Nerlo-Pomorska, “Comparison of potential-
energy surfaces and moments of inertia with experimental
spectroscopic trends for non-spherical Z = 50–82 nuclei”,
Nuclear Physics A, 233, 329-356, 1974.
https://doi.org/10.1016/0375-9474(74)90460-6 - A.J. Koning, D. Rochman, J.-Ch. Sublet, N. Dzysiuk, M.
Fleming, S. van der Marck, “TENDL: Complete Nuclear
Data Library for Innovative Nuclear Science and
Technology”, Nuclear Data Sheets, 155, 1- 55, 2019.
https://doi.org/10.1016/j.nds.2019.01.002 - A. Gilbert, A. G. W. Cameron, “A composite nuclear-level
density formula with shell corrections”, Canadian
Journal of Physics, 43, 1446-1496, 1965.
https://doi.org/10.1139/p65-139 - W. Dilg, W. Schantl, H. Vonach, M. Uhl, “Level density
parameters for the back-shifted fermi gas model in the mass range 40 < A < 250”, Nuclear Physics A, 217(2),
269-298, 1973.
https://doi.org/10.1016/0375-9474(73)90196-6 - E. Khan et al., "Photodisintegration of ultra-high-energy
cosmic rays revisited",Astroparticle Physics, 23(2), 191–
201, 2005.
https://doi.org/10.1016/j.astropartphys.2004.12.007 - R. Capote et al., “RIPL – Reference Input Parameter
Library for Calculation of Nuclear Reactions and Nuclear
Data Evaluations”, Nuclear Data Sheets, 110(12), 3107-
3214 2009.
https://doi.org/10.1016/j.nds.2009.10.004 - S. Goriely, “Radiative neutron captures by neutron-rich
nuclei and the r-process nucleosynthesis”, Physics Letters
B, 436(1-2), 10-18, 1998.
https://doi.org/10.1016/S0370-2693(98)00907-1 - S Goriely, E Khan, M Samyn, “Microscopic HFB + QRPA
predictions of dipole strength for astrophysics
applications”, Nuclear Physics A, 739(3–4), 331-352,
2004.
https://doi.org/10.1016/j.nuclphysa.2004.04.105
NON-DESTRUCTIVE TESTING OF ALTERNATIVE MATERIALS FOR STORING RADIOACTIVE WASTE, USING COMPUTED 3D GAMMA TOMOGRAPHY
David Zoul, Pavel Zháňal, Patricie Halodová, Antonín Kolros, Ladislav Viererbl, David Dobrev, Petr Večerník
Received: 9 AUG 2023, Received revised: 11 DEC 2023, Accepted: 21 DEC 2023, Published online: 23 JAN 2024
Abstract | References | Cite This | Full Text (PDF)
- J. Radon, “On the determination of functions from
their integral values along certain manifolds”, IEEE
Transactions on Medical Imaging, 5(4), 170-176,
1986.
https://doi.org/10.1109/TMI.1986.4307775 - A. Cormack, “Representation of a function by its line
integrals with some radiological implications I”, J.
Appl. Phys., 34(9), 2722–2727, 1963.
https://doi.org/10.1063/1.1729798 - A. Cormack, “Representation of a function by its line
integrals with some radiological implications II”, J.
Appl. Phys., 35, 2908–2918, 1964.
https://doi.org/10.1063/1.1713127 - G. F. Knoll, “Single-photon emission computed
tomography”, Proc. IEEE, 71(3), 320–329, 1983.
https://doi.org/10.1109/PROC.1983.12590 - A. C. Kak, M. Slaney, “Principles of Computerized
Tomographic Imaging”, IEEE Press, 1988.
https://doi.org/10.1137/1.9780898719277 - M. Dogan et al. “Tomography imaging of technetium transport within a heterogeneous porous media”, Environ. Sci. Technol., 51(5), 2864–2870, 2017. https://doi.org/10.1021/acs.est.6b04172
- D. Zoul, P. Zháňal, “3D reconstruction of radioactive
sample utilizing gamma tomography”, Nucl. Instr.
Meth. Phys. Res. A, 859, 107–111, 2018.
https://doi.org/10.1016/j.nima.2018.03.071 - D. Zoul, P. Zháňal, L. Viererbl, A. Kolros, M. Zuna, V.
Havlová, “3D reconstruction of inner structure of
radioactive samples utilizing gamma tomography”,
Radiation Protection Dosimetry, 186(2-3), 239-243,
2019.
https://doi.org/10.1093/rpd/ncz211
FAST COINCIDENCE-SUMMING CORRECTION PROCEDURES FOR GAMMA SPECTROMETRIC MEASUREMENTS IN CLOSE GEOMETRIES
Elio A.G. Tomarchio
Received: 29 OCT 2023, Received revised: 21 DEC 2023, Accepted: 29 DEC 2023, Published online: 25 JAN 2024
Abstract | References | Cite This | Full Text (PDF)
- S. Rizzo, E. Tomarchio, “Numerical expressions for the
computation of coincidence-summing correction
factors in &gammma;-ray spectrometry with HPGe detectors”,
Appl. Radiat. Isotopes., 68, 555, 2010.
https://doi.org/10.1016/j.apradiso.2009.10.024 - E. Tomarchio, S. Rizzo, “Coincidence-summing
correction equations in gamma-ray spectrometry with
p-type HPGe detectors”, Radiat. Phys. Chem., 80, 318,
2011.
https://doi.org/10.1016/j.radphyschem.2010.09.014 - spectra measured in an HPGe p-type detector”, Nucl.
Instrum. Meth., A641, 101, 2011.
https://doi.org/10.1016/j.nima.2011.02.097 - E. Andreotti, M Hult, G Marissens et al.,
“Determination of dead-layer variations in HPGe
detectors”, Appl. Radiat. Isotopes, 87, 331, 2014.
https://doi.org/10.1016/j.apradiso.2013.11.046 - P. De Felice, P. Angelini, A. Fazio, R. Biagini, “Fast
procedures for coincidence-summing correction in γ-
ray spectrometry”, Appl. Radiat. Isotopes, 52, 745,
2000.
https://doi.org/10.1016/s0969-8043(99)00239-0 - T. Vidmar, A. Likar, “On the invariability of the total-
to-peak ratio in gamma-ray spectrometry”, Appl. Radiat. Isotopes., 60, 191, 2004.
https://doi.org/10.1016/j.apradiso.2003.11.015 - A. Notea, “The Ge(Li) spectrometer as a point
detector”, Nucl. Instrum. Meth., 91, 513, 1971.
https://doi.org/10.1016/S0029-554X(71)80031-9 - K. Debertin, R.G. Helmer, “Gamma- and X-ray Spectrometry with Semiconductor Detectors”, Elsevier Science Publisher B.V. ISBN 0 444 87 1071, Amsterdam, The Netherlands,1988.
- O. Presler, O. Peled, U. German, Y. Leichter, Z.B.
Alfassi, “Off-center efficiency of HPGe detectors”,
Nucl. Instrum. Meth., A 484, 444, 2002.
https://doi.org/10.1016/S0168-9002(01)02056-3 - O. Presler, U. German, O. Pelled, Z.B. Alfassi, “The
validity of the virtual point detector concept for
absorbing media”, Appl. Radiat. Isotopes, 60, 213,
2004.
https://doi.org/10.1016/j.apradiso.2003.11.019 - Z.B. Alfassi, N. Lavi, O. Presler, V. Pushkarski, “HPGe
virtual point detector for radioactive disk sources”,
Appl. Radiat. Isotopes, 65, 253, 2007.
https://doi.org/10.1016/j.apradiso.2006.08.002 - Z.B. Alfassi, O. Pelled, U. German, “The virtual point
detector concept for HPGe planar and semi-planar
detectors”, Appl. Radiat. Isotopes, 64, 574, 2006.
https://doi.org/10.1016/j.apradiso.2005.11.007 - Application to coincidence-summing corrections in
gamma-ray spectrometry”, Appl. Radiat. Isot., 68,
1448, 2010.
https://doi.org/10.1016/j.apradiso.2009.11.025 - D. Arnold, O. Sima, “Total versus effective total
efficiency in the computation of coincidence summing
correction in gamma-ray spectrometry of volume
sources”, J. Radioanal. Nucl. Ch., 248, 365, 2001.
https://doi.org/10.1023/A:1010671823736 - F. Cannizzaro, G. Greco, M. Raneli, M.C. Spitale, E.
Tomarchio, “Study of background characteristics of a
low-level HPGe spectrometer with passive shielding in
various configurations”, Nucl. Instrum. Meth., A390,
167, 1997.
https://doi.org/10.1016/S0168-9002(97)00313-6 - ORTECTM GammaVision® Gamma-Ray Spectrum Analysis and MCA Emulator Manual for Microsoft® Windows® and XP® Professional SP3 - A66-BW, Software User’s Manual, vers. 7, Part No. 783620. 2013.
- J. Morel, B. Chauvenet, A. Kadachi, “Coincidence-
summing corrections in gamma-ray spectrometry for normalized geometries”, Appl. Radiat. Isotopes, 34(8),
1115, 1983.
https://doi.org/10.1016/0020-708X(83)90178-3 - M.C. Lepy, J. Morel, B. Chauvenet, “Correction des pertes de comptage dues aux coïncidences gamma-
gamma, gamma-X et X-X dans un spectre de photons”, Rapport CEA-R-5356, Saclay, France, 1986.
http://www.lnhb.fr/Laraweb/, Retrived on October 15, 2023. - K. Debertin, U. Schotzig, “Coincidence summing corrections in Ge(Li)-spectrometry at low source-to-
detector distance”, Nucl. Instrum. Meth., 158, 471, 1979.
https://doi.org/10.1016/S0029-554X(79)94845-6 - E. Tomarchio, P. Catania, “Equivalent detector models for the simulation of efficiency response of an HPGe detector with PENELOPE code”, Radiation Effects Defects in Solids, 174(11-12), 941, 2019.
https://doi.org/10.1080/10420150.2019.1683833 - NEA (2019), PENELOPE 2018: A code system for Monte Carlo simulation of electron and photon transport: Workshop Proceedings, Barcelona, Spain, 28 January – 1 February 2019, OECD Publishing, Paris, https://doi.org/10.1787/32da5043-en
- T. Vidmar, M. Korun, “Calculation of “LS-curve” for coincidence-summing correction in gamma-ray spectrometry”, Nucl. Instrum. Meth., A556, 543, 2006.
https://doi.org/10.1016/j.nima.2005.11.052 - T. Vidmar, M. Korun, B. Vodenik, “A method for
calculation of true coincidence summing correction factor for extended sources”, Appl. Radiat. Isotopes, 65, 243, 2007.
https://doi.org/10.1016/j.apradiso.2006.07.012
CONTENT OF NATURAL AND MAN-MADE RADIONUCLIDES IN ANTARCTIC MOSSES
Milena Hristozova, Radoslava Lazarova, Ivanka Yordanova, Viktoria Nedyalkova
Received: 31 OCT 2023, Received revised: 8 JAN 2024, Accepted: 21 JAN 2024, Published online: 25 JAN 2024
Abstract | References | Cite This | Full Text (PDF)
- L. Ivanov, “General Geography and History of Livingston Island”,Bulgarian Antarctic Research, Sofia, St. Kliment Ohridski University Press, pp. 17–28, 2015. ISBN 978-954-07-3939-7
- F. Schultz, “Beiträge zur Floristik und Ökologie von Bryophyten auf Livingston Island, Süd-Shetland Inseln, Antarktis”, Mskr. Diplomarbeit, Kiel, Institut für Polarökologie, Mathematisch -Naturwissenschaftliche Fakultät er Christian -Albrechts Universität, Kiel, p. 131, 1993.
- L. G. Sancho, F. Schulz, B. Schroeter, L. Kappen,
“Bryophyte and lichen flora of South Bay (Livingston
Island: South Shetland Islands, Antarctica)”, Nova
Hedwigia, 68, 301–337, 1999.
https://doi.org/10.1127/nova.hedwigia/68/1999/301 - A. Labajo, “Updated Information on Spain’s Antarctic
and Sub-Antarctic „Weather-Forecasting“ Interests”,
For The International Antarctic Weather Forecasting
Handbook: IPY 2007 – 08 Supplement, 2008.
https://legacy.bas.ac.uk/met/momu/International_An tarctic_Weather_Forecasting_Handbook/update%20S pain.php - BDS EN ISO 18589-3, “Measurement of radioactivity in the environment. Part 3: Test method of gamma-emitting radionuclides using gamma-ray spectrometry”, Bulgarian Institute for Standardization, Sofia, 2018.
- M. Długosz-Lisiecka, H. Bem, “Fast procedure for self-absorption correction for low γ energy radionuclide 210Pb determination in solid environmental samples”,
Journal of Radioanalytical and Nuclear Chemistry, 298(1), 495–499. 2013.
https://doi.org/10.1007/s10967-012-2404-8 - R. Delfanti, C. Papucci, C. Benco, “Mosses as indicators
of radioactivity deposition around a coal-fired power
station”, Science of the Total Environment, 227(1), 49-
56, 1999.
https://doi.org/10.1016/S0048-9697(98)00410-0 - A. Uğur, B. Özden, M. M. Saç, G.Yener, “Biomonitoring
of 210Po and 210Pb using lichens and mosses around a
uraniferous coal-fired power plant in western Turkey”,
Atmospheric Environment, 37(16), 2237-2245, 2003.
https://doi.org/10.1016/S1352-2310(03)00147-X - S. Loppi, F. Riccobono, Z. H. Zhang, S. Savic, D. Ivanov,
S. A. Pirintsos, “Lichens as biomonitors of uranium in
the Balkan Area”, Environmental Pollution, 125(2),
277-280, 2003.
https://doi.org/10.1016/S0269-7491(03)00057-5 - D. Popovic, D. Todorovic, M. Frontasyeva, J. Ajtic, M.
Tasic, S. Rajsic, “Radionuclides and heavy metals in
Borovac, Southern Serbia”, Environmental Science &
Pollution Research, 15(6), 509-520, 2008.
https://doi.org/10.1007/s11356-008-0003-6 - “Handbook of Parameter Values for the Prediction of
Radionuclides Transfer in Temperate Environments”,
IAEA Tech Report Series, 364, 92-0-101094X, Vienna, 1994.
https://www.iaea.org/publications/5698/handbook-of- parameter-values-for-the-prediction-of-radionuclide- transfer-in-temperate-environments - M. Díaz-Somoano, M. E. Kylander, M. A. López-Antón,
I. Suárez-Ruiz, M. R. Martínez-Tarazona, M. Ferrat, B.
Kober, D. J. Weiss, “Stable Lead Isotope Compositions
In Selected Coals From Around The World And
Implications For Present Day Aerosol Source Tracing”,
Environ. Sci. Technol., 43, 1078–7085, 2009.
https://doi.org/10.1021/es801818r - J. G. Farmer, L. J. Eades, M. C. Graham, J. R. Bacon,
“The changing nature of the Pb-206/Pb-207 isotopic
ratio of lead in rainwater, atmospheric particulates,
pine needles and leaded petrol in Scotland, 1982–
1998”, J. Environ. Monit., 2, 49–57, 2000.
https://doi.org/10.1039/A907558E - “Sources, Effects and Risks of Ionizing Radiation”,
United Nation Committee for the Effects of Atomic Radiation (UNCEAR) Report, 92-1-1-142143-8, New
York, 1988.
https://www.unscear.org/unscear/en/publications/1988.html - M. Hristozova, D. Denkova, I. Jordanova, V. Rangelov, M. Alyakov, “Presence of natural and artificial radionuclides in soil and terrestrial fauna of Livingston island, Antarctica”, 15th International Multi-disciplinary Scientific Geoconference, SGEM 2015, 18-24, Albena, Bulgaria, pp. 685-692, 2015. ISBN: 978-1-5108-1002-0
- M. Hristozova, “Radiobiological and radioecological research on the flora and fauna of Livingston island, Antarctica. Anthropogenic pollution of the environment”, Dissertation work, 2014.
- D. T. Griggs, F. Press, “Probing the Earth with nuclear
explosions”, Journal of Geophysical Research, 66, 237-
258, 2012.
https://www.osti.gov/biblio/4155841 - T. Yasunari, A. Stohl, R. Hayano, J. Burkhart, S.
Eckhardt, T. Yasunari, “Cesium-137 Deposition and
Contamination of Japanese Soils due to the Fukushima
Nuclear Accident”, Proceedings of the NAS (PNAS),
108(49), 19530-19534, 2011.
https://doi.org/10.1073/pnas.1112058108 - M. Yamamoto, T. Takada, S. Nagao, T. Koike, K.
Shimada, M. Hoshi, K. Zhumadilov, T. Shima, M.
Fukuoka, T. Imanaka, S. Endo, A. Sakaguchi, S.
Kimura, “An early survey of the radioactive
contamination of soil due to the Fukushima Dai-ichi
Nuclear Power Plant accident, with emphasis on
plutonium analysis”, Geochemical Journal, 46(4), 341-
353, 2012.
https://doi.org/10.2343/geochemj.2.0215 - M. Pourchet, O. Magand, M. Frezzotti, A. Ekaykin, J.-G.
Winther, “Radionuclides deposition over Antarctica”,
Journal of Environmental Radioactivity, 68(2), 137-
158, 2003.
https://doi.org/10.1016/S0265-931X(03)00055-9 - M. Hristozova, R. Lazarova, I. Yordanova, V.
Nedyalkova, “Radionuclides in volcanic ash on
Livingston island, Antarctica”, in Book of Abstr. 11th
Int. RAD Conf. (RAD 2023), Herceg Novi, Montenegro,
2023, p. 262.
https://doi.org/10.21175/rad.abstr.book.2023.39.13
FAST DIGITIZER CARD WITH INTEGRATED PEAK ANALYSIS ALGORITHM
Aleš Jančář, Jiří Čulen, Jitka Tesařová, Filip Mravec, Zdeněk Matěj
Received: 8 SEPT 2023, Received revised: 31 JAN 2024, Accepted: 12 FEB 2024, Published online: 24 FEB 2024
Abstract | References | Cite This | Full Text (PDF)
- M. Pavelek, Z. Matěj, O. Herman, F. Mravec, M.
Veškrna, F. Cvachovec, M. Košťál, V. Přenosil, “Fast
Digital Spectrometer for Mixed Radiation Fields,” 2017
IEEE SENSORS, Glasgow, UK, 2017, pp. 1-3, 2017.
http://dx.doi.org/10.1109/ICSENS.2017.8234012 - V. T. Jordanov, G. F. Knoll, “Digital synthesis of pulse
shapes in real time for high resolution radiation
spectroscopy,” Nuclear Instruments and Methods in
Physics Research A, 345(2), 337-345, 1994.
https://doi.org/10.1016/0168-9002(94)91011-1 - V. T. Jordanov, G. F. Knoll, A. C. Huber, J. A. Pantazis,
“Digital techniques for real-time pulse shaping in
radiation measurements,” Nuclear Instruments and
Methods in Physics Research Section A, 353(1-3), 261–
264, 1994.
https://doi.org/10.1016/0168-9002(94)91652-7 - E.R. Thuraka, R.Ganesh, D.B.Prakash, P.Sreekanth,
P.R. Reddy, M.Likhita, “Digital Multi-Channel analyzer
for detection and analysis of radiation in nuclear
spectroscopy,” Materials Today Proceedings, 38(5),
3160-3167, 2020.
https://doi.org/10.1016/j.matpr.2020.09.580 - W. H. Press, S. A. Saul, “Savitzky‐Golay Smoothing
Filters,” Nuclear Computers in Physics and IEEE
Computational Science & Engineering, 4(6), 669-672,
1990.
https://doi.org/10.1063/1.4822961
ENVIRONMENTAL MICRODOSIMETRY IN VERY LOW DOSE RATE RADIATION FIELDS
Gabriele Auriemma, Anna Bianchi, Anna Selva, Valeria Conte
Received: 20 OCT 2023, Received revised: 11 DEC 2023, Accepted: 18 DEC 2023, Published online: 24 FEB 2024
Abstract | References | Cite This | Full Text (PDF)
- H. Planel, J.P. Soleilhavoup, R. Tixador, G. Richoilley,
A. Conter, F. Croute, C. Caratero, Y. Gaubin, “Influence
on cell proliferation of background radiation or
exposure to very low, chronic gamma radiation”,
Health Phys., 52(2), 571-8, 1987.
https://doi.org/10.1097/00004032-198705000-00007 - P. Morciano, F. Cipressa, A. Porrazzo, G. Esposito, M.A.
Tabocchini, G. Cenci, “Fruit Flies Provide New Insights
in Low-Radiation Background Biology at the INFN
Underground Gran Sasso National Laboratory
(LNGS)”, Radiat. Res., 190(3), 217-225. 2018.
https://doi.org/10.1667/RR15083.1 - A. Bettini, “Underground Laboratories”, J. Phys.: Conf.
Ser., 120, 082001, 2008.
https://doi.org/10.1088/1742-6596/120/8/082001 - Angelis, G. D'Imperio, V. Dini, C. Nuccetelli, M.C.
Quattrini, C. Tomei, A. Ianni, M. Balata, G. Carinci, M.
Chiti, O. Frasciello, G. Cenci, F. Cipressa, A. De
Gregorio, A. Porrazzo, M.A. Tabocchini, L. Satta, P.
Morciano, “Underground Radiobiology: A Perspective
at Gran Sasso National Laboratory”, Front. Public
Health, ,8, 2020.
https://doi.org/10.3389/fpubh.2020.611146 - N. Lampe, D.G. Biron, J.M.C. Brown, S. Incerti, P.
Marin, L. Maigne, D. Sarramia, H. Seznec, V. Breton,
“Simulating the Impact of the Natural Radiation
Background on Bacterial Systems: Implications for
Very Low Radiation Biological Experiments”, Plos One,
11(11), 2016.
https://doi.org/10.1371/journal.pone.0166364 - G. Baiocco, S. Bartzsch, V. Conte, T. Friedrich, B. Jakob,
A. Tartas, C. Villagrasa, K.M. Prise, “A matter of space:
how the spatial heterogeneity in energy deposition
determines the biological outcome of radiation
exposure.”, Radiat. Environ. Biophys., 61, 545–559,
2022.
https://doi.org/10.1007/s00411-022-00989-z - International Commission on Radiation Units and Measurements, “Microdosimetry Report 36.”, Bethesda, MD, USA, 1983.
- D. Moro, L. De Nardo, P. Colautti, V. Conte2, T. Berger,
K. Marsalek, P. Beck, S. Rollet, M. Latocha, E. Bissiato,
G. Egeni, G. Donà, M. Luzik-Bhadra, A. Jaksi, M.
Vuotila, E. Koivula, G. Reitz, M. Dieckmann, U.
Straube, “EuTEPC - (European Tissue Equivalent
Proportional Counter): A microdosimeter for the
assessment of the radiation quality at the international
space station”, LNL-INFN Annual Report, p. 111, 2011.
https://www1.lnl.infn.it/~annrep/read_ar/2011/index _contrib.htm
https://www1.lnl.infn.it/~annrep/read_ar/2011/contri butions/pdfs/111_B_83_B078.pdf - S. Chiriotti, D. Moro, P. Colautti, V. Conte, B.
Grosswendt, “Equivalence of pure propane and
propane te gases for microdosimetric measurements.”,
Radiat. Prot. Dosimetry., 166(1-4), 242-6, 2015.
https://doi.org/10.1093/rpd/ncv293 - A. Selva, L. Bellan, A. Bianchi, G. Giustiniani, P.
Colautti, E. Fagotti, A. Pisent, V. Conte,
“Microdosimetry of an accelerator based thermal
neutron field for boron neutron capture therapy.”,
Appl. Radiat. Isot., 182, 110144, 2022.
https://doi.org/10.1016/j.apradiso.2022.110144 - D. Moro, S. Chiriotti, V. Conte, P. Colautti, B.
Grosswendt, “Lineal calibration of a spherical TEPC”,
Radiat. Prot. Dosimetry, 166(1-4), 233–237, 2015.
https://doi.org/10.1093/rpd/ncv153 - A. Bianchi, A. Selva, P. Colautti, A. Parisi, F. Vanhavere,
B. Reniers, V. Conte, “The effect of different lower
detection thresholds in microdosimetric spectra and
their mean values”, Radiat. Meas., 146,, 106626, 2021.
https://doi.org/10.1016/j.radmeas.2021.10662 - Haiqian Ma, “Application of tissue equivalent proportional counter (TEPC) in intercalibration with nai(tl) spectrometer.” Master of Science in Particle Physics at Carleton University, Ottawa, Ontario, Canada, 2021.
- D. Moro, S. Chiriotti, “EuTEPC: measurements in
gamma and neutron fields”, Radiat. Prot.
Dosimetry, 166 (1-4), 266–270, 2015.
https://doi.org/10.1093/rpd/ncv154
PMMA OPTICAL FIBRE IRRADIATED WITH CO-60 FOR OPTICAL FIBRE SENSORS
Michal Jelinek, Ales Jancar, Tadeas Zbozinek, Bretislav Mikel
Received: 31 OCT 2023, Received revised: 31 JAN 2024, Accepted: 12 FEB 2024, Published online: 9 MARCH 2024
Abstract | References | Cite This | Full Text (PDF)
- M. Jelinek et al., “Design and Characterisation of
an Optical Fibre Dosimeter Based on Silica
Optical Fibre and Scintillation Crystal”, Sensors,
22(19), 7312, 2022.
https://doi.org/10.3390/s22197312 - A.I. de Andres, A.I. de Andrés, Ó. Esteban, M.
Embid, “Optical fiber sensor for low dose gamma
irradiation monitoring”, 6th European Workshop
on Optical Fibre Sensors (EWOFS'2016),
Limerick, Ireland, 9916, 46-49, 2016.
https://doi.org/10.1117/12.2236860 - S. Girard et al., “Radiation Effects on Silica-Based
Optical Fibers: Recent Advances and Future
Challenges”, IEEE Trans. Nucl. Sci., 60(3), 2015-
2036, 2013.
https://doi.org/10.1109/TNS.2012.2235464 - M. Zhang et al., “Investigation of radiation
response on pure silica large core fibers at low
dose levels”, Nucl. Instrum. Methods Phys. Res.
A: Accel. Spectrom. Detect. Assoc. Equip., 1048,
167931, 2023.
https://doi.org/10.1016/j.nima.2022.167931 - V. Havranek et al., “Modification of
polymethylmethacrylate under irradiation of the
SEM electron beam”, Radiat. Eff. Defects Solids,
177(11-12), 1222-1231, 2022.
https://doi.org/10.1080/10420150.2022.213608 5 - M.E. Fragalà et al., “Ion beam assisted unzipping
of PMMA”, Nucl. Instrum. Methods Phys. Res. B:
Beam Interact. Mater. At., 141(1-4), 169-173,
1998.
https://doi.org/10.1016/S0168-583X(98)00087-1 - W. Ge, D. Tursun, Y. Wang, W. Tian, “Radiation
damage and recovery properties in three kinds of
polymer optical fiber exposed gamma-ray
irradiation”, Proc. SPIE 6686, UV, X-Ray, and Gamma-Ray Space Instrumentation for
Astronomy XV, 66860M, San Diego, 2007.
https://doi.org/10.1117/12.730808 - S. Girard et al., “Radiation Effects on Silica-Based
Preforms and Optical Fibers—I: Experimental
Study With Canonical Samples”, IEEE Trans.
Nucl. Sci., 55(6), 3473-3482, 2008.
https://doi.org/10.1109/TNS.2008.2007297 - S. Rerucha et al., “Laser source for dimensional
metrology: investigation of an iodine stabilized
system based on narrow linewidth 633 nm DBR
diode”, Meas. Sci. Technol., 28(4), 045204, 2017.
https://doi.org/10.1088/1361-6501/aa5ab9 - “TERABALT High Level Gamma Irradiator”, Editor 2013, VF, a.s., Černá Hora, Czech Republic. Retrieved from: https://d3pcsg2wjq9izr.cloudfront.net/files/604 24/download/555764/13-b-13-a0004a-131218- terabalt-317-en.pdf Retrieved on: Oct. 10, 2023
TESTING MEASURING DEVICES IN WELL-DEFINED PULSED RADIATION FIELDS
Károly Bodor, Attila Gulyás, Péter Zagyvai, Péter Völgyesi
Received: 1 AUG 2023, Received revised: 18 DEC 2023, Accepted: 24 FEB 2024, Published online: 15 MARCH 2024
Abstract | References | Cite This | Full Text (PDF)
- G. Fei et al., “Establishment of pulsed X-ray reference
radiation field and measurement of related parameters”,
Radiat. Phys. Chem., 198, 110221, 2022.
https://doi.org/10.1016/j.radphyschem.2022.110221 - P. Wardman, “Radiotherapy Using High-Intensity Pulsed
Radiation Beams (FLASH): A Radiation-Chemical
Perspective”, Radiation Research, 194(6), 607–617, 2020.
https://doi.org/10.1667/RADE-19-00016 - J. W. Boag, E. Hochhäuser, O. A. Balk, “The effect of free-
electron collection on the recombination correction to ionization measurements of pulsed radiation”, Phys. Med.
Biol., 41, 885, 1996.
https://doi.org/10.1088/0031-9155/41/5/005 - O. Hupe, H. Zutz, J. Klammer, “Radiation protection dosimetry in pulsed radiation fields,” Retrieved from: https://www.irpa.net/members/TS2f.3.pdf; Retrieved on Feb 6, 2023.
- O. Hupe, U. Ankerhold, “Determination of ambient and
personal dose equivalent for personnel and cargo security
screening”, Radiat. Prot. Dosim., 121(4), 429–437 (2006).
https://doi.org/10.1093/rpd/ncl047 - J. Klammer, J. Roth, O. Hupe, “Novel reference fields for
pulsed photon radiation installed at PTB”, Radiat. Protect.
Dosim., 151(3), 478–482, 2012.
https://doi.org/10.1093/rpd/ncs043 - F. Vanhavere et al., “The use of active personal dosemeters in
interventional workplaces in hospitals: comparison between active and passive dosemeters worn simultaneously by medical
staff”, Radiat. Protect. Dosim., 188(1), 22–29, 2020.
https://doi.org/10.1093/rpd/ncz253 - A. Esposito, “Radiation protection for laser-based
accelerators”, Radiat. Protect. Dosim., 146(4), 403–406, 2011.
https://doi.org/10.1093/rpd/ncr239 - J. Bauer et al., “Measurements of Ionizing Radiation Doses Induced by High Irradiance Laser on Targets in LCLS MEC Instrument”, SLAC PUB-15889, 2013. Retrieved from: https://www.researchgate.net/publication/283367945_Measu rements_of_ionizing_radiation_doses_induced_by_high_irra diance_laser_on_targets_in_LCLS_MEC_instrument, Retrieved on: May 5, 2020.
- FHT-192 ion chamber, Retrieved from: https://www.thermofisher.com/order/catalog/product/4253540; Retrieved on: December 8, 2023.
- F. Raiola et al., “Capacity building in EU Member States for the testing and assessment of detection equipment in nuclear security within ITRAP+10 Phase II”, EUR 29786, Publications Office of the European Union, Luxembourg, (2019), ISBN 978- 92-76-08679-6.
- P. Ambrosi, M. Borowski, M. Iwatschenko, “Considerations
concerning the use of counting active personal dosemeters in
pulsed fields of ionizing radiation”, Radiat. Protect. Dosim.,
139(4), 483–493, 2010.
https://doi.org/10.1093/rpd/ncp286 - U. Ankerhold, O. Hupe, P. Ambrosi, “Deficiencies of active
electronic radiation protection dosemeters in pulsed fields”,
Radiat. Protect. Dosim., 135(3), 149–153, 2009.
https://doi.org/10.1093/rpd/ncp099 - Radiation protection instrumentation - Electronic counting dosemeters for pulsed fields of ionizing radiation, Technical Specification, IEC TS 62743:2012, 2012. Retrieved from: https://webstore.iec.ch/publication/7411, Retrieved on: Dec. 5, 2022
- Radiation protection instrumentation - Dosemeters for pulsed fields of ionizing radiation, Technical Specification, IEC TS 63050, 2019. Retrieved from: https://webstore.iec.ch/publication/30695, Retrieved on: Dec. 13, 2022
- Radiation protection instrumentation—measurement of personal dose equivalents Hp(10) and Hp(0.07) for X, gamma, neutron and beta radiations—direct reading personal dose equivalent meters, International Electrotechnical Commission. Committee Draft for Voting of International Standard IEC/CDV 61526:2010 (Geneva: IEC), International Standard, 2010. Retrieved from: https://webstore.iec.ch/publication/5540, Retrieved on: Dec. 5, 2022
- Radiation protection instrumentation—ambient and/or directional dose equivalent (rate) meters and/or monitors for beta, X and gamma radiation—Part 1: Portable workplace and environmental meters and monitors, International Electrotechnical Commission. Final Draft International Standard IEC/FDIS 60846-1 (Geneva: IEC), 2014. Retrieved from: https://standards.iteh.ai/catalog/standards/clc/c1a3d0b4- b6eb-4f6c-b509-5498da8e5bbf/en-60846-1-2014
- Radiological protection—characteristics of reference pulsed radiation—Part 1, ISO, ISO/TS 18090-1: 2019, 2020. Retrieved from: https://standards.iteh.ai/catalog/standards/cen/7e0f8eac- c984-4f23-a635-a1dffad67108/cen-iso-ts-18090-1-2019 Retrieved on: Sept. 22, 2022
- Radiation protection instrumentation—electronic counting dosemeters for pulsed fields of ionizing radiation, IEC, IEC 62743 TS Ed. 1: 2012., Technical Specification, 2012. Retrieved from: https://webstore.iec.ch/publication/7411, Retrieved on: Aug. 9, 2022
- S. Friedrich, O. Hupe, “Dose measurements in pulsed radiation
fields with commercially available measuring components”,
Radiat. Protect. Dosim., 168(3), 322-329, 2016.
https://doi.org/10.1093/rpd/ncv355 - O. Hupe, S. Friedrich, F. Vanhavere, M. Brodecki,
“Determining the dose rate dependence of different active personal dosemeters in standardized pulsed and continiuous
radiation fields”, Radiat. Protect. Dosim., 187(3), 345–352,
2019.
https://doi.org/10.1093/rpd/ncz173 - H. Zutz, O. Hupe, P. Ambrosi, J. Klammer, “Determination of relevant parameters for the use of electronic dosemeters in pulsed fields of ionizing radiation”, Radiat. Protect. Dosim., 151(3), 403–410, 2012. https://doi.org/10.1093/rpd/ncs027
- XRS-3 X-ray device, Retrieved on: December 8, 2023. Retrieved from: https://www.goldenengineering.com/products/xrs3/
- STEP OD-02 Reference and Declaration of Conformity. Retrieved on: December 8, 2023, Retrieved from: https://www.step-sensor.de/navigation- deutsch/strahlenmess-technik/ortsdosimeter
- PorTl dose meter, Retrieved on: December 8, 2023, Retrieved from: https://portl.kfki.hu/
- A. Niroomand-Rad, L.A. DeWerd, “The application of
CaSO4:Dy (TLD-900) to diagnostic x-ray exposures”, Med.
Phys., 10(5), 691-694, 1983.
https://doi.org/10.1118/1.595337 - I. Zidouh et al., “Comparison of OSL and TL dosimetry systems
against IEC and ICRP standards”, Appl. Radiat, Isot., 196,
110732, 2023.,
https://doi.org/10.1016/j.apradiso.2023.110732 - H. Zutz, “Basic requirements on area dosemeters”, Retrieved from: https://indico.cern.ch/event/610058/contributions/2459583/ attachments/1411802/2159771/AreaDosimetry_Requirements _Zutz_V2_mail.pdf, Retrieved on: Jan. 13, 2023
- EPD Mk2+, Retrieved on: December 8, 2023, Retrieved from: https://www.thermofisher.com/order/catalog/product/EPD16 1081000
- EPD TruDose, Retrieved on: December 8, 2023, Retrieved from: https://www.thermofisher.com/order/catalog/product/EPDT RUDOSE
- D. Ginzburg, “Ionisation Chamber for Measurement of Pulsed
Photon Radiation Fields,” Radiat. Protect. Dosim., 174(3),
297–301, 2017.
https://doi.org/10.1093/rpd/ncw145 - F. G. Knoll, “Radiation Detection and Measurement”, 3rd edn., John Wiley & Sons, Inc., 2000, ISBN 0-471-07338-5. Retrieved from: https://phyusdb.files.wordpress.com/2013/03/radiationdetect ionandmeasurementbyknoll.pdf, Retrieved on: Aug. 1, 2020
ASSOCIATION OF FREE FATTY ACID CONCENTRATIONS WITH GLUCOSE LEVELS IN BOSNIAN SUBJECTS
Šaćira Mandal
Received: 30 OCT 2023, Received revised: 11 MARCH 2024, Accepted: 21 MARCH 2024, Published online: 5 APRIL 2024
Abstract | References | Cite This | Full Text (PDF)
- G. Boden, “Free fatty acids, insulin resistance, and type
2 diabetes mellitus”, Proc. Assoc. Am. Physicians,
111(3), 241-8, 1999.
https://doi.org/10.3892/etm.2021.10138 - 2. S.S. Shetty, S. Kumari, “Fatty acids and their role in
type-2 diabetes (Review)”, Exp. Ther. Med., 22(1), 706,
2021.
https://doi.org/10.3892/etm.2021.10138 - Y.S. Oh, G.D. Bae, D.J. Baek, E.-Y. Park, H.-S. Jun,
“Fatty acid-induced lipotoxicity in pancreatic Beta-cells
during development of type 2 diabetes”, Front.
Endocrinol., 9(384), 1-10, 2018.
https://doi.org/10.3389/fendo.2018.00384 - 4. Q. Li, M. Zhao, Y. Wang, F. Zhong, J. Liu, L. Gao, J.
Zhao, “Associations between serum free fatty acid levels
and incident diabetes in a 3-year cohort study”,
Diabetes Metab. Syndr. Obes., 14, 2743-2751, 2021.
https://doi.org/10.2147/DMSO.S302681 - D.M. Rocha, J. Bressan, H.H. Hermsdorff, “The role of
dietary fatty acid intake in inflammatory gene
expression: a critical review,” Sao Paulo Med. J.,
135(2), 157-168, 2017.
https://pubmed.ncbi.nlm.nih.gov/28076613/ - American Diabetes Association, Standards of medical
care in diabetes—2021, Diabetes Care 2021,
44(Suppl.1), S15–S33, 2021.
https://doi.org/10.2337/dc21-S002 - J. Folch, M. Lees, G.H.S. Stanley, “A simple method for
the isolation and purification of total lipids from animal
tissues”, J. Biol. Chem., 226(1), 497-509, 1957.
https://doi.org/10.1016/S0021-9258(18)64849-5 - G. Lepage, C.C. Roy, “Specific methylation of plasma
nonesterified fatty acids in a one-step reaction”, J. Lipid
Res., 29(2), 227-35, 1988.
https://doi.org/10.1016/S0022-2275(20)38553-9 - A.I.S. Sobczak, A.C. Blindauer, J.A. Stewart, “Changes
in plasma free fatty acids associated with type-2
diabetes”, Nutrients, 11(9), 1–85, 2019.
https://doi.org/10.3390/nu11092022 - J. Bonet, Y. Yadav, J. Miles, A. Basu, C. Cobelli, R. Basu,
C. Dalla Man, “A new oral model of free fatty acid
kinetics to assess lipolysis in subjects with and without
type 2 diabetes”, Am. J. Physiol. Endocrinol. Metab.,
325,E163–E170, 2023.
https://doi.org/10.1152/ajpendo.00091.2023 - D. Stefanovski, N.M. Punjabi, R.C. Boston, R.M.
Watanabe, “Insulin action, glucose homeostasis and
free fatty acid metabolism: insights from a novel
model," Front. Endocrinol., 12(625701), 1-8, 2021.
https://doi.org/10.3389/fendo.2021.625701 - S. Spiller, M. Blüher, R. Hoffmann, “Plasma levels
of free fatty acids correlate with type 2 diabetes
mellitus”, Diab. Obes. Metab., 20(11), 2661-2669, 2018.
https://doi.org/10.1111/dom.13449 - M. Hawkins, J. Tonelli, P. Kishore, D. Stein,
E. Ragucci, A. Gitig, K. Reddy, “Contribution of elevated
free fatty acid levels to the lack of glucose effectiveness
in type 2 diabetes”, Diabetes, 52(11), 2748-2758, 2003.
https://doi.org/10.2337/diabetes.52.11.2748 - Semiz, “Free fatty acid profile in Type 2 diabetic
subjects with different control of glycemia”, CMBEBIH
International Conference on Medical and Biological
Engineering in Bosnia and Herzegovina 2017, IFMBE
Proceedings, 62, 781–786, Springer, Heidelberg, 2017.
https://link.springer.com/book/10.1007/978-981-10- 4166-2 - A.M. Fretts, F. Imamura, M. Marklund, R. Micha,
J.H.Y. Wu, R.A. Murphy, K.-L. Chien et al.,
“Associations of circulating very-long-chain saturated
fatty acids and incident type 2 diabetes: a pooled
analysis of prospective cohort studies”, Am. J. Clin.
Nutr., 109(4), 1216-1223, 2019.
https://doi.org/10.1093/ajcn/nqz005 - V.H. Telle-Hansen, L. Gaundal, M.C.W. Myhrstad,
“Polyunsaturated fatty acids and glycemic control in
type 2 diabetes”, Nutrients., 11(5), 1067, 2019.
https://doi.org/10.3390/nu11051067 - Š. Mandal, "G-protein coupled receptors as potential drug target in therapy and treatment of Type 2 diabetes", Book of Abstr. 3rd Cong. of Genet. in B&H with Int. Part. (CONGUB&H October 2023), Sarajevo, Bosnia and Herzegovina, 2023, pp. 72. https://congubih23.ba/wp- content/uploads/2023/09/CONGUBH-2023_Book-of- abstracts_compressed-1.pdf
- H. Ting, Z. Wen, H. Feifei, Z. Rui, L. Lihong, A.
Zhuoling, “Plasma fingerprint of free fatty acids and
their correlations with the traditional cardiac
biomarkers in patients with type 2 diabetes complicated
by coronary heart disease”, Front. Cardiovasc. Med., 9,
1-15, 2022.
https://doi.org/10.3389/fcvm.2022.903412 - M.A. Belury, R.M. Cole, D.B. Snoke, T. Banh, A.
Angelotti, “Linoleic acid, glycemic control and type 2
diabetes”, Prostaglandins Leukot. Essent. Fat. Acids.,
132, 30-33, 2018.
https://doi.org/10.1016/j.plefa.2018.03.001 - D. Grapov, S.H. Adams, T.L. Pedersen, W.T.
Garvey, J.W. Newman, “Type 2 diabetes associated
changes in the plasma non-esterified fatty acids,oxylipins and endocannabinoids,” PLoS ONE., 7(11),
e48852, 2012.
https://doi.org/10.1371/journal.pone.0048852 - Gabriel Sanchez, T. Konrad, K. Lalić, N.M. Lalić, A.
Mari, A. Natali, “Circulating palmitoleic acid is an
independent determinant of insulin sensitivity, beta cell
function and glucose tolerance in non-diabetic
individuals: a longitudinal analysis”, Diabetologia,
63(1), 206-218, 2020.
https://doi.org/10.1007/s00125-019-05013-6 - E.A. Nunes, A. Rafacho, “Implications of
palmitoleic acid (palmitoleate) on glucose homeostasis,
insulin resistance and diabetes”, Curr. Drug Targets,
18(6), 619-628, 2017.
https://doi.org/10.2174/1389450117666151209120345 - M. Hu, Z. Fang, T. Zhang, Y. Chen,
“Polyunsaturated fatty acid intake and incidence of type
2 diabetes in adults: a dose response meta-analysis of
cohort studies”, Diabetol. Metab. Syndr., 14(34), 1-23,
2022.
https://doi.org/10.1186/s13098-022-00804-1
SOME RESULTS FOR THE STUDY OF THE EFFICIENCY AND CROSS-TALK PROBABILITY BY USING GEANT4 SIMULATIONS FOR THE NEUTRON CORRELATOR NARCOS
G. Santagati, E. V. Pagano, C. Boiano, G. Cardella, A. Castoldi, E. De Filippo, E. Geraci, B. Gnoffo, C. Guazzoni, A. Lanzalone, C. Maiolino, N. S. Martorana, A. Pagano, S. Pirrone, G. Politi, F. Risitano, F. Rizzo, P. Russotto, M. Trimarchi, C. Zagami
Received: 20 OCT 2023, Received revised: 12 FEB 2024, Accepted: 21 FEB 2024, Published online: 16 APRIL 2024
Abstract | References | Cite This | Full Text (PDF)
- J. Van Driel et al., “Sequential ejectile decays and
uncorrelated breakup processes in the 14N+ 159Tb
reaction,” Physics Letters B, 98(5), 351–354, 1981.
https://doi.org/10.1016/0370-2693(81)90923-0 - A. Pagano et al., “Nuclear neck-density determination at
Fermi energy with CHIMERA detector”, The European
Physical Journal A, 56(102), 1–16, 2020.
https://doi.org/10.1140/epja/s10050-020-00105-z - P. Russotto et al., “Production cross sections for
intermediate mass fragments from dynamical and
statistical decay of projectile-like fragments in 124Sn
+64Ni and 112Sn +58Ni collisions at 35 A MeV”, Phys.
Rev. C, 91(1), 014610, 2015.
https://doi.org/10.1103/PhysRevC.91.014610 - S. Pirrone et al., “Isospin influence on fragments
production in 78Kr + 40Ca and 86Kr + 48Ca collisions at 10
MeV/nucleon”, Eur. Phys. J. A, 55(2), 22, 2019.
https://doi:10.1140/epja/i2019-12695-4 - P. Russotto et al., “Dynamical versus statistical
production of intermediate mass fragments at Fermi
energies”, Eur. Phys. J. A, 56(1), 12, 2020.
https://doi:10.1140/epja/s10050-019-00011-z - G. Verde et al., “Probing transport theories via two
proton source imaging”, Phys. Rev. C, 67(3), 034606,
2003.
https://doi.org/10.1103/PhysRevC.67.034606 - W. Bauer et al., “Hadronic interferometry in heavy ion
collisions”, Ann. Rev. Nucl. Part. Sci., 42, 77–100,
1992.
https://doi.org/10.1146/annurev.ns.42.120192.000453 - E. V. Pagano et al., “Statistical against dynamical PLF
fission as seen by the IMF-IMF correlation functions
and comparisons with CoMD model”, J. Phys. Conf.
Ser., 1014(1), 012011, 2018.
https://doi.org/10.1088/17426596/1014/1/012011 - N. Colonna et al., “A modular array for neutron
spectroscopy in low-and intermediate-energy heavy-ion
reactions”, Nucl. Instrum. Methods in Phys. Res. A,
381(2-3), 472–480, 1996.
https://doi.org/10.1016/S0168-9002(96)00675-4 - R. Ghetti et al., “Possibility to deduce the emission time sequence of neutrons and protons from the neutron-
proton correlation function”, Phys. Rev. Lett., 87, 102701, 2001.
https://doi.org/10.1103/PhysRevLett.87.102701 - E. Pagano et al., “The NArCoS project”, Il nuovo
cimento C, 41(5), 1–7, 2018.
https://doi.org/10.1393/ncc/i2018-18181-9 - E. Pagano et al., “NArCoS project for nuclear physics and applications”, Il nuovo cimento C43 (1) (2020) 1–9. https://doi.org/10.1393/ncc/i2020-20012-9
- E. V. Pagano et al., “The NArCoS project: efficiency
estimation and the cross talk problem studied through
Monte Carlo simulations”, Journal of Physics:
Conference Series, 1643(1), 012037, 2020.
https://doi.org/10.1088/1742-6596/1643/1/012037 - S. Nyibule, et al., “Birks scaling of the particle light
output functions for the EJ299-33 plastic scintillator”,
Nucl. Instrum. Methods in Phys. Res. A, 768, 141–145,
2014.
https://doi.org/10.1016/j.nima.2014.09.056 - E. Pagano et al., “Pulse shape discrimination of plastic
scintillator EJ299-33 with radioactive sources”, Nucl.
Instrum. Methods in Phys. Res. A, 889, 83–88, 2018.
https://doi.org/10.1016/j.nima.2018.02.010 - E. Pagano et al., “Measurements of pulse shape
discrimination with EJ299-33 plastic scintillator using
heavy ion reaction”, Nucl. Instrum. Methods in Phys.
Res. A, 905, 47–52, 2018.
https://doi.org/10.1016/j.nima.2018.07.034 - M. Taggart et al., “Neutron-gamma discrimination via
PSD plastic scintillator and SiPMs”, J. Phys.: Conf. Ser.,
763, 012007, 2016.
https://doi.org/10.1088/1742-6596/763/1/012007 - E. De Filippo, A. Pagano, “Experimental effects on
dynamics and thermodynamics in nuclear reactions on
the symmetry energy as seen by the CHIMERA 4π
detector”, Eur. Phys. J. A, 50, 32, 2014.
https://doi.org/10.1140/epja/i2014-14032-y - E. Pagano et al., “Status and perspective of FARCOS: A
new correlator array for nuclear reaction studies”, EPJ
Web of Conferences, 117, 10008, 2016.
https://doi.org/10.1051/epjconf/201611710008 - L. Acosta et al., “Campaign of measurements to probe
the good performance of the new array FARCOS for
spectroscopy and correlations”, J. Phys.: Conf. Ser.,
730, 012001, 2016.
https://doi.org/10.1088/1742- 6596/730/1/012001 - D. Dell’Aquila et al., “Study of cluster structures in 10Be
and 16C neutron-rich nuclei via break-up reactions”, EPJ
Web of Conferences, 117, 06011, 2016.
https://doi.org/10.1051/epjconf/201611706011 - J. Bishop et al., “Experimental investigation of α
condensation in light nuclei”, Phys. Rev. C, 100(3),
034320, 2019.
https://doi.org/10.1103/PhysRevC.100.034320 - N. Martorana et al., “First measurement of the isoscalar
excitation above the neutron emission threshold of the
pygmy dipole resonance in 68Ni”, Phys. Lett. B, 782,
112–116, 2018.
https://doi.org/10.1016/j.physletb.2018.05.019 - N. Martorana, et al., “On the nature of the pygmy dipole
resonance in 68Ni”, Il nuovo cimento C, 41(5), 1–4,
2018.
https://doi.org/10.1393/ncc/i2018-18199-y - P. Russotto, et al., “Status and perspectives of the
INFN-LNS in-flight fragment separator”, J. Phys.: Conf.
Ser., 1014, 012016, 2018.
https://doi.org/10.1088/1742-6596/1014/1/012016 - N. Martorana, “Status of the FraISe facility and
diagnostics system”, Il nuovo cimento C, 44(1), 1-10,
2021.
https://doi.org/10.1393/ncc/i2021-21001-2 - N. Martorana, L. Acosta, C. Altana, A. Amato, L.
Calabretta, “The new fragment in-flight separator at
INFN-LNS”, Il nuovo cimento C, 45(3), 1–7, 2022.
https://doi.org/10.1393/ncc/i2022-22063-2 - T. Marchi et al., “The SPES facility at Legnaro National
Laboratories”, J. Phys.: Conf. Ser., 1643, 012036,
2020.
https://doi.org//10.1088/1742-6596/1643/1/012036 - https://www.gsi.de/en/researchaccelerators/fair
- Boretzky et al., “NeuLAND: The high-resolution
neutron time-of-flight spectrometer for R3B at FAIR”,
Nucl. Instrum. Methods in Phys. Res. A, 1014, 2021,
165701, 2021.
https://doi.org/10.1016/j.nima.2021.165701 - S. Agostinelli, et al., “Geant4—a simulation toolkit”,
Nucl. Instrum. Methods in Phys. Res. A, 506(3), 250–
303, 2003.
https://doi.org/10.1016/S0168-9002(03)01368-8 - J. Allison, et al, “Recent developments in Geant4”, Nucl.
Instrum. Methods in Phys. Res. A, 835, 186–225, 2016.
https://doi.org/10.1016/j.nima.2016.06.125 - E.V. Pagano, et al., “New frontend readout system for the NArCoS prototype”, LNS Activity report 2021- 2022, 144.
STEREOTACTIC BODY RADIATION THERAPY – DOSIMETRY AND MECHANICAL PREPARATION OF LINEAR ACCELERATOR
M. Szymański, M. Bojarojć, A. Jabłońska, B. Kuśmierska-Piątek
Received: 31 OCT 2023, Received revised: 30 MARCH 2024, Accepted: 11 APRIL 2024, Published online: 25 APRIL 2024
Abstract | References | Cite This | Full Text (PDF)
- H. Pan, D.R. Simpson, L.K. Mell, A.J. Mundt, J.D. Lawson, “A survey of stereotactic body radiotherapy use in the United States”, Cancer, 117(19), 4566-72, 2011. http://doi.org/10.1002/cncr.26067
- A. Dimitriadis, “Assessing the dosimetric and geometric accuracy of stereotactic radiosurgery”, Department of Physics Faculty of Engineering and Physical Science University of Surrey, December 2016.
- J. Malicki, K. Ślosarek, “Planowanie Leczenia i Dozymetria w Radioterapii (Tom 2)”, Via Medica, 2018, pp. 889-907.
- Rozporządzenie Ministra Zdrowia z dnia 12 grudnia 2022 w sprawie testów eksploatacyjnych urządzeń radiologicznych i urządzeń pomocniczych. Retrieved from: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id= WDU20220002759
- Obwieszczenie Ministra Zdrowia z dnia 22 grudnia 2014 r. w sprawie ogłoszenia wykazu wzorcowych procedur radiologicznych z zakresu radioterapii onkologicznej. Retrieved from: https://sip.lex.pl/akty-prawne/dzienniki- resortowe/ogloszenie-wykazu-wzorcowych-procedur- radiologicznych-z-zakresu-34930484
- IAEA HUMAN HEALTH REPORTS No. 18. National Networks for Radiotherapy Dosimetry Audits. Structure, Methodology, Scientific Procedures. INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, 2023. Retrieved from: https://www-pub.iaea.org/MTCD/publications/PDF/PUB1964_web.pdf
- Technical specifications of radiotherapy equipment for cancer treatment. ISBN 978-92-4-001998-0, World Health Organization, 2021. Retrieved from: https://apps.who.int/iris/bitstream/handle/10665/33 9912/9789240019980-eng.pdf
- P. Kukołowicz, W. Ślusarczyk-Kacprzyk, P. Wesołowska, M. Szymański, A. Walewska, I. Grabska, “Rola audytu dozymetrycznego w bezpiecznej radioterapii / The role of dosimetric audit in safe radiotherapy”, Inżynier i Fizyk Medyczny, 12,291-294, 2023.
- M. Szymański, M. Piziorska, O. Madetko, W. Ślusarczyk-Kacprzyk, W. Bulski, “Dosimetry audit of the CyberKnife accelerator with the SHANE phantom”, Polish Journal of Medical Physics and Engineering, The Journal of Polish Society of Medical Physics, 27(3), 207-212, 2021. http://doi.org/10.2478/pjmpe-2021-0025
- Q. Fan, S. Zhou, Y. Lei, S. Li, M. Zhang, “A Quality Assurance Approach for Linear Accelerator Mechanical Isocenters with Portal Images”, Int. J. Medical Physics, Clinical Engineering and Radiation Oncology, 7(1), 100-114, 2018. http://doi.org/10.4236/ijmpcero.2018.71009
- Pylinac Documentation, Version 3.11. Retrieved from: https://pylinac.readthedocs.io/en/latest/
- International Atomic Energy Agency. IAEA Safety Standards Series No. 398: Quality Assurance for Radiotherapy. Vienna: IAEA, 2018.
- M.A Bolt, C.H. Clark, T. Chen, A. Nisbet, “A multi- centre analysis of radiotherapy beam output measurement”, Physics and Imaging in Radiation Oncology, 4, 39-43, 2017. http://doi.org/10.1016/j.phro.2017.12.001
- H. Szweda, K. Graczyk, D. Radomiak, K. Matuszewski, “Comparison of three different phantoms used for Winston-Lutz test with Artiscan software”, Reports of Practical Oncology and Radiotherapy, 25(3), 351-354, 2020. http://doi.org/10.1016/j.rpor.2020.03.003
INTER-LABORATORY COMPARISON OF SURFACE EMISSION RATE MEASUREMENTS OF WIDE AREA SOURCES
Antonio De Donato, Pierluigi Carconi, Marco Capogni, Andrea Petrucci, Pierino De Felice
Received: 26 OCT 2023, Received revised: 20 DEC 2023, Accepted: 30 DEC 2023, Published online: 03 JULY 2024
Abstract | References | Cite This | Full Text (PDF)
- International Organization for Standardization, ISO 8769:2020, “Measurement of radioactivity — Alpha-, beta- and photon emitting radionuclides — Reference measurement standard specifications for the calibration of surface contamination monitors”, 2020.
- International Organization for Standardization, ISO 7503-1:2016, “Measurement of radioactivity — Measurement and evaluation of surface contamination — Part 1: General principles”, 2016.
- International Organization for Standardization, ISO 13528:2022, “Statistical methods for use in proficiency testing by interlaboratory comparison”, 2016.
- https://www.automess.de/en/products/productfamily- 6150ad/dose-rate-meter-6150ad
- https://www.automess.de/assets/documents/en/Prosp ekt_AD17k_E.pdf
FIRST NATIONAL COMPARISON ON RADON ACTIVE MONITORS AT ENEA-INMRI
Luigi Rinaldi, Marco Capogni, Francesco Cardellini, Pierino De Felice
30 OCT 2023, Received revised: 8 JAN 2024, Accepted: 22 JAN 2024, Published online: 03 JULY 2024
Abstract | References | Cite This | Full Text (PDF)
- https://www.inmri.enea.it/attivita-di- ricerca/confronti- interlaboratorio.html
- S. Pierre, et al., ”International comparison of activity measurements of radon 222 EURAMET Project n 1475- EURAMET. RI (II)-S8. Rn222”.
- ISO 13528:2015 (010248); Statistical Methods for Use in Proficiency Testing by Interlaboratory Comparison. ISO: Geneve, Switzerland, 2015.
- F. Campi et al. “Radon data from different laboratories: an Italian intercomparison”, Recent Advances in Multidisciplinary Applied Physics, Elsevier Science Ltd, 879-885, 2005.
- F. Cardellini et al., ”Main results of the international
intercomparison of passive radon detectors under field
conditions in Marie Curie’s tunnel in Lurisia (Italy)”,
Nukleonika, 61(3), 251-256, 2016.
https://doi.org/10.1515/nuka-2016-0042 - F. Berlier et al., “Main results of the second AIRP
international radon-in-field intercomparison for passive
measurement devices”, Radiat. Meas, 128, 106177,
2019.
https://doi.org/10.1016/j.radmeas.2019.106177 - R. Trevisi et al., “A comparison of radon and its decay
products’ behaviour in indoor air”, Radiation
Protection Dosimetry, 162(1-2), 171-175, 2014.
https://doi.org/10.1093/rpd/ncu253 - P. De Felice et al., “The 222Rn reference measurement
system developed at ENEA”, Nuclear Instruments and
Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment,
369(2-3), 445-451, 1996.
https://doi.org/10.1016/S0168-9002(96)80028-3 - AlphaGUARD PQ2000 PRO Portable Radon Monitor User Manual 08/2012, Saphymo GmbH, Frankfurt, Germany, 2012.
- Tesys MR1 plus. User Manual available online: http://www2.lnl.infn/.it/~canella/RADON/ManualeMR1 -MIAM.pdf
- Mi.am Srl. Radon Mapper. Available online: https://miam.it/en/radon-mapper/
- Doza Alpharad Plus website: https://www.doza.ru/catalog/radiometry-radona- torona-i-ego-dpr/Alpharad-plus/
- Sarad Radon Scout Plus datasheet: https://www.sarad.de/cms/media/docs/datenblatt/ds-radon_scout-en.pdf
- Sarad Radon Scout Professional datasheet: https://www.sarad.de/cms/media/docs/datenblatt/ds- radon_scout_professional-en.pdf
- Airthings Corentium Pro website: https://www.airthings.com/en/professionals/pro
- ALGADE AER Plus. User Manual available online: https://algade.com/wp- content/uploads/2023/04/Manuel-AER-basique-C-EN.pdf
- D. Zoul, P. Zháňal, L. Viererbl, A. Kolros, M. Zuna, V.
Havlová, “3D reconstruction of inner structure of
radioactive samples utilizing gamma tomography”,
Radiation Protection Dosimetry, 186(2-3), 239-243,
2019.
https://doi.org/10.1093/rpd/ncz211
CHARACTERIZATION OF AN EXTENDED RANGE REM COUNTER BASED ON MICRO STRUCTURED NEUTRON DETECTOR
F. Bonforte, D. Introini, A. D’Angola, S. Lamorte, S. Agosteo, F. Pozzi, G. Garlaschelli, I. De Battista, M. Ferrarini
29 NOV 2023, Received revised: 29 FEB 2024, Accepted: 9 MARCH 2024, Published online: 31 JULY 2024
Abstract | References | Cite This | Full Text (PDF)
- I. O. Andersson, “A Neutron Rem Counter, AE-132,
Aktiebolaget Atomenerg”, Stockholm (SW), Sweden,
1964. Retrieved from:
https://www.osti.gov/biblio/4079749
Retrieved on: Nov. 21, 2023 - C. Birattari, A. Esposito, A. Ferrari, M. Pelliccioni, T. Rancati, M. Silari, “The extended range neutron rem counter LINUS: overview and latest developments” Radiat. Prot. Dosim., 76(3), 135-148, 1998. https://doi.org/10.1093/oxfordjournals.rpd.a03225 8
- R. H. Olsher, H. H. Hsu, A. Beverding, J. H. Kleck,
W. H. Casson, D. G. Vasilik, R. T. Devine, “WENDI:
an improved neutron rem meter”, Health
Physics, 79(2), 170-181, 2000.
https://doi.org/10.1097/00004032-200008000- 00010 - L. Jägerhofer, E. Feldbaumer, C. Theis, S. Roesler, H.
Vincke, “A new method to calculate the response of
the WENDI-II rem counter using the FLUKA Monte
Carlo Code”, Nucl. Instrum. Methods Phys. Res.,
Sect. A, 691, 81-85, 2012.
https://doi.org/10.1016/j.nima.2012.05.097 - M. Caresana, C. Cassell, M. Ferrarini, E. Hohmann,
G. P. Manessi, S. Mayer, M. Silari, V. Varoli, “A new
version of the LUPIN detector: Improvements and
latest experimental verification”, Rev. Sci. Instrum.,
85(6), 065102, 2014.
https://doi.org/10.1063/1.4879936 - R.G. Fronk, S.L. Bellinger, L.C. Henson, D.E.
Huddleston, T.R. Ochs, T.J. Sobering, D.S.
McGregor, “High-efficiency microstructured
semiconductor neutron detectors for direct 3He
replacement”, Nucl. Instrum. Methods Phys. Res.,
Sect. A, 779, 25-32, 2015.
https://doi.org/10.1016/j.nima.2015.01.041 - T.T. Böhlen, F. Cerutti, M.P.W. Chin, A. Fassò, A.
Ferrari, P.G. Ortega, A. Mairani, P.R. Sala, G.
Smirnov, V. Vlachoudis, “The FLUKA Code:
Developments and Challenges for High Energy and
Medical Applications”. Nucl. Data Sheets, 120, 211-
214, 2014.
https://doi.org/10.1016/j.nds.2014.07.049 - A. Ferrari et al., “FLUKA: A multi-particle transport
code”, CERN-2005-010, Geneva, Switzerland, 2005.
Retrieved from:
https://cds.cern.ch/record/898301?ln=it
Retrieved on: Nov. 21, 2023 - Z. Vykydal, M. Králík, “Characterization of the
graphite moderated thermal neutron field at CMI”,
Radiat. Prot. Dosim., 180(1-4), 51-55, 2018.
https://doi.org/10.1093/rpd/ncx190 - M. Brugger, P. Carbonez, F. Pozzi, , M. Silari, H.
Vincke, “New radiation protection calibration facility
at CERN”, Radiat. Prot. Dosim., 161(1-4), 181-184,
2013.
https://doi.org/10.1093/rpd/nct318 - F. Pozzi, M. Silari, “The CERN-EU high-energy
Reference Field (CERF) facility: New FLUKA
reference values of spectral fluences, present and
newly proposed operational quantities”, Nucl.
Instrum. Methods Phys. Res., Sect. A, 979, 164477,
2020.
https://doi.org/10.1016/j.nima.2020.164477 - S. Agosteo, M. Caresana, M. Ferrarini, M. Silari, “A
dual-detector extended range rem-counter”, Radiat.
Meas., 45(10), 1217-1219, 2020.
https://doi.org/10.1016/j.radmeas.2010.05.002 - Radiation Detection Technologies, Domino®
Neutron Detector D411S-30-D25-V5.4I.
Retrieved from:
https://radectech.com/wp-
content/uploads/2022/12/Domino_V5.40_general_spec_sheet_30percent-rev8.pdf
Retrieved on: Feb. 16, 2024 - M. Pelliccioni, “Overview of Fluence-to-Effective
Dose and Fluence-to-Ambient Dose Equivalent
Conversion Coefficients for High Energy Radiation
Calculated Using the FLUKA Code”, Radiat. Prot.
Dosim., 88(4), 279-297, 2000.
https://doi.org/10.1093/oxfordjournals.rpd.a03304 6 - A. Cirillo, M. Caresana, “Experimental characterization of the LUPIN rem counter in monoenergetic neutron fields”, Eur. Phys. J. Plus, 138, 750, 2023. https://doi.org/10.1140/epjp/s13360-023-04313-6
THREE-DIMENSIONAL COMPUTATIONAL FLUID DYNAMICS INVESTIGATION OF THE DISPERSION OF RADIOACTIVE CLOUD
Giuseppe Giannattasio, Alessio Castorrini, Antonio D'Angola, Michele Ferrarini, Francesco Bonforte
Received: 30 DEC 2023, Received revised: 27 MARCH 2024, Accepted: 8 APRIL 2024, Published online: 31 JULY 2024
Abstract | References | Cite This | Full Text (PDF)
- Y. Kong, J. Zhang, S. Zhang, Y. Jiang, B. Wang, “CFD
Numerical Simulation of Wind Field and Pollutant
Dispersion in Valley Cities”, Research of
Environmental Sciences, 31(3), 450-456, 2018.
https://doi.org/10.13198/j-issn.1001- 6929.2017.03.91 - P. Qin, A. Ricci, B. Blocken, "CFD Simulations of
Pollutant Dispersion in a Street Canyon: Impact of
Ideal Versus Realistic Point Source Emissions",
In Proceedings of the 5th International Conference
on Building Energy and Environment (COBEE
2022), Environmental Science and Engineering,
Springer, Singapore, pp. 33–39, 2023.
https://doi.org/10.1007/978-981-19-9822-5_5 - F. Pasquill, “Atmospheric Diffusion”, John Wiley and Sons, New York, 1974.
- Alan H. Huber, “Evaluation of a method for
estimating pollution concentrations downwind of
influencing buildings”, Atmos. Environ., 18(11),
2313-2338, 1967.
https://doi.org/10.1016/0004-6981(84)90003-9 - M. Carestia et al., “Use of the “Hotspot” code for
safety and security analysis in Nuclear Power Plants:
A Case Study”, Environ. Eng. Manage. J., 15(4),
905-912, 2016.
https://doi.org/10.30638/eemj.2016.098 - G.A. Briggs, “Diffusion estimation for small emissions”, Preliminary report, United States, 1973. https://doi.org/10.2172/5118833
- P.J Richards, R.P Hoxey, “Appropriate boundary
conditions for computational wind engineering
models using the k-ε turbulence model”, J. Wind
Eng. Ind. Aerodyn., 46–47, 145-153, 1993.
https://doi.org/10.1016/0167-6105(93)90124-7 - A. Sofachev, M. Kelly, M.Y. Leclerc, “Consistent two-
equation closure modeling for atmospheric research:
buoyancy and vegetation implementations”, Bound-
Lay Meteorol, 145(2), 307–327, 2012.
https://doi.org/10.1007/s10546-012-9726-5 - F.R. Menter, M. Kuntz, R. Langtry, “Ten years of
industrial experience with the SST turbulence
model”, Turbul Heat Mass Transf, 2003.
Retrieved from:
https://cfd.spbstu.ru/agarbaruk/doc/2003_Menter,%20Kuntz,%20Langtry_Ten%20years%20of%20industrial%20experience%20with%20the%20SST%20turbulence%20model.pdf - H.J. Breedt, K.J. Craig, V.D. Jothiprakasam, “Monin-
Obukhov similarity theory and its application to wind flow modelling over complex terrain”, J. Wind Eng.
Ind. Aerodyn., 182, 308-321, 2018.
https://doi.org/10.1016/j.jweia.2018.09.026 - A. Castorrini, S. Gentile, E. Geraldi, A. Bonfiglioli,
“Investigations on offshore wind turbine inflow
modeling using numerical weather prediction
coupled with local-scale computational fluid
dynamics”, Renewable Sustainable Energy Rev.,
171, 113008 2023.
https://doi.org/10.1016/j.rser.2022.113008 - A.S. Monin, A.M. Obukhov, “Basic laws of turbulent
mixing in the surface layer of the atmosphere”,
Originally published in Tr. Akad. Nauk SSSR
Geophiz. Inst., 24(151), 163-187, 1954.
Retrieved from:
https://gibbs.science/efd/handouts/monin_obukhov_1954.pdf - A.J. Dyer, “A review of flux-profile relationships”,
Boundary-Layer Meteorol., 7, 363–372, 1974.
https://doi.org/10.1007/BF00240838 - D. Golder, “Relations among stability parameters in
the surface layer”, Boundary Layer Meteorology, 3,
47–58, 1972.
https://doi.org/10.1007/BF00769106 - Ansys® ANSYS FLUENT 12.0 User’s Guide, 7.3.2 Using Flow Boundary Conditions release 12.0, ©ANSYS.Inc. 2009-01-29.
- G.A. Briggs, “Plume rise and buoyancy effects, Atmospheric Science and Power Production”, ed. Randerson D., DOE/TIC 27601, Springfield, Department of Commerce, USA, 1984.
- F. Bonforte, M. Ferrarini, A. D'Angola, E. Giroletti, D.
Introini, “Heavy-ions shielding data for
hadrontherapy application with Monte Carlo
methods”, Radiat. Prot. Dosim., 199(17), 2061–
2075, 2023.
https://doi.org/10.1093/rpd/ncad207