Volume 5, 2021

Table of contents

List of Reviewers

Radiation Oncology


Mimoza Ristova, Manjit Dosanjh, Herwig Schopper

DOI: 10.21175/RadProc.2021.01

Purpose. A recent initiative was launched for establishing the South-East European International Institute for Sustainable Technologies (SEEIIST), a pan European research infrastructure (RI) which will provide a cutting-edge technology for (a) radiotherapy treatment with accelerated protons and ions and (b) multidisciplinary fundamental research involving accelerated ion beams. To justify the initiative for building the SEEIIST facility for cancer treatment, a study was conducted to estimate the time progress of the cancer incidence and mortality due to cancer in the countries of the SEE region. Methods and materials. The demography and the economic development of the SEE region were studied in relation to their emigration rate (brain drain). Time development of the incidence and mortality were studied for the SEE countries from the data available at Globocan of the IARC@WHO. Cancer epidemiology data were collected and studied by using the countries’ cancer datasheets from the World Health Organization (WHO). The top ten cancers were presented for the SEE countries and for the region as a whole. Results. From the available data it is evident that the incidence and the mortality, both grow with time in the SEE region, unlike in the developed European countries chosen for reference, where the mortality declines with time. The occurrence of breaking points in curves mortality vs. time is evident for all the analyzed SEE countries. Many of these points coincide with changes in the societal aspects (security, politics and/or economy). Conclusion. The emerging research infrastructure SEEIIST will mitigate the brain drain from SEE, and contribute in overcoming the historical friction in the turbulent Balkan region, offering research opportunities in many fields related to accelerated ions, foster, research, innovation and knowledge transfer, facilitate radiational therapy with particles to the cancer patients of the SEE region, reducing the growing cancer mortality, thereby. SEEIIST will be developed as a strong commitment of the SEE countries’ governments and common effort in science diplomacy of the international community. The central research facility will be based in one of the ten SEE countries. In parallel with developing the principal RI, several SEEIIST HUBs and NETWORKs will be developed for different SEE countries in support to the SEEIIST sustainability. To provide sustainability of the SEEIIST RI, a GREEN energy HUB (Green power plant for powering SEEIIST) will be set. Also, an IT HUB (providing big data analysis, machine learning and artificial intelligence for SEEIIST), Imaging HUB (developing novel imaging solutions for ion therapy for SEEIIST), etc. Furthermore, several combined SEE and western European networks will be established, such as the Training network, Radiobiology Network, Network of Oncologists, Network of Veterinary scientists, with their central coordination offices located in different SEE countries, with the objective to start joint research related primarily to the cancer treatment but also to other research disciplines.
  1. Radiotherapy In Cancer Care: Facing the Global Challenge , E. Rosenblatt, E. Zubizarreta, Eds., Vienna, Austria: IAEA, 2017.
    Retrieved from: https://www-pub.iaea.org/MTCD/Publications/PDF/P1638_web.pdf
    Retrieved on: November 1, 2020.
  2. Latest global cancer data: Cancer burden rises to 18.1 million new cases and 9.6 million cancer deaths in 2018 , Press release no. 263, IARC, Lyon CEDEX, France, 2018.
    Retrieved from: https://www.iarc.fr/wp-content/uploads/2018/09/pr263_E.pdf
    Retrieved on: November 1, 2020.
  3. M. Steverson, “Ageing and health”, WHO, Oct. 4, 2021.
    Retrieved from: https://www.who.int/news-room/fact-sheets/detail/ageing-and-health
    Retrieved on: October 5, 2021.
  4. U. Serajuddin, N. Hamadeh, “New World Bank country classifications by income level: 2020-2021”, World Bank Blog, Jul. 1, 2020.
    Retrieved from: https://blogs.worldbank.org/opendata/new-world-bank-country-classifications-income-level-2020-2021
    Retrieved on: October 1, 2020.
    Retrieved from: https://ec.europa.eu/eurostat/databrowser/view/HLTH_RS_EQUIP__custom_569701/bookmark/table?lang=en&bookmarkId=893a61db-eacb-4633-beff-996e7d0a653d
    Retrieved on: March 15, 2021.
  6. World Economic Forum.
    Retrieved from: http://www3.weforum.org/docs/WEF_TheGlobalCompetitivenessReport2019.pdf
    Retrieved on: January 12, 2021.
    Retrieved from: https://gco.iarc.fr
    Retrieved on: March 15, 2021.
    Retrieved from: https://enlight.web.cern.ch/
    Retrieved on: March 15, 2021.
    Retrieved from: https://seeiist.eu/
    Retrieved on: March 15, 2021.
  10. CERN Yellow Reports: Monographs –A Facility for Tumour Therapy and Biomedical Research in South-Eastern Europe , U. Amaldi, ed., vol. 2, CERN-2019-002, Geneva, Switzerland: CERN, 2019.
    DOI: https://doi.org/10.23731/CYRM-2019-002
  11. U. Amaldi et al. “South East European International Institute for Sustainable Technologies (SEEIIST)”, Frontiers in Physics, vol. 8, article no. 567466, pp. 601–611, Jan. 2021.
    DOI: https://doi.org/10.3389/fphy.2020.567466
  12. R. N. Izairi Bexheti, M. M. Ristova, M. Dosanjh, “State-of-the-art and the future of particle therapy (perspectives for SEE countries)”, Physics AUC,
    vol. 30 (part II), pp. 246–262, 2020.
  13. M. Ristova, V. Gersan, U. Amaldi, H. Schopper, M. Dosanjh, “Patients with cancer in the countries of South-East Europe (the Balkans) region and prospective of the Particle Therapy Center: South-East European International Institute for Sustainable Technologies (SEEIIST)”, Advances in Radiation Oncology, vol. 6, no. 6, article no. 100772, Aug. 2021.
    DOI: https://doi.org/10.1016/j.adro.2021.100772
  14. R. Baskar, K.A. Lee, R. Yeo, K-W. Yeoh, “Cancer and radiation therapy: Current advances and future directions”, Int. J. Med. Sci., vol. 9, no. 3,
    pp. 193–199, 2012.
    DOI: https://doi.org/10.7150/ijms.3635
  15. J.M. Borras et al., “How many new cancer patients in Europe will require radiotherapy by 2025? An ESTRO-HERO analysis”, Radiotherapy and Oncology, vol. 119, no. 1, pp. 5–11, Feb. 2016.
    DOI: https://doi.org/10.1016/j.radonc.2016.02.016
  16. M. M. Ristova et al., “Cancer patients, diagnostics and radiation therapy equipment in the countries of the SEE region”, (submitted for publication), Journal of Global Oncology, 2021.
  17. Planning national radiotherapy services: A practical tool , IAEA Human Health Series no. 14, Vienna, Austria: IAEA, 2010.
    Retrieved from: https://www.iaea.org/publications/8419/planning-national-radiotherapy-services-a-practical-tool
    Retrieved on: November 1, 2020.
  18. CERN.
    Retrieved from: https://cern.ch/
    Retrieved on: March 15, 2021.
Mimoza Ristova, Manjit Dosanjh, Leandar Litov, Herwig Schopper, "Cancer in the countries of the see (Balkans) region and the future particle therapy center – SEEIIST", RAD Conf. Proc, vol. 5, 2021, pp. 1–8, http://doi.org/ 10.21175/RadProc.2021.01
Radiation Measurements


Didier Bouvet, Jacopo Bronuzzi, Blerina Gkotse, Georgi Gorine, Alessandro Mapell, Isidre Mateu, Viktoria Meskova, Giuseppe Pezzullo, Federico Ravotti, Jean-Michel Sallese, Ourania Sidiropoulou

DOI: 10.21175/RadProc.2021.02

In High Energy Physics (HEP) experiments built at the European Organization for Nuclear Research (CERN) it is a common practice to expose electronic components and systems to particle beams, in order to assess their level of radiation tolerance and reliability when operating in a radiation environment. One of the facilities used for such tests is the CERN Proton Irradiation Facility (IRRAD), where several hundreds of samples are irradiated yearly with a 24 GeV/c proton beam extracted from the CERN Proton Synchrotron (PS) accelerator. In order to properly control the irradiation beam and guarantee reliable results during the tests, Beam Profile Monitor (BPM) devices are used. The current BPMs are fabricated as standard flexible PCBs featuring a matrix of metallic sensing pads. When exposed to the particle beam, secondary electrons are emitted from each pad, thus generating a charge proportional to the particle flux crossing the pads. The charge is measured individually for each pad using a dedicated readout system, and so the shape, the position and the intensity of the beam-spot are obtained. Beam profile determination of high intensity beams implies the usage of non-invasive and radiation tolerant (~1018 p/cm2/year) devices. This study proposes a new fabrication method using standard microfabrication techniques in order to improve the radiation tolerance of the BPMs while greatly reducing the device thickness, thus making them also appropriate to be used for the monitoring of lower energy particle beams.
  1. B. Gkotse et al., “A New High-intensity Proton Irradiation Facility at the CERN PS East Area,” in Proc. PoS TIPP2014, Amsterdam, Netherlands, 2014, article no. 354.
    DOI: https://doi.org/10.22323/1.213.0354
  2. F. Ravotti, et al., “The Beam Profile Monitoring System for the CERN IRRAD Proton Facility” in Proc. 5th International Beam Instrumentation Conference (IBIC), Barcelona, Spain, 2016, pp. 825–828.
    DOI: https://doi.org/10.18429/JACoW-IBIC2016-WEPG75
  3. H. Seiler, “Secondary electron emission in the scanning electron microscope”, J. Appl. Phys., vol. 54, no. 11, pp. R1 –R18, 1983.
    DOI: https://doi.org/10.1063/1.332840
  4. B. Gkotse, M. Glaser, E. Matli, F. Ravotti, “System architecture and data processing capabilities of the Beam Profile Monitor for the CERN IRRAD Facility”, presented at the IEEE Nuclear Science Symposium Conf. (NSS/MIC/RTSD), Strasbourg, France, 2016.
    DOI: https://doi.org/10.1109/NSSMIC.2016.8069891
  5. C. Cuccagna et al., “Beam parameters optimization and characterization for a Turning LInac for Protontherapy”, Physica Medica, vol. 54, pp 152 – 156, Oct 2018
    DOI: https://doi.org/10.1016/j.ejmp.2018.08.019
  6. V. Agoritsas, “Secondary emission chambers for monitoring the CERN Proton Synchrotron ejected beams”, presented at Daresbury Symposium on Beam Intensity Measurement, Daresbury, England, 1968.
    Retrieved from: http://cds.cern.ch/record/299104/files/CERN-MPS-Int-co-68-9.pdf
    Retrieved on: February 13, 2020
  7. S. Weisz, “A luminosity monitor for the LHC”, Ph.D. dissertation, University of Lausanne, Lausanne, Switzerland, 2001.
    Retrieved from: https://cds.cern.ch/record/508769/files/thesis-2001-013.pdf
    Retrieved on: February 13, 2020
  8. F. Roncarolo et al., “Wire grid and wire scanner design for the CERN LINAC4”, in Proc. of Linear Accelerator Conference (LINAC2010), Tsukuba, Japan, 2010, pp. 650–652.
    Retrieved from: https://cds.cern.ch/record/1303302/files/tup101.pdf
    Retrieved on: February 13, 2020
  9. Koyama, T. Shikata, H. Sakairi, “Secondary Electron Emission from Al, Cu, Ag and Au Metal Targets under Proton Bombardment”, Jpn. J. Appl. Phys., vol. 20, no. 1, pp. 65–70, 1981.
    DOI: https://doi.org/10.1143/jjap.20.65
  10. E. J. Sternglass, “Theory of Secondary Electron Emission by High-Speed Ions”, Phys. Rev., vol. 108, no. 1, pp. 1–12, 1957.
    DOI: https://doi.org/10.1103/PhysRev.108.1
  11. T. Koshikawa, R. Shimizu, “A Monte Carlo calculation of low-energy secondary electron emission from metals”, J. Phys. D: Appl. Phys., vol. 7, no. 9, pp. 1303–1315, 1974.
    DOI: https://doi.org/10.1088/0022-3727/7/9/318
  12. V. Baglin et al., “The secondary electron yield of technical materials and its variation with surface treatments”, in Proc. 7th European Particle Accelerator Conference (EPAC 2000), Vienna, Austria, 2000.
    Retrieved from: https://accelconf.web.cern.ch/e00/PAPERS/THXF102.pdf
    Retrieved on: February 13, 2020
  13. Center of MicroNanoTechnology (CMi), EPFL.
    Retrieved from: https://cmi.epfl.ch/
    Retrieved on: February 13, 2020
  14. CERN Linear Electron Accelerator for Research (CLEAR), CERN.
    Retrieved from: https://clear.cern/clear
    Retrieved on: February 13, 2020
  15. D. Bouvet et al, “NanoRadMet: Development of Multi-Purpose, Low Mass, Beam Profile Monitors by Nanometric Metal Films Deposition.”, Submitted to International Conference on Technology and Instrumentation for Particle Physics (TIPP) , Vancouver, 2020.
Didier Bouvet, Jacopo Bronuzzi, Blerina Gkotse, Georgi Gorine, Alessandro Mapell, Isidre Mateu, Viktoria Meskova, Giuseppe Pezzullo, Federico Ravotti, Jean-Michel Sallese, Ourania Sidiropoulou, "Low-mass radiation-hard beam profile monitors for high energy protons using microfabricated metalthin-films , RAD Conf. Proc, vol. 5, 2021, pp. 9-14, http://doi.org/10.21175/RadProc.2021.02
Radiation Effects


Tsveta Angelova, Christo Angelov, Nikolai Tyutyundzhiev, Svetla Gateva, Gabriele Jovtchev

DOI: 10.21175/RadProc.2021.03

Rila Mountain is the highest mountain on the Balkan Peninsula and is characterized with specific microclimate. It has been revealed that with the increase of the altitude, the differences in environmental conditions change at a great extent. In mountain conditions plants have to cope with combined environmental factors such as altitude, temperature, prolonged UV irradiation, and etc. The aim of this study is to assess whether pigment content in wild growing plant species is altitudes dependent. Five wild species, characteristic of the ecosystems in Rila Mountain: Fragaria vesca L. (Rosaceae), Myosotis sylvatica Ehrh. (Boraginaceae), Achillea millefolium L. (Asteraceae), Epilobium angustifolium L. (Onagraceae) and Dactylis glomerata L. (Poaceae) were used as plant material. Plants were collected from three different altitudes (Sofia-595 m; Rila Mountain-1500 m a.s.l. and 1782 m a.s.l.) in July-August in growing season of 2020. Sofia was chosen as control altitude. Pigment content was applied as endpoint. Our data showed that the levels of total chlorophylls, chl. a, chl. b and total carotenoids for plants growing at 1500 m a.s.l. were lower or similar to those measured at Sofia altitude for F. vesca, M. sylvatica, A. millefolium, E. angustifolium and D. glomerata L. There is no change in chlorophyll a/b ratio detected in plants at 1500 m a.s.l. altitude and 1782 m a.s.l. in the five investigated species. Based on our results it could be reveal the adaptation mechanism and survival strategies of F. vesca, M. sylvatica, A. millefolium, E. angustifolium and D. glomerata under complex environmental stresses in both mountain altitudes. On the other hand no change in the chlorophyll a/b ratio could be an indication that altitudes have no permanent damage on the leaf photochemical system. It is known that chlorophyll content in plants is an indicator of their response to the habitat, weather, anthropogenic conditions. Because of the fact that in mountain conditions the effect of altitude is combined with other abiotic factors and that pigment content is very variable depending on many factors further studies using other plant species are needed for better understanding of the mechanisms of interaction between factors and plant response.
  1. N. Nikolova, J. Laporte, G. Tomova, “Extreme temperature months in Rila Mountain, Bulgaria (1960-2012)”, Glasnik Srpskog geografskog društva, vol. 98, no. 1, pp. 49–59, 2018.
    DOI: https://doi.org/10.2298/GSGD180415007N
  2. R. G. Barry, Mountain weather and climate, London, UK: Methuen, 1981, 313 pages.
  3. N. Kumar, S. Kumar, K. Vats, P. S. Ahuja, “Effect of altitude on the primary products of photosynthesis and the associated enzymes in barley and wheat”, Photosynthesis Research, vol. 88, pp. 63–71, 2006.
    DOI: https://doi.org/10.1007/s11120-005-9028-6
  4. Y. Li, D. Yang, S. Xiang, G. Li, “Different responses in leaf pigments and leaf mass per area to altitude between evergreen and deciduous woody species”, Australian Journal of Botany, vol. 61, pp. 424–435, 2013.
    DOI: https://doi.org/10.1071/BT13022
  5. Y. Li et al., “Factors influencing leaf chlorophyll content in natural forests at the biome scale”, Front. Ecol. Evol., vol. 6, article no. 64, 2018.
    DOI: https://doi.org/10.3389/fevo.2018.00064
  6. V. Vasileva, A. Ilieva, “Some physiological parameters in mixtures of cocksfoot and tall fescue with subterranean clove”, Bulgarian Journal of Agricultural Science, vol. 23, no. 1, pp. 71–75, 2017.
  7. M. Titova, “Content of photosynthetic pigments in needles ofPicea Abies and Picea koraiensis”, Vestnik of taiga station of DVORAS, vol. 12, no. 118, pp. 9–12, 2010.
  8. J. Nurmakova, “Photosynthetic characteristics of sorghum, soybeans and mixed crops in agro-ecosystems”, Natural Science, vol. 2, pp. 196–201, 2013.
  9. E. Smirnova, V. Reshetnikova, T. Makarova, G. Karavaeva, “Features of genotic relations in the one-specy and mixed crops of Mellilotus officinalis L.” in Proceedings of the Samara scientific center of RAS, vol. 15, no. 3, pp. 793–795, 2013.
  10. W. Zielewicz, B. Wróbel, G. Niedbała, “Quantification of chlorophyll and carotene pigments content in Mountain Melick (Melica nutans L.) in relation to edaphic variables”, Forests, vol. 11, no. 11, article no. 1197, 2020.
    DOI: https://doi.org/10.3390/f11111197
  11. K. Rajalakshmi, N. Banu, “Extraction and estimation of chlorophyll from medicinal plants”, Intern. J. Sci. Res., vol. 4, no. 11, pp. 209–212, 2015.
  12. Rila National Park, Management Plan 2001–2010, Jun 2001.
    Retrieved from: http://ril anationalpark.bg/assets/userfiles/Rila%20NP-en.pdf
    Retrieved on: May 15, 2021
  13. S. P. Gateva et al., “Effect of UV radiation and other abiotic stress factors on DNA of different wild plant species grown in three successive seasons in alpine and subalpine regions.” Phyton, vol. 91, no. 2, pp. 293–313, 2022.
    DOI: https://doi.org/10.32604/phyton.2022.016397
  14. D. I. Arnon, “Copper enzyme in isolated chloroplast polyphenol oxidase in Beta vulgaris”, Plant Phys., vol. 24, no. 1, pp. 1–15, 1949.
    DOI: https://doi.org/10.1104/pp.24.1.1
  15. W. W. Covington, “Altitudinal variation of chlorophyll concentration and reflectance of the bark of Populus tremuloides”, Ecology, vol. 56, pp. 715–720, 1975.
    DOI: https://doi.org/10.2307/1935507
  16. S. Nautiyal, “High altitude acclimatization in Artemisia: changes in chlorophyll contents”, Indian J. Plant Physiol., vol. 29, no. 1, pp. 89-94, 1986.
    Retrieved from: https://www.samviti.com/img/1341/society/publication/ijpp-29o-1-012.pdf
    Retrieved on: May 15, 2021
  17. P. Rajsnerová et al., “Morphological, biochemical and physiological traits of upper and lower canopy leaves of European beech tend to converge with increasing altitude”, Tree Physiology, vol. 35, no. 1, pp. 47–60, 2015.
    DOI: https://doi.org/10.1093/treephys/tpu104
  18. G. Cui et al., “Physiological analysis of the effect of altitudinal gradients on Leymus secalinus on the Qinghai-Tibetan Plateau”, PLOS ONE, vol. 13, no. 9, article no. e0202881, 2018.
    DOI: https://doi.org/10.1371/journal.pone.0202881
  19. K. S. Ahmad et al., “Morpho-anatomical and physiological adaptations to high altitude in some Aveneae grasses from Neelum Valley, Western Himalayan Kashmir”, Acta Physiologiae Plantarum, vol. 38, no. 4, article no. 93, 2016.
    DOI: https://doi.org/10.1007/s11738-016-2114-x
Tsveta Angelova, Christo Angelov, Nikolai Tyutyundzhiev, Svetla Gateva, Gabriele Jovtchev, "Does altitude have an effect on pigment content of wild growing plants in rila mountain?", RAD Conf. Proc, vol. 5, 2021, pp. 15-20, http://doi.org/10.21175/RadProc.2021.03
Radiation Protection


Behnam Khanbabaee, Annette Röttger, Rolf Behrens, Stefan Röttger, Sebastian Feige, Oliver Hupe, Hayo Zutz, Paula Toroi, Paul Leonard, Liset de la Fuente Rosales, Pete Burgess, Vincent Gressier, José–Luis Gutiérrez Villanueva, Rodolfo Cruz Suárez, Dirk Arnold

DOI: 10.21175/RadProc.2021.04

In this work, the results of a virtual workshop on gaps in radiation protection and related metrology, which was carried out as part of the EMPIR project 19NET03 supportBSS, are reported. The topics, considered most important in terms of radiation protection metrology, were presented and discussed in 8 main areas: 1. Activity standards, 2. Reference fields, 3. New operational quantities in radiation protection, 4. Measuring devices for radiation protection in medical or industrial applications of ionizing radiation, 5. Measuring devices for environmental monitoring, 6. Type testing, 7. Harmonized handling, transmission, storage and availability of measurement data, 8. Education and training needs. The corresponding research needs and metrological challenges related to the metrology services and the relevant stakeholders are presented.
  1. Council Directive 2013/59/EURATOM laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom , Official Journal of the European Union, The Council of the European Union, Brussels, Belgium, 2013.
    Retrieved from: http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32013L0059&from=EN
    Retrieved on: Aug. 03, 2021
  2. Support for a European Metrology Network on reliable radiation protection regulation , EMPIR project 19NET03 supportBSS, EURAMET, Braunschweig, Germany.
    Retrieved from: https://www.euramet.org/research-innovation/search-research-projects/details/project/support-for-a-european-metrology-network-on-reliable-radiation-protection-regulation/?L=0&tx_eurametctcp_project%5Baction%5D=show&tx_eurametctcp_project%5Bcontrol
    Retrieved on: Oct.22, 2021
  3. EMN for Radiation Protection , EURAMET, Braunschweig, Germany.
    Retrieved from: https://www.euramet.org/european-metrology-networks/radiation-protection/
    Retrieved on: Aug. 03, 2021
  4. Gaps in radiation protection metrology , virtual workshop, PTB, Braunschweig, Germany, Sep. 2020.
    Retrieved from: https://www.ptb.de/cms/en/ptb/fachabteilungen/abt6/seminare/gaps-in-radiation-protection-metrology.html
    Retrieved on: Aug. 03, 2021
  5. Metrology for radon monitoring, EMPIR project, EURAMET, Braunschweig, Germany.
    Retrieved from: http://metroradon.eu/
    Retrieved on: Aug. 03, 2021
  6. Radon metrology for use in climate change observation and radiation protection at the environmental level, EMPIR project 19ENV01, EURAMET, Braunschweig, Germany.
    Retrieved from: http://traceradon-empir.eu/
    Retrieved on: Aug. 03, 2021
  7. A. Roettger et al., “New metrology for radon at the environmental level”, Meas. Sci. Technol., vol. 32, no. 12, article no. 124008, Oct. 2021.
    DOI: https://doi.org/10.1088/1361-6501/ac298d
  8. The European Partnership on Metrology , EURAMET, Braunschweig, Germany, Jun. 2020.
    Retrieved from: https://ec.europa.eu/info/sites/default/files/research_and_innovation/funding/documents/ec_rtd_he-partnerships-metrology.pdf
    Retrieved on: Oct.22, 2021
  9. Partnership Call, EURAMET, Braunschweig, Germany. Retrieved from: https://msu.euramet.org/calls.html
    Retrieved on: Oct.22, 2021
  10. Directory of RAdiotherapy Centres (DIRAC), IAEA , Vienna, Austria.
    Retrieved from: https://dirac.iaea.org/
    Retrieved on: Sep. 03, 2020
  11. J. Busse, H. Zutz, “Setting up and characterizing high-energy and pulsed reference fields to ensure radiation protection at accelerator facilities in medicine and in research”, Bull. PTB, Scientific news from division 6, News 2020, Braunschweig, Germany, Dec. 2020.
    Retrieved from: https://www.ptb.de/cms/en/ptb/fachabteilungen/abt6/forschungsnachrichtenabt6/news-2020.html
    Retrieved on: Oct.22, 2021
  12. R. J. Tanner et al., “Neutron area survey instrument measurements in the EVIDOS project”, Radiat. Prot. Dosim., vol. 125, no. 1-4, pp. 300–303, Jul. 2007.
    DOI: https://doi.org/10.1093/rpd/ncm160
  13. “Operational Quantities for External Radiation Exposure”, ICRU Rep. no. 95, Journal of the ICRU, vol. 20, no. 1, pp. 24–29, Dec. 2020
    DOI: https://doi.org/10.1177%2F1473669120966213
  14. J. Helt-Hansen, H.E. Larsen, P. Christensen “Portable triple silicon detector telescope spectrometer for skin dosimetry”, NIMA, vol. 438, no. 2-3, pp. 523–539, Dec. 1999.
    DOI: https://doi.org/10.1016/S0168-9002(99)00802-5
  15. R. Schlichte, “Radiation protection for medical staff: Novel spectrometric dosimeter for characterizing workplaces in X-ray medicine”, PTB-News, no. 2, Braunschweig, Germany, Apr. 2020.
    Retrieved from: https://www.ptb.de/cms/fileadmin/internet/publikationen/ptb_news/pdf/englisch/PTBnews_2020_2_e.pdf
    Retrieved on: Oct.22, 2021
  16. “ICRU Rep. no. 88, Measurement and Reporting of Radon Exposures”, Journal of the ICRU, vol. 12, no. 2, Dec. 2012.
    Retrieved from: https://www.icru.org/report/icru-report-88-measurement-and-reporting-of-radon-exposures/
    Retrieved on: Aug. 03, 2021
  17. RadoNorm project Managing risks from radon and NORM under EURATOM Horizon 2020.
    Retrieved from: https://www.radonorm.eu/
    Retrieved on: Aug. 03, 2021
  18. R. Behrens, “Standards collection for radiation protection: Dosimetry of external radiation (AKD) and Physikalisch-Technische Bundesanstalt (PTB)”, Bull. PTB, Braunschweig, Germany, Feb. 2020
    Retrieved from: www.ptb.de/cms/fileadmin/internet/fachabteilungen/abteilung_6/6.3/information/norm_lst.pdf
    Retrieved on: Aug. 03, 2021
Behnam Khanbabaee, Annette Röttger, Rolf Behrens, Stefan Röttger, Sebastian Feige, Oliver Hupe, Hayo Zutz, Paula Toroi, Paul Leonard, Liset de la Fuente Rosales, Pete Burgess, Vincent Gressier, José–Luis Gutiérrez Villanueva, Rodolfo Cruz Suárez, Dirk Arnold, "Support for a european metrology network on reliable radiation protection: gaps in radiation protection and related metrology", RAD Conf. Proc, vol. 5, 2021, pp. 21-27, http://doi.org/10.21175/RadProc.2021.04
Covid 19


Mitko Mitev

DOI: 10.21175/RadProc.2021.05

Introduction . Venous and arterial thromboembolism is associated with COVID-19, but there are few studies of lower limb ischemia as a later complication of infection. The study presents identified early and late complications caused by COVID-19, with the presence of multiple thromboses in the aorta and peripheral vessels. Materials and methods. A patient is an 80-year-old man hospitalized with COVID-19 (SARS-CoV-2). The study was conducted in 2021. MDCT Siemens Definition AS was used. A computed tomography angiography was made with Omnipaque, 100 ml. The data was processed with Syngo.via workstation and VB40B_NF02 software version. Results. After computed tomography angiography, changes were found in the lungs, central and peripheral vessels. Bilateral interstitial pneumonia was diagnosed. A parietal thrombus was identified in the aortic arch area and acute thrombosis on the left side of the common iliac artery and the right side of the superficial femoral artery as an acute later complication of the infection. The patient was sent for emergency surgery to remove the found blood clots in the lower limbs. Conclusion. The application of the correct diagnostic algorithm in this clinical case with the application of CT scan with contrast helped to quickly identify early complications and to avoid more severe and later changes both in the vessels and in other organs and systems.
  1. J. Helms et al., “High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study,” Intensive Care Med., vol. 46, no. 6, pp. 1089–1098, May 2020.
    DOI: https://doi.org/10.1007/s00134-020-06062-x
    PMid: 32367170
  2. P. Vulliamy, S. Jacob, R.A. Davenport, “Acute aorto-iliac and mesenteric arterial thromboses as presenting features of COVID-19,” Br. J. Haem., vol. 189, no. 6, pp. 1053–1054, May 2020.
    DOI: https://doi.org/10.1111/bjh.16760
    PMid: 32353183
  3. P. Kaur et al., “Acute upper limb ischemia in a patient with COVID-19,” Hematol. Oncol. Stem. Cell. Ther., vol. 14, no. 6, pp. 1658–3876, May 2020.
    DOI: https://doi.org/10.1016/j.hemonc.2020.05.001
    PMid: 32405288
  4. O. de Barry et al., “Arterial and venous abdominal thrombosis in a 79-year-old woman with COVID-19 pneumonia,” Radiol. Case Rep., vol. 15, no. 7, pp. 1054–1057, Apr. 2020.
    DOI: https://doi.org/10.1016/j.radcr.2020.04.055
    PMid: 32351657
  5. C. Schweblin, A.L. Hachulla, M. Roffi, F. Glauser, “Delayed manifestation of COVID-19 presenting as lower extremity multilevel arterial thrombosis: a case report,” European Heart Journal – Case Reports, vol. 4, no. 6, pp. 1–4, Dec. 2020.
    DOI: https://doi.org/10.1093/ehjcr/ytaa371
    PMid: 33437919
  6. J.F. Llitjos et al., “High incidence of venous thromboembolic events in anticoagulated severe COVID-19 patients,” J. Thromb. Haemost., vol. 18, no. 7, pp. 743–1746, May 2020.
    DOI: https://doi.org/10.1111/jth.14869
    PMid: 32320517
  7. D. Wichmann et al., “Autopsy findings and venous thromboembolism in patients with COVID-19: a prospective cohort study,” Ann. Intern. Med., vol. 173, no. 4, pp. 268–277, Aug. 2020.
    DOI: https://doi.org/10.7326/M20-2003
    PMid: 32374815
  8. P. Fontana et al., “Venous thromboembolism in COVID-19: systematic review of reported risks and current guidelines,” Swiss. Med. Wkly., vol. 150, article no. w20301, Jun. 2020.
    DOI: https://doi.org/10.4414/smw.2020.20301
    PMid: 32640479
  9. V.O. Costa et al., “Acute arterial occlusion of the lower limb as the main clinicalmanifestation in a patient with Covid-19 – Case Report,” International Journal of Surgery Case Reports, vol. 77, pp. 454–458, Nov. 2020.
    DOI: https://doi.org/10.1016/j.ijscr.2020.11.046
    PMid: 33200062
  10. I. Cheruiyot et al., “Arterial Thrombosis in Coronavirus Disease 2019 Patients: A Rapid Systematic Review,” Ann. Vasc. Surg., vol. 70, pp. 273–281, Aug. 2020.
    DOI: https://doi.org/10.1016/j.avsg.2020.08.087
    PMid: 32866574
  11. I.A. Goldman, K. Ye, M.H. Scheinfeld, “Lower-extremity Arterial Thrombosis Associated with COVID-19 Is Characterized by Greater Thrombus Burden and Increased Rate of Amputation and Death,” Radiol., vol. 297, no. 2, pp. E263–E269, Jul. 2020.
    DOI: https://doi.org/10.1148/radiol.2020202348
    PMid: 32673190
Mitko Mitev, "Multiple thromboses as late complications in a patient with pneumonia caused by covid-19 infection", RAD Conf. Proc, vol. 5, 2021, pp. 28-31, http://doi.org/10.21175/RadProc.2021.05


Igor Smirnov, Ahmed Harb, Igor Balantsev, Maria Karavan

DOI: 10.21175/RadProc.2021.06

The possibilities of 90Y/90Sr separation from carbonate media are investigated as a green alternative method. Solvent extraction of yttrium and strontium from carbonate solution is studied using several extractants in different organic diluents. 8-hydroxyquinioline and 2,3-dihydroxynaphtalene possess a promising Y/Sr separation. Yttrium and strontium distribution ratios D and separation factors SF are evaluated. pH interval 13 - 13.5 is regarded as the optimum for separation. Yttrium is extracted much better in 2-nitrotoluene (DY=3.9), maximum separation is observed in 2-nitrotoluene SF = 195 at pH 13.5.
  1. R. Chakravarty, A. Dash, “Availability of Yttrium-90 from Strontium-90: A Nuclear Medicine Perspective,” Cancer Biother. Radiopharm., vol. 27, no. 10, pp. 621–641, Dec. 2012.
    DOI: https://doi.org/10.1089/cbr.2012.1285
  2. P. Pichestapong, W. Sriwiang, U. Injarean, “Separation of Yttrium-90 from Strontium-90 by Extraction Chromatography Using Combined Sr Resin and RE Resin,” Energy Procedia, vol. 89, pp. 366–372, Jun. 2016.
    DOI: https://doi.org/10.1016/j.egypro.2016.05.048
  3. H. Tazoe et al., “Determination of strontium-90 from direct separation of yttrium-90 by solid phase extraction using DGA Resin for seawater monitoring,” Talanta, vol. 152, pp. 219–227, May 2016.
    DOI: https://doi.org/10.1016/j.talanta.2016.01.065
  4. N. Vajda, C.-K. Kim, “Determination of radiostrontium isotopes: A review of analytical methodology,” Appl. Radiat. Isot., vol. 68, no. 12, pp. 2306–2326, Dec. 2010.
    DOI: https://doi.org/10.1016/j.apradiso.2010.05.013
  5. C. Xu, J. Wang, J. Chen, “Solvent Extraction of Strontium and Cesium: A Review of Recent Progress,” Solvent Extr. Ion Exch., vol. 30, no. 6, pp. 623–650, Oct. 2012.
    DOI: https://doi.org/10.1080/07366299.2012.700579
  6. IAEA, “Production of Long Lived Parent Radionuclides for Generators:68Ge, 82Sr, 90Sr and 188W”, Radioisot. Radiopharm. Ser. No. 2, Austria, Vienna: IAEA, 2010.
    Retrieved onfrom https://www.iaea.org/publications/8268/production-of-long-lived-parent-radionuclides-for-generators-68ge-82sr-90sr-and-188w
    Retrieved on: July 15, 2021
  7. D. W. Wester et al., “Large-scale purification of 90Sr from nuclear waste materials for production of 90Y, a therapeutic medical radioisotope,” Appl. Radiat. Isot., vol. 59, no. 1, pp. 35–41, Jul. 2003.
    DOI: https://doi.org/10.1016/S0969-8043(03)00151-9
  8. D. F. Peppard, G. W. Mason, S. W. Moline, “The use of dioctyl phosphoric acid extraction in the isolation of carrier-free 90Y, 140La, 144Ce, 143Pr, and 144 Pr,” J. Inorg. Nucl. Chem., vol. 5, no. 2, pp. 141–146, 1957. DOI: https://doi.org/10.1016/0022-1902(57)80055-4
  9. M. Y. Mirza, “A new method for the carrier-free production of 90 Y from 90Sr-90Y mixture and 89Sr from neutron-irradiated Y2O3,” Anal. Chim. Acta., vol. 40, pp. 229–233, 1968.
    DOI: https://doi.org/10.1016/S0003-2670(00)86718-5
  10. J. S. Wike, C.E. Guyer, D.W. Ramey, B.P. Phillips, “Chemistry for commercial scale production of yttrium-90 for medical research,” Int. J. Radiat. Appl. Instrumentation. Part A. Appl. Radiat. Isot., vol. 41, no. 9, pp. 861–865, 1990.
    DOI: https://doi.org/10.1016/0883-2889(90)90064-N
  11. K. Yoshizuka, Y. Sakamoto, Y. Baba, K. Inoue, F. Nakashio, “Solvent extraction of holmium and yttrium with bis(2-ethylhexyl)phosphoric acid,” Ind. Eng. Chem. Res., vol. 31, no. 5, pp. 1372–1378, May 1992.
    DOI: https://doi.org/10.1021/ie00005a018
  12. E. Anticó et al., “Solvent extraction of yttrium from chloride media by di(2-ethylhexyl)phosphoric acid in kerosene. Speciation studies and gel formation,” Anal. Chim. Acta., vol.327, no. 3, pp. 267–276, 1996.
    DOI: https://doi.org/10.1016/0003-2670(96)00103-1
  13. J. T. Chuang, J. G. Lo, “The solvent extraction of carrier-free90Y from 90Sr with crown ethers,” J. Radioanal. Nucl. Chem. Artic., vol. 189, pp. 307–317, Jan. 1995.
    DOI: https://doi.org/10.1007/BF02042610
  14. E. P. Horwitz, W. W. Schulz, “Solvent Extraction in the Treatment of Acidic High-Level Liquid Waste: Where Do We Stand?”, in: Metal-Ion Separation and Preconcentration: Progress and Opportunities, A.H. Bond, M.L. Dietz, R.D. Rogers, Eds., Washington, DC, USA, ACS Symposium Series, American Chemical Society, 1999, ch. 3, pp. 20–50.
    DOI: https://doi.org/10.1021/bk-1999-0716.ch003
  15. I.V. Smirnov, V.S. Shirokova, A.Z. Yumaguen, M.V. Logunov, “Extraction of Strontium and Yttrium from Alkaline Carbonate Media with Functionalized Calix[8]arenes”, Radiochemistry, vol. 60, pp. 248–254, Jun. 2018.
    Retrieved onfrom https://www.readcube.com/articles/10.1134%2Fs1066362218030050
    Retrieved on: July 15, 2021
  16. G. Cote, D. Bauer, “Liquid—liquid extraction of germanium with oxine derivatives,” Hydrometallurgy, vol. 5, no. 2-3, pp. 149–160, Feb. 1980.
    DOI: https://doi.org/10.1016/0304-386X(80)90035-3
  17. S. Shibata, “Spectrophotometric determination of rare earth metals with 1-(2-pyridylazo)-2-naphthol,” Anal. Chim. Acta, vol. 28, pp. 388–392, 1963.
    DOI: https://doi.org/10.1016/S0003-2670(00)87250-5
  18. L. Sommer, H. Novotná, “Complexation of aluminium, yttrium, lanthanum and lanthanides with 4-(2-pyridylazo)resorcinol (par),” Talanta, vol. 14, no. 4, pp. 457–471 , Apr. 1967.
    DOI: https://doi.org/10.1016/0039-9140(67)80072-9
Igor Smirnov, Ahmed Harb, Igor Balantsev, Maria Karavan, "Yttrium-90 separation in carbonate media by solvent extraction ", RAD Conf. Proc, vol. 5, 2021, pp. 32-36, http://doi.org/10.21175/RadProc.2021.06
Radiation Physics


Ioana Lalau, Mihail-Razvan Ioan

DOI: 10.21175/RadProc.2021.07

In the last period the alpha-induced luminescence of air was proposed to be utilized for remote detection of alpha emitting from radioactive waste sources or for rapid radon detection. The aim of this study is to investigate the possibility to discriminate between the radioluminescence signal and Cherenkov photons due to the simultaneous presence of alpha and beta sources in the same container. Alpha particles induce radioluminescence when absorbed in air. The photons are emitted in the near ultraviolet region by nitrogen molecules excited by secondary electrons. The accurate knowledge of the radioluminescence yield is of the utmost importance for novel radiation detection applications utilizing this effect. On the other hand, the energetic electrons from the beta spectra can produce Cherenkov radiation in air in the same wavelengths as the photons emitted by deexcitation of nitrogen molecules. When alpha and beta emitting radionuclides are simultaneously present in sample, the detector must be able to discriminate between these contributions. We determine the number of photons produced per unit area (photon flux) by deexcitation of nitrogen molecules and also the number of photons in the same wavelength range produced by beta particles when passing through air.
  1. Radiation oncology physics – a handbook for teachers and students, E. B. Podgorsak, Ed., Vienna, Austria: IAEA, 2005.
    Retrieved from: https://www-pub.iaea.org/MTCD/publications/PDF/Pub1196_web.pdf
    Retrieved on: Jul. 14, 2021
  2. M. J. Berger, J. S. Coursey, M. A. Zucker, and J. Chang, Stopping-power and range tables for electrons, protons, and helium ions , NIST Standard Reference Database 124, NIST, Gaithersburg, MD, USA, 1998.
    DOI: https://doi.org/10.18434/T4NC7P
  3. W. Huggins, L. Huggins, “On the spectrum of the spontaneous luminous radiation of radium at ordinary temperatures,” in Proceedings of the Royal Society of London, vol. 72, no. 477-486, pp. 196 – 199, 1904.
    DOI: https://doi.org/10.1098/rspl.1903.0038
  4. T. Waldenmaier, “Spectral resolved measurement of the nitrogen fluorescence yield in air induced by electrons”, Ph.D. Dissertation, Forschungzentrum Karlsruhe, Germany, 2006.
    Retrieved from: https://inis.iaea.org/search/search.aspx?orig_q=RN:37092315
    Retrieved on: Jul. 14, 2021
  5. G. Knoll, Radiation Detection and Measurement, New York, US: J. Wiley & Sons, 2010.
  6. T. Waldenmaier, “Spectral resolved measurement of the nitrogen fluorescence yield in air induced by electrons,” Dissertation, Wissenschaftliche Berichte FZKA, Germany, 2006.
    Retrieved from: https://inis.iaea.org/search/search.aspx?orig_q=RN:37092315
    Retrieved on: Jul. 14, 2021
  7. A. N. Bunner, “Cosmic Ray Detection by Atmospheric Fluorescence”, Ph.D. dissertation, Cornell University, Ithaca, NY, USA, 1967.
    Retrieved from: https://inspirehep.net/literature/1087629
    Retrieved on: Jul.14, 2021
  8. T. Waldenmaier, J. Blümer, H. Klages, “Spectral resolved measurement of the nitrogen fluorescence emissions in air induced by electrons”, Astroparticle Physics, vol. 29, no. 3, pp. 205 – 222, 2008.
    DOI: https://doi.org/10.1016/j.astropartphys.2008.01.004
  9. A. Lofthus, P. H. Krupenie, “The spectrum of molecular nitrogen”, Journal of Physical and Chemical Reference Data, vol. 6, no. 1, pp. 113 – 307, 1977.
    DOI: https://doi.org/10.1063/1.555546
  10. J. Sand, “Alpha Radiation Detection via Radioluminescence of Air,” Ph.D. Dissertation, Tampere University of Technology, Tampere, Finland, 2016.
    Retrieved from: https://cris.tuni.fi/ws/portalfiles/portal/9072621/sand_1449.pdf
    Retrieved on: Jul. 14, 2021
  11. M. M. Fraga et al., “Temperature-dependent quenching of UV fluorescence of N2,” Nuclear Instruments and Methods in Physics Research Section A, vol. 597, no. 1, pp. 75 – 82, 2008.
    DOI: https://doi.org/10.1016/j.nima.2008.08.046
  12. M. Zubek, “Excitation of the C 3Πu state of N2 by electron impact in the near threshold region,” Journal of Physics B: Atomic, Molecular and Optical Physics, vol. 27, no. 3, p. 573, 1994.
    DOI: https://doi.org/10.1088/0953-4075/27/3/021
  13. J. T. Fons, R. S. Schappe, C. C. Lin, “Electron-impact excitation of the second positive band system (C 3Πu → B 3Π g) and the C 3Πu electronic state of the nitrogen molecule,” Physical Review A, vol. 53, no. 4, pp. 2239 – 2247, 1996.
    DOI: https://doi.org/10.1103/PhysRevA.53.2239
  14. G. Poparić, M. Vićić, D. Belić, “Vibrational excitation of the C3Πu state of N2 by electron impact,” Chemical Physics, vol. 240, no. 1-2, pp. 283 – 289, 1999.
    DOI: https://doi.org/10.1016/S0301-0104(98)00383-8
  15. F. Blanco, F. Arqueros, “The role of secondary electrons in some experiments determining fluorescence emission from nitrogen C 3Π u levels,” Physics Letters A, vol. 345, no. 4-6, pp. 355 – 361, 2005.
    DOI: https://doi.org/10.1016/j.physleta.2005.07.059
  16. Y. Itikawa, “Cross sections for electron collisions with nitrogen molecules,” Journal of Physical and Chemical Reference Data, vol. 35, no. 1, pp. 31 – 53, 2006.
    DOI: https://doi.org/10.1063/1.1937426
  17. A. Ferrari, P.R. Sala, A. Fassò, J. Ranft, FLUKA: a multi-particle transport code, Report CERN-2005-10, INFN/TC_05/11, SLAC-R-773, CERN, Geneva, Switzerland, 2005.
    Retrieved from: https://www.slac.stanford.edu/cgi-bin/getdoc/slac-r-773.pdf
    Retrieved on: Jul.14, 2021
  18. T.T. Böhlen et al., “The FLUKA Code: Developments and Challenges for High Energy and Medical Applications”, Nuclear Data Sheets, vol. 120, 211- 214, 2014.
    DOI: https://doi.org/10.1016/j.nds.2014.07.049
  19. V. Vlachoudis, “FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA”, in Proc. Int. Conf. On Mathematics, Computational Methods & Reactor Physics (M&C) , Saratoga Springs, New York, USA, 2009.
    Retrieved from: https://flair.web.cern.ch/flair/doc/Flair_MC2009.pdf
    Retrieved on: Jul.14, 2021
  20. T. Sato, “Analytical Model for Estimating the Zenith Angle Dependence of Terrestrial Cosmic Ray Fluxes”, PLOS ONE, vol. 11, no. 8, 2016.
    DOI: https://doi.org/10.1371/journal.pone.0160390
  21. T. Sato, “Analytical model for estimating terrestrial cosmic ray fluxes nearly anytime and anywhere in the world: Extension of PARMA/EXPACS”, PLOS ONE, vol. 10, no. 12, 2015.
    DOI: https://doi.org/10.1371/journal.pone.0144679
  22. EXPACS version 4.10, Japan Atomic Energy Agency, Ibaraki, Japan
    Retrieved from: http://phits.jaea.go.jp/expacs/
    Retrieved from: Jul. 14, 2021
Ioana Lalau, Mihail-Razvan Ioan, "Simulation of radioluminescence induced by alpha particles in the air by the monte carlo method", RAD Conf. Proc, vol. 5, 2021, pp. 37-41, http://doi.org/10.21175/RadProc.2021.07


V.V. Timoshenko, A.A. Brechalov, Y.E. Ermolenko, I.V. Smirnov

DOI: 10.21175/RadProc.2021.08

The study of the interphase distribution of a large number of target and impurity components of highly radioactive wastes is a necessary and very laborious stage in the creation of new extraction systems. With the quantitative extraction of cesium-137 and strontium-90 from spent nuclear fuel for the purposes of further industrial and commercial use, difficulties arise associated with competing complexation and the concomitant extraction of impurities of stable elements. We have developed an express method for determining the distribution ratios of metals using inductively coupled plasma mass spectrometry (ICP-MS). A feature of the proposed method is the joint extraction of trace amounts of all studied metals, followed by direct ICP-MS analysis of equilibrium aqueous and organic phases.
  1. Итоги деятельности Государственной корпорации по атомной энергии «РОСАТОМ» за 2019 год ., Москва, Россия, с. 75, 2019. ( Results of the activities of the State Atomic Energy Corporation "ROSATOM" for 2019 , Moscow, Russia, p.75, 2019.)
    Retrieved from: https://rosatom.ru/upload/iblock/033/03395b2a9751b4fcd385d746a2f9df15.pdf
    Retrieved on: Jun. 15, 2021
  2. V. V. Yakshin et al., “Selective Extraction of Alkali Metals with Solutions of Dibenzocrown Ethers in Organofluorine Diluents from Nitric Acid Media,” Dokl. Phys. Chem., vol. 422, pp. 271–274, 2008.
    DOI: http://doi.org/10.1134/S0012501608100072
  3. Ch. Xu, J. Wang, J. Chen, “Solvent Extraction of Strontium and Cesium: A Review of Recent Progress,” Solvent Extraction and Ion Exchange, vol. 30, no. 6, pp. 623–650, 2012.
    DOI: http://doi.org/10.1080/07366299.2012.700579
  4. J. Ma et al., “Supramolecular adsorbents in extraction and separation techniques - A review,” Analytica Chimica Acta, vol. 1122, pp. 97-113, 2020.
    DOI: https://doi.org/10.1016/j.aca.2020.04.054
  5. Y. Sasaki et al., “Solvent Extraction of Cesium Using DtBuDB18C6 into Various Organic Solvents,” Solvent Extraction Research and Development, vol. 28, no. 2, pp. 121-131, 2021.
    DOI: https://doi.org/10.15261/serdj.28.121
  6. Ю.В. Сапрыкин и др., «Экстракция цезия краун-эфирами в различных средах», Успехи в химии и химической технологии, том 25, номер 7, страницы: 33-37, 2011. (Yu. V. Saprykin et al., “Extraction of cesium with crown ethers in various media,” Advances in chemistry and chemical technology, vol. 25, no. 7, pp. 33-37, 2011)
    Retrieved from: https://elibrary.ru/item.asp?id=20230054
    Retrieved on: Jun. 15, 2021
  7. J. Rais et al., “Extraction of Radioactive Cs and Sr from Nitric Acid Solutions with 25,27-Bis(1-octyloxy)calix[4]-26,28-Crown-6 and Dicyclohexyl-18-Crown-6: Effect of Nature of the Organic Solvent,” Separation Science and Technology, vol. 50, no. 8, pp. 1202-1212, 2015.
    DOI: https://doi.org/10.1080/01496395.2014.978464
  8. M. Alyapyshev et al., “New polar fluorinated diluents for diamide extractants,” Journal of Radioanalytical and Nuclear Chemistry, vol. 310, pp. 785–792, 2016.
    DOI: https://doi.org/10.1007/s10967-016-4907-1
  9. P. Distler et al, “Fluorinated Carbonates as New Diluents for Extraction and Separation of f-Block Elements,” Solvent Extraction and Ion Exchange, vol. 38, no. 2, pp. 180-193, 2020.
    DOI: https://doi.org/10.1080/07366299.2019.1708004
  10. V. Babain et al.Extraction of Actinides with Tributyl Phosphate in Carbonates of Fluorinated Alcohols, Solvent Extraction and Ion Exchange, vol. 39, no. 3, pp. 255-270, 2021.
    DOI: https://doi.org/10.1080/07366299.2020.1837421
  11. J. N. Sharma et al., “Separation of strontium-90 from a highly saline high level liquid waste solution using 4,4′(5′)-[di-tert-butyldicyclohexano]-18-crown-6 + isodecyl alcohol/n-dodecane solvent,” Separation and Purification Technology, vol. 229, article no. 115502, 2019.
    DOI: https://doi.org/10.1016/j.seppur.2019.04.032
V.V. Timoshenko, A.A. Brechalov, Y.E. Ermolenko, I.V. Smirnov, "Fast method for studying the extraction of the main hlw components with crown ethers in new fluorine-containing diluents", RAD Conf. Proc, vol. 5, 2021, pp. 42-47, http://doi.org/10.21175/RadProc.2021.08


Igor V. Smirnov, Maria D. Karavan, Albert Z. Yumaguen

DOI: 10.21175/RadProc.2021.09

Several extraction systems based on functionalized calixarenes in mixed fluorinated diluents were examined. Technological flowsheets for radioactive waste processing with these extraction systems were developed and tested. It is shown that under the selected conditions one can achieve decontamination factors from cesium isotopes and alpha-emitters, sufficient for converting high-level waste of the “Mayak” Production Association into the low-level category with the subsequent possibility of their disposal at near-surface sites.
  1. R. E. Gephart, R. E. Lundgren, Hanford Tank Cleanup: A Guide to Understanding the technical Issues , Columbus (OH), USA: Battelle Press, 1998.
  2. S. I. Stepanov et al., “CARBEX Process, A New Technology of Reprocessing of Spent Nuclear Fuel,” Russian Journal of General Chemistry, vol. 81, no. 9, article no. 1949, 2011.
    DOI: https://doi.org/10.1134/S1070363211090404
  3. П.В. Козлов и др., «Варианты реализации технологии предварительной подготовки осветленной фазы ёмкостей-хранилищ накопленных ВАО к отверждению», Вопросы радиационной безопасности, том 70, но. 2, стр. 34-47, 2013. (P. Kozlov et al., “Implementation Options for the Technology of Preliminary Preparation of Clarified Phase Obtained from Storage Tanks Containing Accumulated HLW for Solidification,” Radiat. Saf. Probl., vol. 70, no. 2, pp. 34–47, 2013)
  4. B. A. Moyer et al., Next Generation Solvent Development for Caustic-Side Solvent Extraction of Cesium, Rep. ORNL/TM-2014/22, ORNL, DOE, Oak Ridge (TN), USA, 2014.
    DOI: https://doi.org/10.2172/1167005
  5. I. Smirnov et al., “Americium and cesium extraction from alkaline media by calix[8]arenes with p-tert-butyl and isononyl substituents on the upper rim: aggregation effect,” Macroheterocyles, vol. 10, no. 2, pp. 196–202, 2017.
    DOI: https://doi.org/10.6060/mhc161070s
  6. I. V. Smirnov et al., “Cesium and americium extraction from carbonate-alkaline media with O-substituted p-alkylcalix[8]arenes,” J. Radioanal. Nucl. Chem., vol. 314, no. 2, pp. 1257–1265, 2017.
    DOI: https://doi.org/10.1007/s10967-017-5505-6
  7. I. V. Smirnov et al., “Extraction of Cesium-137 and Americium-241 by Calix[n]arenes from Carbonate-Alkaline Media,” Doklady Chemistry, vol. 479, no. 1, pp. 36–40, 2018.
    DOI: https://doi.org/10.1134/S0012500818030035
  8. С.Р. Зарипов, «Синтез липофильных каликс[n]аренов для извлечения ионов Cs (I) и Am (III) из щелочных высокоактивных отходов ядерного производства», докторская диссертация, Казанский (Приволжский) федеральный университет, Казань, Россия, 2018. (S.R. Zaripov, “Synthesis of lipophilic calix[n]arenes for the extraction of Cs(I) and Am(III) ions from alkaline high-level nuclear waste,” Ph.D. dissertation, Kazan Federal University, Kazan, Russia, 2018.)
    Retrieved from: https://shelly.kpfu.ru/e-ksu/docs/DISSERTATION/F466590126/Dissertaciya_Zaripov_S.R_06_11_18.pdf
    Retrieved on: Jun. 15, 2021
  9. М.Д. Караван, «Экстракционное выделение трансплутониевых, редкоземельных и некоторых осколочных элементов из карбонатно-щелочных растворов с помощью полифенольных макроциклических лигандов», Вопросы радиационной безопасности, том 100, но. 4, стр. 23-34, 2020. (M. D. Karavan, “Extraction of transplutonium, rare-earth and some fission elements from carbonate-alkaline solutions using polyphenolic macrocyclic ligands,” Radiat. Saf. Probl., vol. 100, no. 4, pp. 23-34, 2020).
  10. I. V. Smirnov et al., “Hydroxycalix[6]arenes with p-isononyl substituents for alkaline HLW processing,” J. Radioanal. Nucl. Chem., vol. 326, no. 1, pp. 675–681, 2020.
    DOI: https://doi.org/10.1007/s10967-020-07325-z
Igor V. Smirnov, Maria D. Karavan, Albert Z. Yumaguen, "Dynamic test of alkaline hlw processing with hydroxycalix[6]arenes based solvent ", RAD Conf. Proc, vol. 5, 2021, pp. 48-52, http://doi.org/10.21175/RadProc.2021.09


Vesna Benković, Nikola Borojević, Nada Oršolić, Gordana Brozović, Anica Horvat Knežević, Mirta Milić

DOI: 10.21175/RadProc.2021.10

Patient immobilization by general volatile anesthesia (VA) during medical radiology treatment is sometimes necessary and annual trends are increasing. Ionizing radiation (IR) exposure is known to cause some level of DNA damage since IR is a well-known genotoxic and cytotoxic agent, although the doses used are kept to a minimum, with good localization in order to protect as much healthy tissue and organs as possible from exposure. Recently, a growing number of studies have demonstrated that volatile anesthetics can also cause DNA damage effects in patients, and in occupationally exposed personnel. Since there are no studies on the combined effects of IR and VA, we decided to use an animal model of Swiss albino mice to determine whether there are elevated levels of DNA damage after combined exposure by mimicking real conditions of exposure during radiology treatment. Healthy male mice (5 animals per group) were anaesthetized by inhaling 2.4% halothane for 2 hours and then were exposed to either 1 or 2 Gy of ionizing radiation (60Co source). Groups were examined immediately after exposure, and again after 2, 6 and 24 hours. Blood was taken from the tail, and liver after animal sacrifice. The study was approved by the Ethics Committee of the Faculty of Science, University of Zagreb, Croatia, and designed in accordance with the relevant Croatian guidelines (Animal Protection Act, Ordinance on the protection of animals used for scientific purposes). Duplicate samples were prepared for the alkaline comet assay, and DNA damage of a total of 200 comets per point was assessed with Comet Assay IV software. The results demonstrated that both halothane and IR caused elevated DNA damage levels, and when applied in combined treatment caused synergistic effect additional damaging effect that was not repaired even 24 hours after exposure. These data confirm concerns about the safety of combined VA and IR exposure, and indicate the need for further investigation on the safety and proper use of the type of anesthetic needed during radiotherapy.
  1. Radiation: Monographs on the Evaluation of Carcinogenic Risks to Humans Volume 100D , Lyon, France: IARC, 2012.
    Retrieved from: https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Radiation-2012
    Retrieved on: May 1, 2021
  2. J. M. Borras et al., “Estimating the number of fractions by tumour site for European countries in 2012 and 2025: An ESTRO-HERO analysis,” Radiother. Oncol., vol. 126, no. 2, pp. 198-204, 2018.
    DOI: https://doi.org/10.1016/j.radonc.2017.11.009
  3. C. Fiorino, M. Guckenberger, M. Schwarz, U. H. Heide, B. Heijmen, “Technology‐driven research for radiotherapy innovation,” Mol. Oncol., vol. 14, no. 7, pp. 1500-1513, Mar. 2020.
    DOI: https://doi.org/10.1002/1878-0261.12659
  4. J. S. Vaidya et al., “Long term survival and local control outcomes from single dose targeted intraoperative radiotherapy during lumpectomy (TARGIT-IORT) for early breast cancer: TARGIT-A randomised clinical trial”, B.M.J., vol. 370, article no. m2836, Aug. 2020.
    DOI: https://doi.org/10.1136/bmj.m2836
  5. Radiotherapy dose fractionation, 3rd ed., London, UK: The Royal College of Radiologist, 2019.
    Retrieved from: http://www.rcr.ac.uk/publication/radiotherapy-dose-fractionation-third-edition
    Retrieved on: May 27, 2021
  6. R. Arunkumar, E. Rebello, P. Owusu-Agyemang, “Anesthetic techniques for unique cancer surgery procedures,” Best Pract. Res. Clin. Anaesthesiol., vol. 27, no. 4, pp. 513-526, Dec. 2013.
    DOI: https://doi.org/10.1016/j.bpa.2013.09.002
  7. S. M. Ntouka et al., “Minimizing General Anesthetic Use in Pediatric Radiation Therapy”, Pract. Radiat. Oncol., vol. 10, no. 3, pp. e159-e165, May 2020.
    DOI: https://doi.org/10.1016/j.prro.2019.12.001
  8. M. J. Gyorfi, P. Y. Kim, “Halothane Toxicity”, in StatPearls [Internet], Treasure Island (FL), USA: StatPearls Publishing, 2021
    Retrieved from: https://www.ncbi.nlm.nih.gov/books/NBK545281/
    Retrieved on: Aug. 27, 2021
  9. J. A. Campagna, K. W. Miller, S. A. Forman, “Mechanisms of actions of inhaled anesthetics,” N. Engl. J. Med., vol. 348, no. 21, pp. 2110-2124, May 2003.
    DOI: https://doi.org/10.1056/NEJMra021261
  10. S. Chiao, Z. Zuo, “A double-edged sword: volatile anesthetic effects on the neonatal brain,” Brain Sci., vol. 4, no. 2, pp. 273-294, Apr. 2014.
    DOI: https://doi.org/10.3390/brainsci4020273
  11. D. Schifilliti, G. Grasso, A. Conti, V. Fodale, “Anesthetic-Related Neuroprotection,” CNS Drugs, vol. 24, pp. 893–907, 2010.
    DOI: https://doi.org/10.2165/11584760-000000000-00000
  12. S. Yılmaz, N. Ç. Çalbayram, “Exposure to anesthetic gases among operating room personnel and risk of genotoxicity: A systematic review of the human biomonitoring studies,” J. Clin. Anesth., vol. 35, pp. 326-331, Dec. 2016.
    DOI: https://doi.org/10.1016/j.jclinane.2016.08.029
  13. G. Brozovic et al., “DNA damage and repair after exposure to sevoflurane in vivo, evaluated in Swiss albino mice by the alkaline comet assay and micronucleus test,” J. Appl. Genet., vol. 51, no. 1, pp. 79-86, 2010.
    DOI: https://doi.org/10.1007/BF03195714
  14. G. Brozović et al., “Sevoflurane and isoflurane genotoxicity in kidney cells of mice,” Arh. Hig. Rada Toksikol., vol. 68, no. 3, pp. 228-35, Sep. 2017.
    DOI: https://doi.org/10.1515/aiht-2017-68-2941
  15. Hrvatski Sabor (4. list. 2017), Zakon o zaštiti životinja, NN 102/17. (Croatian Parliament (Oct. 4, 2017), Animal Protection Act, O.G. 102/17.)
    Retrieved from: https://narodne-novine.nn.hr/clanci/sluzbeni/2017_10_102_2342.html
    Retrieved on: May 21, 2021.
  16. Hrvatski Sabor (8. svi. 2013.), Pravilnik o zaštiti životinja koje se koriste u znanstvene svrhe, NN 55/13. (Croatian Parliament, Ordinance on the protection of animals used for scientific purposes, O.G. 55/13.)
    Retrieved from: https://narodne-novine.nn.hr/clanci/sluzbeni/2013_05_55_1129.html
    Retrieved on: May 21, 2021
  17. The European Parliament and the Council of the European Union (Sep. 22, 2010), Directive 2010/63/EU.
    Retrieved from: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:276:0033:0079:en:PDF
    Retrieved on: May 21, 2021
  18. D. J. Gaertner, T. M. Hallman, F. C. Hankenson, M. A. Batchelder., “Anesthesia and Analgesia in Rodents” in Anesthesia and Analgesia in Laboratory Animals, R.E. Fish, M.J. Brown, P.J. Danneman, A.Z. Karas, Eds., 2nd ed., London, UK: Academic Press, Elsevier, 2008, ch. 10, pp. 240-261.
    DOI: https://doi.org/10.1016/B978-012373898-1.50014-0
  19. B. A. Siddiqui, P. Y. Kim, “Anesthesia Stages”, in: StatPearls [Internet], Treasure Island (FL), USA: StatPearls Publishing, Jan. 2021.
    Retrieved from: https://www.ncbi.nlm.nih.gov/books/NBK557596/
  20. N. P. Singh, M. T. McCoy, R. R. Tice, L. L. Schneider, “A simple technique for quantitation of low levels of DNA damage in individual cells,” Exp. Cell Res., vol. 175, no. 1, pp. 184-191, Mar. 1988.
    DOI: https://doi.org/10.1016/0014-4827(88)90265-0
  21. G. G. Nair C. K. Nair, “Protection of cellular DNA and membrane from γ-radiation-induced damages and enhancement in DNA repair by sesamol,” Cancer Biother. Radiopharm., vol. 25, no. 6, pp. 629-635, Dec. 2010.
    DOI: https://doi.org/10.1089/cbr.2010.0803
Vesna Benković, Nikola Borojević, Nada Oršolić, Gordana Brozović, Anica Horvat Knežević, Mirta Milić, "Combined exposure to halothane and 1 or 2 gy ionizing radiation causes a synergistic effect in dna damage in the blood and liver of swiss albino mice", RAD Conf. Proc, vol. 5, 2021, pp. 53–56, http://doi.org/10.21175/RadProc.2021.10


S.O. Frankiv, A.V. Boyarintsev, S.I. Stepanov, E.A. Skuratova, N.M. Chervyakov

DOI: 10.21175/RadProc.2021.11

The article presents the results on the extraction and purification of uranium(VI) from impurities of surrogates of some fission products (Cr(III), Mn(IV), Cu(II), Sr(II), Cs, Sb(V), Mo(VI), Ba(II), La(III), Ce(IV), Sm(III), Eu(III), Re(V), Al(III), Y(III), Nd(III)) and Na from aqueous solutions of sodium carbonate and ammonium carbonate by solvent extraction using methyltrioctylammonium carbonate. The values of uranium purification factors were 103–106. Based on the carried out studies, a scheme of solvent extraction reprocessing of multicomponent carbonate solutions containing fission product surrogates was developed and optimized. This scheme showed the high efficiency of the solvent extraction technique for fractionating the fission products in the CARBEX process.
  1. С. И. Ровный, П. П. Шевцев, “Современное состояние и пути совершенствования радиохимической технологии выделения и очистки урана и плутония,” Вопросы радиационной безопасности, но 2, cтр. 5–13, 2007. (S. I. Rovny, P. P. Shevtsev, “Modern state and ways to improve radiochemical technology for the isolation and purification of uranium and plutonium,” Radiation Safety Issues, no. 2, pp. 5–13, 2007.)
  2. H. Tomiyasu, Y. Asano, “Environmentally acceptable nuclear fuel cycle development of a new reprocessing system”, Prog. Nucl. Energ., vol. 32, no. 3–4, pp. 421–427, 1998.
    DOI: https://doi.org/10.1016/S0149-1970(97)00037-1
  3. G. S. Goff et al., “Development of a novel alkaline based process for spent nuclear fuel recycling”, AIChE Annual Meeting, Nuclear Engineering Division, Salt Lake City (Utah), USA, Nov. 4–9, 2007.
  4. C. Z. Soderquist et al., “Dissolution of irradiated commercial UO2 fuels in ammonium carbonate and hydrogen peroxide,” Ind. Eng. Chem. Res., vol. 50, no. 4 pp. 1813–1818, Jan. 2011.
    DOI: https://doi.org/10.1021/ie101386n
  5. S. I. Stepanov, A. M. Chekmarev, “Concept of spent nuclear fuel reprocessing”, Dokl. Chem., vol. 423, no. 1, pp. 276–278, 2008.
    DOI: https://doi.org/10.1134/S0012500808110037
  6. S. I. Stepanov, A. V. Boyarincev, A. A. Chehlov, A. M. Chekmarev, A. Yu. Tsivadze, “Chemistry of the CARBEX process. Identification of the absorption bands of the ligands in the electronic spectra of U(VI) extracts with methyltrioctylammonium carbonate,” Dokl. Chem., vol. 473, no. 1, pp. 63–66, 2017.
    DOI: https://doi.org/10.1134/S0012500817030065
  7. Б. В. Громов, Введение в химическую технологию урана, Москва, Россия: Атомиздат, 1978. (B. V. Gromov, Introduction to the chemical technology of uranium, Moscow, Russia: Atomizdat, 1978.)
  8. S. I. Stepanov et al., “CARBEX process, a new technology of reprocessing of spent nuclear fuel,” Russ. J. Gen. Chem., vol. 81, no. 9, pp. 1949–1959, 2011.
    DOI: https://doi.org/10.1134/S1070363211090404
  9. И. А. Шевчук, Л. И. Коноваленко, Т. Н. Симонова, “Влияние размеров радикалов солей алкиламинов и четвертичных аммониевых оснований на экстракцию карбонатных комплексов металлов,” Ж. неорг. химии., Т. 28, № 12, c. 3193–3195, 1983. (I. A. Shevchuk, L. I. Konovalenko. T. N. Simonova “The effect of the radical sizes of alkylamine salts and quaternary ammonium bases on the extraction of carbonate complexes of metals,” J. Neorg. Chem., vol. 28, no. 12, pp. 3193–3195, 1983.)
  10. D. J. Crouse, K. B. Brown, W. D. Arnold, J. G. Moore, R. S. Lowrie, Progress report on uranium extraction with organonitrogen compounds, Rep. ORNL-2099, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA, 1956.
    Retrieved from: https://www.osti.gov/servlets/purl/4373382
    Retrieved on: Jun. 15, 2021
  11. W. E. Clifford, E. P. Bullwinkel, L. A. McClaine, P. Noble Jr., “The solvent extraction of uranium(VI) from carbonate solutions,” J. Am. Chem. Soc., vol. 80, no. 12, pp. 2959–2961, 1958.
    DOI: https://doi.org/10.1021/ja01545a014
  12. F. G. Seeley, F. J. Hurst, D. J. Crouse, “Solvent extraction of uranium from carbonate solutions,” Rep. ORNL-3106, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA, 1961.
    Retrieved from: https://www.osti.gov/servlets/purl/4843667
    Retrieved on: Jun. 15, 2021
  13. K. B. Brown, “Chemical technology division chemical development section С progress report on separations process research for January-June,” Rep. ORNL-3496, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA, 1963.
  14. Ю. А. Афанасьев, Ю. А. Фролов, А. А. Цей, “Опыт извлечения микроколичеств урана из карбонатного раствора,” Радиохимия, Т. 23, № 5, c. 772–773, 1981. (Yu. A. Afanasyev, Yu. A. Frolov, A. A. Tsey, “The experience of extracting trace amounts of uranium from a carbonate solution,” Radiochemistry, vol. 23, no. 5, pp. 772–773, 1981.)
  15. Р. Раймонд, “Аминные экстракционные системы,” Химия экстракции, c. 180–195, 1971. (R. Raymond, “Amine extraction systems,” Extraction chemistry, pp. 180–195, 1971.)
  16. Ю. А. Золотов, “Новые экстрагенты,” Химия экстракции, Новосибирск, 1984, c. 24–34. (Yu. A. Zolotov, “New extractants,” Extraction chemistry, Novosibirsk, 1984, pp. 24–34.)
  17. Э. А. Межов, “Экстракция аминами и чао,” Актиниды: Справочник Энергоатомиздат, 1987, c. 86. (E. A. Mezhov, “Extraction by amines and qab,” Actinides: Handbook of Energoatomizdat, 1987, pp. 86)
  18. Z. Zhaowu, P. Yoko, Y. C. Chu, “Uranium solvent extraction and separation from vanadium in alkaline solutions,” Separation Science and Technology, vol. 48, no. 9, pp. 1402–1408, 2013.
    DOI: https://doi.org/10.1080/01496395.2012.738277
  19. N. D. Mokhine, M. Mathuthu, E. Stassen, “Recovery of uranium from residue generated during Mo-99 production, using organic solvent extraction,” Physics and Chemistry of the Earth, Parts A/B/C, vol. 115, article no. 102822, 2020.
    DOI: https://doi.org/10.1016/j.pce.2019.102822
  20. M. Mathuthu, N. D. Mokhine, E. Stassen, “Organic solvent extraction of uranium from alkaline nuclear waste,” J. Radioanal. Nucl. Chem., vol. 319, pp. 687–693, 2019.
    DOI: https://doi.org/10.1007/s10967-019-06430-y
  21. F. A. Shehata, A. S. Ahmed, Y. A. El Nadi, H. F. Aly, “Extraction of uranium from alkaline medium by Aliquat 336 in different diluent,” Second Arab Conference on the Peaceful uses of Atomic Energy, Cairo, Egypt, Nov. 5–9, 1994, pp. 457-464.
    Retrieved from: https://inis.iaea.org/collection/NCLCollectionStore/_Public/28/029/28029339.pdf
    Retrieved on: Jun. 15, 2021
  22. М. Т. Sardina, R. P. Cellini, B. T. Rodriques, “Extraction of uranium from solutions of complex uranylcarbonate by cetyldumetil benzyl ammonium chloride,” J. Inorg. Nucl. Chem., vol. 24, no. 6, pp. 721–728, 1962.
    DOI: https://doi.org/10.1016/0022-1902(62)80091-8
  23. C. Keller, D. Fang, “Uber karbonatokomplexe des dreiwertigen Americiums sowie des vier- und sechswertigen Urans und Plutoniums,” Radiochimica Acta., vol. 11, no. 3/4, pp. 123–127, 1969. (C. Keller, D. Fang, “About carbonate complexes of trivalent americium as well as tetravalent and hexavalent uranium and plutonium,” Radiochimica Acta., vol. 11, no. 3/4, pp. 123–127, 1969.)
    DOI: https://doi.org/10.1524/ract.1969.11.34.123
  24. K. Ueno, A. Saito, “Extraction of several elements with trioctylmonomethylammonium chloride,” J. Anal. Chim. Acta., vol. 56, no. 3, pp. 427–434, 1971.
    DOI: https://doi.org/10.1016/S0003-2670(01)80932-6
  25. A. V. Boyarintsev et al., “Reprocessing of simulated voloxidized uranium–oxide SNF in the CARBEX process,” Nucl. Eng. Technol., vol. 51, no. 7, pp. 1799–1804, 2019.
    DOI: https://doi.org/10.1016/j.net.2019.05.020
  26. В. К. Марков, А. В. Виноградов, С. В. Елинсон, Уран, методы его определения, Москва, Россия: Атомиздат, 1960. (V. K. Markov, E. A. Vernyi, A. V. Vinogradov, Uranium, methods of its definition, Moscow, Russia: Atomizdat, 1960.)
  27. Analytical Spectroscopy Library Volume 10: Separation, preconcentration, and spectrophotometry in inorganic analysis, Z. Marczenko, M. Balcerzak, Eds., 1st ed., New York (NY), USA: Elsevier Science, 2000.
S.O. Frankiv, A.V. Boyarintsev, S.I. Stepanov, E.A. Skuratova, N.M. Chervyakov, "Purification of uranium(vi) from impurities of fission product surrogates by solvent extraction in the carbex process ",RAD Conf. Proc, vol. 5, 2021, pp. 57–61, http://doi.org/10.21175/RadProc.2021.11
Medical Imaging


Anatoly A. Adamchik, Valerii V. Tairov, Maria V. Adamchik, Natalya I. Bykova, Ekaterina S. Zaporozhskaya-Abramova, Viktoria A. Ivashenko, Kseniya D. Kirsh, Zhanna V. Solovyeva

DOI: 10.21175/RadProc.2021.12

The present study is a descriptive comparison of the obtained data for the assessment of the optical density zones of the apical focus of destruction, in chronic apical periodontitis, carried out by the method of cone-beam computed tomography (CBCT) and histological examination of the obtained material after CBCT. The material of the study was extracted teeth with a diagnosis of chronic apical periodontitis with periapical tissues. The assessment of the zones of the apical focus of destruction was carried out in different surfaces of the CBCT. The analysis was carried out by evaluating the values in the center, maximum and minimum on the HU optical unit scale. Histological preparations were obtained after CBCT by removing 30 teeth for medical reasons with the preservation of adjacent tissues. The results of the study demonstrated a diagnostic model with minimal indicators and a statistically significant focal area at P=0.0008.
  1. М.А. Чибисова, Н.М. Батюков, «Методы рентгенологического обследования и современной лучевой диагностики, используемые в стоматологии», Институт Стоматологии, том 88, номер 3, стр. 24-33, 2020. (M.A. Chibisova, N.M. Batyukov, “Methods of X-ray examination and modern radiation diagnostics used in dentistry”, The Dental Institute, vol. 88, no. 3, pp. 24-33, 2020.)
    Retrieved from: https://elibrary.ru/download/elibrary_44076240_42799355.pdf
    Retrieved on: Jun. 15, 2021
  2. А.И. Громов, «Проблема точности денситометрических показателей в современной многослойной компьютерной томографии», Медицинская визуализация, но. 3, стр. 133-142, 2016. (A.I. Gromov et al., “The problem of the accuracy of densitometric indicators in modern multilayer computed tomography”, Medical Vizualization, no. 6, pp. 133-142, 2016.)
    Retrieved from: https://medvis.vidar.ru/jour/article/viewFile/368/356
    Retrieved on: Jul. 21, 2021
  3. Е. В. Кайзеров, А. В. Холин, М. А. Чибисова, А. А. Зубарева, «Дифференциальная клинико–рентгенологическая характеристика различных типов одонтогенных кист челюстно–лицевой области», Лучевая диагностика и терапия, но. 1, стр. 11-23, 2018. (E.V. Kaiserov, A.V. Kholin, M.A. Chibisova, A.A. Zubareva, Differential clinical and radiological characteristics of odontogenic cysts of the maxillofacial region are of different types, Diagnostic radiology and radiotherapy, no. 1, pp. 11-23, 2018.)
    DOI: https://doi.org/10.22328/2079-5343-2018-9-1-11-23
  4. В.В. Ким, Ю.А. Мингазеев, В.С. Новиков, «Клинический опыт применения метода конусно-лучевой компьютерной томографии в эндодонтии», Эндодонтия Today, том 10, но. 1, стр. 53-56, 2012. (V.V. Kim, Ju.A. Mingazeeva, V.S. Novikov, “Clinical experience of using the method of cone-beam computed tomography in endodontics”, Endodontics Today, no. 1, pp. 53-56, 2012.)
    Retrieved from: https://www.endodont.ru/jour/article/view/709/583
    Retrieved on: Jun. 15, 2021
  5. И.П. Королюк, «ROC анализ (операционные характеристики наблюдателя): базовые принципы и применение в лучевой диагностике», Медицинская визуализация, но. 6, стр. 113-123, 2013. (I.P. Korolyuk, “ROC analysis (Receiver Operating Characteristic Analysis): basic principles and application in diagnostic radiology”, Medical Vizualization, no .6, pp. 113-123, 2013.)
    Retrieved from: http://vidar.ru/Article.asp?fid=MV_2013_6_113
    Retrieved on: Jun. 15, 2021
  6. А.Ю. Ногина, «Особенности применения метода конусно-лучевой компьютерной томографии в эндодонтической практике», Эндодонтия Today, но. 2, стр. 50-54, 2015. (A.Yu. Nogina, “Application features of the cone-beam computerized tomography method in endodontic practice”, Endodontics Today, no. 2, pp. 50-54, 2015.)
    Retrieved from: https://www.endodont.ru/jour/article/view/436/350
    Retrieved on: Jun. 16, 2021
  7. Г.И. Ронь и др., «Количественная оценка трехмерной реконструкции челюстно-лицевой области и возможности проведения денситометрии на конусно-лучевом компьютерном томографе в динамическом наблюдении пациентов с заболеваниями пародонта», Институт Стоматологии, но. 4, стр. 55-57, 2015. (G.I. Ron et al., “Quantitative assessment of three-dimensional reconstruction of the maxillofacial region and the possibility of densitometry on a cone-beam computed tomograph in the dynamic observation of patients with periodontal diseases”, The Dental Institute, no. 4, pp. 55-57, 2015.)
    Retrieved from: https://instom.spb.ru/catalog/article/10380/?view=pdf
    Retrieved on: Jun. 15, 2021
  8. О.Б. Селина и др., «Сравнительный анализ данных традиционной рентгенографии и дентальной конусно-лучевой компьютерной томографии при диагностике хронического гранулирующего периодонтита», Российский стоматологический журнал, том 20, номер 4, стр. 201-205, 2016. (O.B. Selina et al., “Comparative analysis of traditional dental radiography and cone beam computed tomography in the diagnosis of chronic granulating periodontitis”, Russian Journal of Dentistry, vol. 20, no. 4, pp. 201-205, 2016.)
    Retrieved from: https://rjdentistry.com/1728-2802/article/view/42068
    Retrieved on: Jun. 15, 2021
  9. С. В. Сирак и др., «Морфологические и гистохимические изменения в околокорневых гранулемах при хроническом гранулематозном периодонтите», Медицинский алфавит, том 2, но. 11, стр. 48–51, 2017. (S.V. Sirak et al., “Morphological and histochemical changes in oculocardiac granulomas in chronic granulomatous periodontitis”, Medical Alphabet, vol. 2, no. 11, pp. 48–51, 2017.)
    Retrieved from: https://www.med-alphabet.com/jour/article/view/178/178
    Retrieved on: Jun. 15, 2021
  10. С. В. Сирак и др., «Экспериментальная оценка регенераторного потенциала тканей пародонта», Пародонтология, том 21, но. 3, стр. 15-18, 2016. (S.V. Sirak еt al., “Experimental evaluation of the regenerative potential of periodontal tissues” Parodontology, vol. 21, no. 3, pp. 15-18, 2016.)
    Retrieved from: https://www.parodont.ru/jour/article/view/187/187
    Retrieved on: Jun. 16, 2021
  11. М.А. Чибисова, А.А. Зубарева, А.Л. Дударев, Е.В. Кайзеров, «Современные подходы к дифференциальной клинико-рентгенологической характеристике одонтогенных кист челюстно-лицевой области различных этиопатогенетических типов», Институт Стоматологии, но. 3, стр. 78-83, 2017. (M.A. Chibisova, D.V. Zubarev, A.L. Dudarev, E.V. Kajzerov, “Modern approaches to the differential clinical and radiological characteristics of odontogenic cysts of the maxillofacial region of various etiopathogenetic types”, The Dental Institute, no. 3, pp. 78-83, 2017.)
    Retrieved from: https://instom.spb.ru/catalog/article/10954/?view=pdf
    Retrieved on: Jun. 15, 2021
  12. J. Guo et al., “Evaluation of the reliability and accuracy of using cone-beam computed tomography for diagnosing periapical cysts from granulomas”, J. Endod., vol. 39, no. 12, pp. 1485-1490, 2013.
    DOI: https://doi.org/10.1016/j.joen.2013.08.019
  13. W.D. Grimm et al., “Neural crest-related stem cells of oral origins in vitro and used in osteoporotic sheep model for being investigated due to therapeutic effects in alveolar bone regeneration”, Medical News of North Caucasus, vol. 11, no. 2, pp. 192-196, 2016.
    DOI: https://doi.org/10.14300/mnnc.2016.11034
  14. C.S. De Rosa et al., “Differentiation of periapical granuloma from radicular cyst using cone beam computed tomography images texture analysis”, Heliyon, vol.6, no. 10, article no. E05194, 2020.
    DOI: https://doi.org/10.1016/j.heliyon.2020.e05194
  15. P.N.R. Nair, U. Sjögren, E. Schumacher, G. Sundqvist, “Radicular cyst affecting a root-filled human tooth: a long-term post-treatment follow-up”, Int. Endod. J., vol. 26, no. 4, pp. 225–233, 1993.
    DOI: https://doi.org/10.1111/j.1365-2591.1993.tb00563.x
    PMid: 8225641
  16. P.N.R. Nair, “New perspectives on radicular cysts: do they heal?”, Int. Endod. J., vol. 31, no. 3, pp. 155–160, 1998.
    DOI: https://doi.org/10.1046/j.1365-2591.1998.00146.x
    PMid: 10321160
  17. E. Natkin, R.J. Oswald, L.I. Carnes “The relationship of lesion size to diagnosis, incidence and treatment of periapical cysts and granulomas”, Oral Surg., Oral Med., Oral Pathol., vol. 57, no. 1, pp. 82–94, 1984.
    DOI: https://doi.org/10.1016/0030-4220(84)90267-6
    PMid: 6364008
  18. S. Patel at al., “European Society of Endodontology position statement: The use of CBCT in Endodontics”, Int. Endod. J., vol. 47, no. 6, pp. 502-504, 2014.
    DOI: https://doi.org/10.1111/iej.12267
    PMid: 24815882
  19. P.A. Rosenberg et al., “Evaluation of pathologists (histopathology) and radiologists (cone beam computed tomography) differentiating radicular cysts from granulomas”, J. Endod., vol. 36, no. 3, pp. 423–428, 2010.
    DOI: https://doi.org/10.1016/j.joen.2009.11.005
    PMid: 20171356
  20. J.H.S. Simon, “Incidence of periapical cysts in relation to the root canal”, J. Endod., vol. 6, no. 11, pp. 845–847, 1980.
    DOI: https://doi.org/10.1016/S0099-2399(80)80039-2
    PMid: 6935342
Anatoly A. Adamchik, Valerii V. Tairov, Maria V. Adamchik, Natalya I. Bykova, Ekaterina S. Zaporozhskaya-Abramova, Viktoria A. Ivashenko, Kseniya D. Kirsh, Zhanna V. Solovyeva , "Application of computed tomography in the diagnosis of chronic apical periodontitis",RAD Conf. Proc, vol. 5, 2021, pp. 62-67, http://doi.org/10.21175/RadProc.2021.12


N.M. Chervyakov, A.V. Boyarintsev, A.V. Andreev, S.I. Stepanov

DOI: 10.21175/RadProc.2021.13

Oxidative dissolution is the key stage of uranium oxide spent nuclear fuel (SNF) reprocessing technology in carbonate media. The ability to quickly and completely dissolve the main component of the SNF matrix - UO 2 in sodium or ammonium carbonate solutions in the presence of hydrogen peroxide at room temperature made it possible to substantiate carbonate media as an alternative to nitric acid media in the SNF reprocessing technology. Before the SNF oxidative dissolution stage, in the CARBEX (CARBonate EXtraction) process, voloxidation (volume oxidation) is carried out. As a result, UO2 completely turns into U3O8. In this work, the dissolution of U3O 8 in sodium carbonate solutions, in the presence of hydrogen peroxide, and sodium percarbonate was studied. The optimal dissolution conditions were determined. With the help of mathematical experimental data processing, the dissolution rates and the apparent activation energy values were calculated.
  1. H. Tomiyasu, Y. Asano, “Environmentally acceptable nuclear fuel cycle development of a new reprocessing system”, Prog. Nucl. Energ., vol. 32, no. 3–4 pp. 421–427, 1998.
    DOI: https://doi.org/10.1016/S0149-1970(97)00037-1
  2. G. S. Goff et al., “Development of a novel alkaline based process for spent nuclear fuel recycling”, AIChE Annual Meeting, Nuclear Engineering Division, Salt Lake City (Utah), USA, Nov. 4–9, 2007.
  3. K. W. Kim et al., “A study on a process for recovery of uranium alone from spent nuclear fuel in a high alkaline carbonate media”, NRC 7, Budapest, Hungary, Aug. 24–29, 2008.
  4. S. I. Stepanov, A. M. Chekmarev, “Concept of spent nuclear fuel reprocessing”, Dokl. Chem., vol. 423 no. 1, pp. 276–278, 2008.
    DOI: https://doi.org/10.1134/S0012500808110037
  5. C. Z. Soderquist et al., “Dissolution of irradiated commercial UO2 fuels in ammonium carbonate and hydrogen peroxide”, Ind. Eng. Chem. Res., vol. 50 no. 4, pp. 1813–1818, 2011.
    DOI: https://doi.org/10.1021/ie101386n
  6. N. Asanuma, M. Harada, Y. Ikeda, H. Tomiyasu, “New approach to the nuclear fuel reprocessing in non–acidic aqueous solutions”, J. Nucl. Sci. Technol. vol. 38, no. 10, pp. 866–871, 2001.
    DOI: https://doi.org/10.1080/18811248.2001.9715107
  7. K. W. Kim et al., “A conceptual process study for recovery of uranium alone from spent nuclear fuel by using high–alkaline carbonate media”, Nucl. Technol., vol. 166, no. 2, pp. 170–179, 2009.
    DOI: https://doi.org/10.13182/NT09-A7403
  8. S. M. Peper et al., “Kinetic study of the oxidative dissolution of UO 2 in aqueous carbonate media”, Ind. Eng. Chem. Res ., vol. 43, no. 26, pp. 8188–8193, 2004.
    DOI: https://doi.org/10.1021/ie049457y
  9. S. C. Smith, S. M. Peper, M. Douglas K. L. Ziegelgruber, E. C. Finn, “Dissolution of uranium oxides under alkaline oxidizing conditions”, J. Radioanal. Nucl. Chem., vol. 282, no. 3, pp. 617–621, 2009.
    DOI: https://doi.org/10.1007/s10967-009-0182-8
  10. S. A. Steward, E. T. Mones, “Aqueous dissolution rates of uranium oxides”, in American Nuclear Society's International High Level Waste Management Conference , Las Vegas (Nevada), USA, 1995.
  11. D. Y. Chung et al., “Oxidative leaching of uranium from SIMFUEL using Na2CO3–H2O2 solution”, J. Radioanal. Nucl. Chem., vol. 284, pp. 123–129, 2010.
    DOI: https://doi.org/10.1007/s10967-009-0443-6
  12. K. W. Kim et al., “An oxidative leaching of uranium in a H2O 2–CO32– system for a recovery of U alone from spent fuel without TRU”, GLOBAL 2009 Congress: The Nuclear Fuel Cycle: Sustainable Options and Industrial Perspectives , Paris, France, Sep. 6–11, 2009.
  13. K. W. Kim et al., “Preparation of uranium oxide powder for nuclear fuel pellet fabrication with uranium peroxide recovered from uranium oxide scraps by using a carbonate–hydrogen peroxide solution”, J. Radioanal. Nucl. Chem., vol. 292 pp. 909–916, 2012.
    DOI: https://doi.org/10.1007/s10967-011-1534-8
  14. S. I. Stepanov, A. V. Boyarintsev, A. M. Chekmarev, “Physicochemical foundations of spent nuclear fuel leaching in carbonate solutions”, Dokl. Chem. vol. 427, no. 2, pp. 202–206, 2009.
    DOI: https://doi.org/10.1134/S0012500809080060
  15. F. Clarens et al., “The oxidative dissolution of unirradiated UO2 by hydrogen peroxide as a function of pH”, J. Nucl. Mater., vol. 345, no. 2–3, pp. 225–231, 2005.
    DOI: https://doi.org/10.1016/j.jnucmat.2005.06.002
  16. S. A. Steward, W. J. Gray, “Comparison of uranium dissolution rates from spent fuel and uranium dioxide”, International high level radioactive waste management conference , UCRL–JC–115355, Las Vegas, NV, USA, May 1994.
    DOI: https://doi.org/10.2172/10163296
  17. S. A. Steward, E. T. Mones, “Comparison and modeling of aqueous dissolution rates of various uranium oxides”, Materials Research Society Conference, UCRL–JC–124602, Boston, MA, USA, 1996.
    Retrieved from: https://www.nrc.gov/docs/ML0334/ML033490600.pdf
    Retrieved on: Jun. 15, 2021
  18. S. N. Nguyen, H. C. Weed, H. R. Leider, R. B. Stout, “Dissolution kinetics of UO2, Flow–through tests, on UO2,00 pellets and polycrystalline schoepite samples in oxygenated, carbonate/bicarbonate buffer solutions at 25°C”, Material Research Society Conference UCRL–JC–107478, Strasbourg, France, 1991.
    Retrieved from: https://www.osti.gov/servlets/purl/6021724
    Retrieved on: Jun. 15, 2021
  19. E. Ekeroth, M. Jonsson, “Oxidation of UO2 by radiolytic oxidants”, J. Nucl. Mater., vol. 322, no. 2–3, pp. 242–248, 2003.
    DOI: https://doi.org/10.1016/j.jnucmat.2003.07.001
  20. J. S. Goldik, J. J. Noël, D. W. Shoesmith, “Surface electrochemistry of UO2 in dilute alkaline hydrogen peroxide solutions: Part II. Effects of carbonate ions”, Eletrochim. Acta., vol. 51, no. 16, pp. 3278–3286, 2006.
    DOI: https://doi.org/10.1016/j.electacta.2005.09.019
  21. T. Suzuki, A. Abdelouas, B. Grambow, T. Mennecart, G. Blondiaux, “Oxidation and dissolution rates of UO2(s) in carbonate–rich solutions under external alpha irradiation in initially reducing conditions”, Radiochim. Acta., vol. 94, no. 9–11, pp. 567–573, 2006.
    DOI: https://doi.org/10.1524/ract.2006.94.9-11.567
  22. J. de Pablo, I. Casas, F. Clarens, F. El. Aamrani, M. Rtovira,“The effect of hydrogen peroxide concentration on the oxidative dissolution of unirradiated uranium dioxide”, MRS Online Proceedings Library, vol. 663, article no. 409, 2000.
    DOI: https://doi.org/10.1557/PROC-663-409
  23. J. B. Hiskey, “Hydrogen peroxide leaching of uranium in carbonate solutions”, Transactions of the Institution of Mining and Metallurgy, Section C: Mineral Processing and Extractive Metallurgy vol. 89, pp. 145–152, 1980.
  24. В. К. Марков, А. В. Виноградов, С. В. Елинсон, Уран, методы его определения, Москва, Россия: Атомиздат, 1960.(V. K. Markov, E. A. Vernyi, A. V. Vinogradov, Uranium, methods of its definition, Moscow, Russia: Atomizdat, 1960.)
  25. Analytical Spectroscopy Library Volume 10 : Separation, preconcentration, and spectrophotometry in inorganic analysis , Z. Marczenko, M. Balcerzak, Eds., 1st ed., New York (NY), USA: Elsevier Science, 2000.
  26. B. Bertsch-Frank, A. Dorfer, G. Goor, H. U. Süss, “Hydrogen peroxide and inorganic peroxy compounds,” Ind. Inorg. Chem.: Prod. Uses pp. 175–198, 1995.
N.M. Chervyakov , A.V. Boyarintsev , A.V. Andreev, S.I. Stepanov, "Oxidative dissolution of triuranium octoxide in carbonate solutions",RAD Conf. Proc, vol. 5, 2021, pp. 68-74, http://doi.org/10.21175/RadProc.2021.13
Food Safety and Health


D. I. Petrukhina, I. M. Medzhidov, V. A. Kharlamov, M. G. Pomyasova, O. V. Tkhorik, S. A. Gorbatov, V.I. Shishko, A. Yu. Shesterikov, V. N. Tikhonov, A. V. Tikhonov, I. I. Ivanov

DOI: 10.21175/RadProc.2021.14

The use of physical methods in agro-industrial production has recently become more widespread due to the desire to reduce the level of chemicals. The relevance of the work is also determined by the low level of use of plasma technologies in agricultural production. This work aims to study the effect of non-thermal plasma source discharges on barley of the Vladimir variety seed growth rates and the surface microbiota. During the work on the study of the effect of non-thermal plasma on the sowing qualities of spring barley, it was found that the plasma treatment, in general, does not have a negative or stimulating effect on the initial growth processes of barley seeds. Treatment of barley seeds leads to a decrease in the total microbial count of the surface microbiota. Thus, it has been experimentally established that the microwave plasmatron is suitable for processing seed material.
  1. V. Scholtz, J. Pazlarova, H. Souskova, J. Khun, J. Julak, “Nonthermal plasma — A tool for decontamination and disinfection,” Biotechnol. Adv., vol. 33, no. 6, part 2, pp. 1108 – 1119, Nov. 2015.
    DOI: https://doi.org/10.1016/j.biotechadv.2015.01.002
  2. M. Ito, J.-S. Oh, T. Ohta, M. Shiratani, M. Hori, “Current status and future prospects of agricultural applications using atmospheric-pressure plasma technologies,” Plasma Proc. Polym., vol. 15, no. 2, article no. e1700073, Oct. 2017.
    DOI: https://doi.org/10.1002/ppap.201700073
  3. J. Ehlbeck et al., “Low temperature atmospheric pressure plasma sources for microbial decontamination,” J. Phys. D: Appl. Phys., vol. 44, no. 1, article no. 013002, Dec. 2010.
    DOI: https://doi.org/10.1088/0022-3727/44/1/013002
  4. N. Puač, M. Gherardi, M. Shiratani, “Plasma agriculture: A rapidly emerging field,” Plasma Proc. Polym., vol. 15, no. 2, article no. e1700174, Nov. 2017.
    DOI: https://doi.org/10.1002/ppap.201700174
  5. S.K. Pankaj et al., “Applications of cold plasma technology in food packaging,” Trends Food Sci. Technol., vol. 35, no. 1, pp. 5-17, Jan. 2014.
    DOI: https://doi.org/10.1016/j.tifs.2013.10.009
  6. J. Guo, K. Huang, J. Wang, “Bactericidal effect of various non-thermal plasma agents and the influence of experimental conditions in microbial inactivation: A review,” Food Control, vol. 50, pp. 482-490, Apr. 2015.
    DOI: https://doi.org/10.1016/j.foodcont.2014.09.037
  7. D. Ziuzina, “Atmospheric cold plasma as a tool for microbiological control,” Ph.D. dissertation, Dublin Institute of Technology, Dublin, Ireland, 2015.
    DOI: https://doi.org/10.21427/D7FW2Z
  8. N.N. Misra, O.K. Schlüter, P.J. Cullen, “Quality of Cold Plasma Treated Plant Foods” in Cold Plasma in Food and Agriculture: Fundamentals and Applications, San Diego, USA: Academic Press, 2016, ch. 10, pp. 253-271.
  9. V. Tikhonov, S. Gorbatov, I. Ivanov, A. Tikhonov, “The Low-Cost Microwave Source of Non-Thermal Plasma,” in Book of Abstr. 7th Int. Cong. on Energy Fluxes and Radiation Effects (EFRE) - 15th Int. Conf. on Modification of Materials with Particle Beams and Plasma Flows, Tomsk, Russia, 2020, pp.596-599.
    DOI: http://doi.org/10.1109/EFRE47760.2020.9242089
  10. Д.И. Петрухина, М.Г. Помясова, Е.И. Карпенко, “Исследование возможности применения нетермальной плазмы для фитосанитарной обработки семян ячменя,” Техника и оборудование Для Села, но. 9, стр. 30-33, 2020. (D. I. Petrukhina, M. G. Pomyasova, E. I Karpenko “Research of possibility of application of non-thermal plasma for phytosanitary treatment of barley seeds”, Mach. Equip. Rural Area, no. 9, pp. 30-33, 2020).
    DOI: http://doi.org/10.33267/2072-9642-2020-9-30-33
  11. В.А. Харламов, И.В. Полякова, Д.И. Петрухина, “Биоцидное действие нетермальной аргоновой плазмы на микробиоту семян ячменя,” Техника и оборудование для села, т. 4, но. 286, cтр. 20–23, 2021. (V.A. Kharlamov, I.V. Polyakova, D.I. Petrukhin, “Biocidal effect of non-thermal argon plasma on the microbiota of barley seeds,” Mach. Equip. Rural Area, vol. 4, no. 286, pp. 20-23, 2021.)
  12. Д.И. Петрухина, И.В. Полякова, С.А. Горбатов, “Биоцидная эффективность нетермальной аргоновой плазмы атмосферного давления,” Техника и технология пищевых производств, т. 51, но. 1, стр. 86-97, 2021. (D. Petrukhina, I. Polyakova, S. Gorbatov, “Biocide effect of non-thermal atmospheric pressure plasma,” Food Process. Techniq. Technol., vol. 51, no. 1, pp. 86–97, 2021.)
    DOI: https://doi.org/10.21603/2074-9414-2021-1-86-97
D. I. Petrukhina, I. M. Medzhidov, V. A. Kharlamov, M. G. Pomyasova, O. V. Tkhorik, S. A. Gorbatov, V.I. Shishko, A. Yu. Shesterikov, V. N. Tikhonov, A. V. Tikhonov, I. I. Ivanov, "The effect of seed treatment with non-thermal plasma",RAD Conf. Proc, vol. 5, 2021, pp. 75-77, http://doi.org/10.21175/RadProc.2021.14


S.O. Frankiv, A.V. Boyarintsev, S.I. Stepanov

DOI: 10.21175/RadProc.2021.15

The article discusses the results of the uranium(VI) re-extraction(stripping) from the methyltrioctilammonium organic phase loaded by uranium(VI) peroxo-carbonate species using ammonium carbonate and ammonium bicarbonate aqueous solutions or gaseous carbon dioxide. Conditions for 97–99% re-extraction of uranium(VI) to obtain crystalline ammonium uranyl carbonate with structure (NH4)4[UO 2(CO3)3] were determined.

  1. S. I. Stepanov, A. M. Chekmarev, “Concept of spent nuclear fuel reprocessing,” Dokl. Chem., vol. 423, no. 1, pp. 276–278, 2008.
    DOI: https://doi.org/10.1134/S0012500808110037
  2. G. S. Goff et al., “Development of a novel alkaline based process for spent nuclear fuel recycling”, AIChE Annual Meeting, Nuclear Engineering Division, Salt Lake City (Utah), USA, Nov. 4–9, 2007.
  3. N. Asanuma, M. Harada, Y. Ikeda, H. Tomiyasu, “New approach to the nuclear fuel reprocessing in non-acidic aqueous solutions,” J. Nucl. Sci. Technol., vol. 38, no. 10, pp. 866–871, 2001.
    DOI: https://doi.org/10.1080/18811248.2001.9715107
  4. K. W. Kim et al., “Development of a treatment process and immobilization method for the volume reduction of uranium-bearing spent catalysts for final disposal,” J. Nucl. Sci. Tech., vol. 55, no. 12, pp. 1459–1472, 2018.
    DOI: https://doi.org/10.1080/00223131.2018.1516578
  5. C. Z. Soderquist et al., “Dissolution of irradiated commercial UO2 fuels in ammonium carbonate and hydrogen peroxide,” Ind. Eng. Chem. Res., vol. 50, no. 4, pp. 1813–1818, 2011.
    DOI: https://doi.org/10.1021/ie101386n
  6. С. И. Степанов, А. М. Чекмарёв, “Экстракция редких металлов солями четвертичных аммониевых оснований,” Москва, Россия: ИздАТ, 2004. (S. I. Stepanov, A. M. Chekmarev, Extraction of rare metals by the salts of quaternary ammonium bases, Moscow, Russia: IzdAT, 2004.)
  7. V. Baran , F. Škvor, V. Voseček, “Formation of the ammonium-uranyl-carbonate complexes of the type (NH 4)4[UO2(CO3)3], prepared by precipitative re-extraction,” Inorg. Chim. Acta , vol. 81, pp. 83–89, 1984.
    DOI: https://doi.org/10.1016/S0020-1693(00)88739-3
  8. S. Chegrouche, A. Kebir, “Study of ammonium uranyl carbonate re-extraction-crystallization process by ammonium carbonate,” Hydrometallurgy, vol. 28, no. 2, pp. 135–147, 1992.
    DOI: https://doi.org/10.1016/0304-386X(92)90126-K
  9. Ю. А. Ревенко и др., “Способ переработки облученного ядерного топлива,” патент RU2366012, Россия, Публ. 27.08.2009. (Yu. A. Revenko et al., “Method of irradiated nuclear fuel treatment,” patent RU2366012, Russia, Publ. 08.27.2009.)
  10. B. Yahi, A. Kebir, “Influence of process re-extraction-crystallization parameters on the properties of ammonium uranyl-tricarbonate crystals,” Hydrometallurgy, vol. 34, no. 1, pp. 65–78, 1993.
    DOI: https://doi.org/10.1016/0304-386X(93)90081-N
  11. I. I. Chernyaev, Complex compounds of uranium, New York (NY), USA: Daniel Davey & Co., Ink., 1966.
  12. S. I. Stepanov et al., “CARBEX process, a new technology of reprocessing of spent nuclear fuel,” Russ. J. Gen. Chem., vol. 81, no. 9, pp. 1949–1959, 2011.
    DOI: https://doi.org/10.1134/S1070363211090404
  13. S. I. Stepanov, A. V. Boyarincev, A. A. Chehlov, A. M. Chekmarev, A. Yu. Tsivadze, “Chemistry of the CARBEX process. Identification of the absorption bands of the ligands in the electronic spectra of U(VI) extracts with methyltrioctylammonium carbonate,” Dokl. Chem., vol. 473, no. 1, pp. 63–66, 2017.
    DOI: https://doi.org/10.1134/S0012500817030065
  14. A. V. Boyarintsev et al., “Separation of uranium(VI) and americium(III) by extraction from Na2CO3-H2O2 solutions using methyltrioctylammonium carbonate in toluene,” Solvent Extr. Ion Exch., vol. 39, no. 7, pp. 745–763, 2021.
    DOI: https://doi.org/10.1080/07366299.2021.1876993
  15. В. К. Марков, А. В. Виноградов, С. В. Елинсон, Уран, методы его определения, Москва, Россия: Атомиздат, 1960. (V. K. Markov, E. A. Vernyi, A. V. Vinogradov, Uranium, methods of its definition, Moscow, Russia: Atomizdat, 1960.)
  16. Analytical Spectroscopy Library Volume 10: Separation, preconcentration, and spectrophotometry in inorganic analysis , Z. Marczenko, M. Balcerzak, Eds., 1st ed., New York (NY), USA: Elsevier Science, 2000.
  17. Н. С. Тураев, И. И. Жерин, Химия и технология урана, Москва, Россия: ЦНИИАТОМИНФОРМ, 2005. (N. S. Turaev, I. I. Gerin, Chemistry and uranium technology, Moscow, Russia: TSNIYATOMINFORM, 2005.)
  18. А. К. Бабко, В. С. Коденская, “Равновесия в растворе карбонатных комплексов уранила,” ЖНХ, т. 5, но. 11, с. 2568–2574, 1960. (A. S. Babko, V. S. Kodenskaya, “Study of equilibria in a solution of uranyl carbonate complexes,” Russ. J. Inorg. Chem., vol. 5, no. 11, pp. 2568–2574, 1960.)
S.O. Frankiv, A.V. Boyarintsev, S.I. Stepanov, "Precipitative re-extraction of uranium(vi) from organic solutions of methyltrioctilammonium uranyl peroxo-carbonate complexes", RAD Conf. Proc, vol. 5, 2021, pp. 78-83, http://doi.org/10.21175/RadProc.2021.15
Radiation Physics


R. Vernydub, O. Kyrylenko, O. Konoreva, O. Radkevych, D. Stratilat, V. Tartachnyk

DOI: 10.21175/RadProc.2021.16

The results of the effect of irradiation by electrons with E = 2 MeV, F = 2.6 · 1016 cm-2 on LEDs grown on the basis of GaP and GaAsP homojunctions, as well as on InGaN/GaN heterojunction structures with quantum wells are presented. The consequences of irradiation with γ-quanta from Со60 from an absorbed dose of 1.5 Mrad are analyzed. It is revealed that the introduction of radiation defects is accompanied by a decrease in the glow intensity due to the capture of charge carriers by deep levels of defects, an increase in the differential resistance, and a decrease in the reverse currents of p-n junctions. Isochronism annealing of irradiated samples is multistage and proceeds within the range (20 ÷ 300 °С, for GaP LEDs) and (20 ÷ 450 °С, for GaAsP LEDs). The maximum quantum output of InGaN LEDs has been 32 %, irradiated with γ-Со60 with an absorbed dose of 1.5 Mrad – 17 %.
  1. В. И. Светцов, И. В. Холодков, Физическая электроника и электронные приборы, Иваново, Россия: Ивановский государственный химико-технологический университет, 2008. (V. I. Svetsov, I. V. Holodkov, Physical electronics and electronic devices, Ivanovo, Russia: Ivanovo State University of Chemistry and Technology, 2008.)
    Retrieved from: https://www.isuct.ru/dept/nochem/tpmet/images/stories/met/fizel.pdf
    Retrieved on: July 15, 2021
  2. А.С. Васюра, Елементи та пристрої систем управління автоматики, Вінниця, Україна: ВДТУ, 1999. (А.S. Vasyura, Elements and devices of automation control systems, Vinnitsa, Ukraine: VDTU, 1999.)
    Retrieved from: http://pdf.lib.vntu.edu.ua/books/Vasyura_P3_2001_134.pdf
    Retrieved on: July 15, 2021
  3. С.С. Вильчинская, В.М. Лисицын, Оптические материалы и технологии, Томск, Россия: ТПУ, 2011. (S.S. Vilchinskaya, V.M. Lisitsyn, Optical materials and technologies, Tomsk, Russia: TPU, 2011.)
    Retrieved from: https://docplayer.ru/34552133-Opticheskie-materialy-i-tehnologii.html
    Retrieved on: July 15, 2021
  4. В.С. Осадчук, О.В. Осадчук, “Напівпровідникові прилади з від’ємним опором”, Вінниця, Україна: ВДТУ, 2006. (V.S. Оsаdchyk, О.V. Osаdchyk, “Negative resistance semiconductors”, Vinnitsa, Ukraine: VDTU, 2006.)
    Retrieved from: http://ir.lib.vntu.edu.ua/bitstream/handle/123456789/7957/%D0%9D%D0%9F_%D0%92%D0%9E_1.pdf?sequence=1&isAllowed=y
    Retrieved on: July 15, 2021
  5. Ф.П. Коршунов, Ю.В. Богатырев, В.А. Вавилов, Воздействие радиации на интегральные микросхемы, Минск, Беларусь: Наука и техника, 1986. (F.P. Korshunov, Yu.V. Bogatyrev, V.А. Vavilov, Impact of radiation on integrated microcircuits, Minsk, Belarus: Science and Technology, 1986.)
  6. І.А. Большакова, Я.Я. Кость, О.Ю. Макідо, А.П. Штабалюк, Ф.М. Шуригін, “Радіаційна модифікація як спосіб стабілізації параметрів Іn-вмісних напівпровідникових матеріалів, Вісник Національного університету “Львівська політехніка”, Електроніка, № 734, с. 28-33, 2012. (I.A. Bolchakova, Ya.Ya. Kost, O.Yu. Makido, A.P. Stabalyuk, F.M. Shyrygin, “Radiation mоdification as a method of paraments stabilization for in-containing semiconductor materials”,Visnyk Natsionalnoho Universytetu «Lvivska Politekhnika», Elektronika, vol. 734, pp. 28-33, 2012.)
    Retrieved from: http://ena.lp.edu.ua:8080/bitstream/ntb/16051/1/6-Bolshakova-28-33.pdf
    Retrieved on: July 15, 2021
  7. С.В. Луньов, Ю.А. Удовицька, М.В. Хвищун, С.А. Мороз, В.Т. Маслюк, “Технологія одержання чутливого елемента для датчика інфрачервоного випромінювання”, Перспективні технології та прилади, №14, с. 77-81, 2019. (S.V. Luniov, Yu.A. Udovytska, M.V. Khvyshchun, S.A. Moroz, V.Т. Maslyuk, “Technology for obtaining a sensitive element for an infrared radiation sensor”. Perspective Technologies and Devices, no. 14, pp. 77-81, 2019.)
    DOI: https://doi.org/10.36910/6775-2313-5352-2019-14-13
  8. I.F. Chang et al., “Effects of proton irradiations on GaN-based materials”. Physica Status Solidi (c), vol. 1, no. 10, p. 2466-2469, 2004.
    DOI: https://doi.org/10.1002/pssc.200405017
  9. Б.П. Коман, “Вплив альфа-опромінення на кремнієві мон-транзистори”, Сенсорна електроніка і мікросхемні технології, том 9, № 1, с. 88-96, 2012. (B.P. Koman, “The influence of alpha-irradiation on the silicon MOS–transistors”, Sensor Electronics and Microsystem Technologies, vol. 9, no. 1, pp. 88-96, 2012.)
    DOI: https://doi.org/10.18524/1815-7459.2012.1.112938
  10. D. Iida et al., “633-nm InGaN-based red LEDs grown on thick underlying GaN layers with reduced in-plane residual stress”, Applied Physics Letters, vol. 116, article no. 162101, 2020.
    DOI: https://doi.org/10.1063/1.5142538
  11. D. Iida, Z. Zhuang, P. Kirilenko, M. Velazgues–Riso, K. Ohkava, “Demonstration of low forward voltage InGaN-based red LEDs”, Applied Physics Express, vol. 13, no. 3, article no. 031001, 2020.
    DOI: https://doi.org/10.35848/1882-0786/ab7168
  12. S.H. Back, H.J. Lee, S.N. Lee, “High-performance flat-type InGaN-based light-emitting diodes with local breakdown conductive channel”, Scientific Reports, vol. 9, article no. 13654, 2019.
    DOI: https://doi.org/10.1038/s41598-019-49727-4
  13. S.H. Han, S.H. Back, H.J. Lee, H.S. Kim, S.N. Lee, “Breakdown-induced conductive channel for III-nitride light-emitting devices”, Scientific Reports, vol. 8, article no. 16547, 2018.
    DOI: https://doi.org/10.1038/s41598-018-34869-8
  14. S. Zhou, X. Liu, “Effects of V-pits embedded InGaN/GaN superlattices on optical and electrical properties of GaN-based green light-emitting diodes”, Physica Status Solidi (a), vol. 214, no. 5, 2017.
    DOI: https://doi.org/10.1002/pssa.201600782
  15. M. Liu et al., “An InGaN/GaN Superlattice to Enhance the Performance of Green LED’s: Exploring the Role of V-pits”, Nanomaterials, vol. 8, no. 7, article no. 450, 2018.
    DOI: https://doi.org/10.3390/nano8070450
  16. F. Olives et al., “Influence of size-reduction on the performances of GaN-based micro-LEDs for display application”, Journal of Luminescence, vol. 191, part B, pp. 112-116, 2017.
    DOI: https://doi.org/10.1016/j.jlumin.2016.09.052
  17. K.M. Song, S.W. Lee, K.B. Kim, S.N. Lee, “Observation of applied bias-dependent dot-like luminescence in GaInN-based light-emitting diodes”, Journal of Alloys and Compounds, vol. 660, pp. 392-397, 2016.
    DOI: https://doi.org/10.1016/j.jallcom.2015.11.130
  18. S. Zhou et al., “High efficient and reliable high power LED’s with patterned sapphire subtract and strip-shaped distributed current blocking layer”, Applied Surface Science, vol. 355, pp. 1013-1019, 2015.
    DOI: https://doi.org/10.1016/j.apsusc.2015.07.194
  19. П.Г. Літовченко та ін., “Випромінювальна рекомбінація в опроміненному фосфіді галію”, Фізика і хімія твердого тіла, том 6, №. 1, с. 50-56, 2005. (P.H. Lytovchenko et al., “Radiation recombination on irradiation Gallium Phosphide”, Physics and Chemistry of Solid State, vol. 6, no. 1, pp. 50-56, 2005).
    Retrieved from: http://page.if.ua/uploads/pcss/vol6/0601-06.pdf
    Retrieved on: July 15, 2021
  20. G. Gaydar et al., “About bond model of S-type negative differential resistance in GaP LEDs”, Superlattices and Microstructures, vol. 104, pp. 316-320, 2017.
    DOI: https://doi.org/10.1016/j.spmi.2017.02.042
  21. E.Yu. Brailovskii, I.D. Konozenko, V.G. Makarenko, V.S. Manzhara, V.P. Tartachnik, Introduction and annealing of defects in GaP upon electron irradiation, Rep. AED-Conf--74-328-021, 1974.
    Retrieved from: https://inis.iaea.org/search/searchsinglerecord.aspx?recordsFor=SingleRecord&RN=6163679
    Retrieved on: July 15, 2021
  22. Ф. Шуберт, Светодиоды, пер. с англ. под ред. А.Э. Юновича, 2-е изд., Москва, Россия: ФИЗМАТЛИТ, 2008. (F. Schubert, LEDs, Translated from English by A.E. Yunovich, 2nd ed., Moscow: Fizmatlit, 2008.)
    Retrieved from: https://www.elec.ru/files/2019/10/02/Svetodiody_2008.pdf
    Retrieved on: July 15, 2021
R. Vernydub, O. Kyrylenko, O. Konoreva, O. Radkevych, D. Stratilat, V. Tartachnyk, "Radiation defects in GaP, GaAsP, InGaN LEDs", RAD Conf. Proc, vol. 5, 2021, pp. 84–89, http://doi.org/10.21175/RadProc.2021.16
Medical Imaging


Yu.A. Stepanova, D.A. Kiseleva, N.O. Sultanova

DOI: 10.21175/RadProc.2021.17

he article discusses the use of shear wave elastography in assessment of age-related atrophy of muscle tissue in the lower third of face as a preoperative diagnostic option. The aim was to study the possibility of using sonoelastography in the study of changes in elasticity of muscle tissue of the lower third of the face in women as a result of age-related atrophic processes. The research involved 45 women divided into three equal groups by age (20-30, 30-40 and 40-60 years old). Elasticity of muscle tissue in the area of buccinator muscle was assessed using shear wave elastography. A statistically significant progressive decrease in the elasticity of muscle tissue in the lower third of face, associated with the age-related atrophy, was revealed. We have shown that using sonoelastography it is possible to display atrophic processes in the facial muscle tissue, which can be used in future in preoperative diagnosis and selection of the optimal correction method. It is a promising method for evaluating age-related changes in soft tissues in aesthetic medicine and cosmetology. Further research on the application of this method can contribute to its implementation in everyday practice in this field of medicine.
  1. J. Chuang, C. Barnes, B.J.F. Wong, “Overview of Facial Plastic Surgery and Current Developments”, Surg. J. (N-Y), vol. 2, no. 1, pp. e17-e28, 2016.
    DOI: https://doi.org/10.1055/s-0036-1572360
  2. M.S. Taljanovic et al., “Shear-wave elastography: Basic physics and musculoskeletal applications”, RadioGraphics, vol. 37, no. 3, pp. 855-870, 2017.
    DOI: https://doi.org/10.1148/rg.2017160116
  3. Y. Sowa, T. Numajiri, K. Nishino, “Ultrasound shear-wave elastography for follow-up fat induration after breast reconstruction with an autologous flap”, Plastic and Reconstructive Surgery–Global Open, vol. 3, no. 9, article no. e518, 2015.
    DOI: https://doi.org/10.1097/GOX.0000000000000493
  4. Y. Sowa, T. Numajiri, S. Itsukage, K. Nishino, “Comparison of Shear-Wave and Strain Ultrasound Elastography for Evaluating Fat Induration after Breast Reconstruction”, Plastic and Reconstructive Surgery-Global Open, vol. 4, no. 4, article no. e677, 2016.
    DOI: https://doi.org/10.1097/GOX.0000000000000678
  5. L. Paluch, M. Ambroziak, P. Pietruski, B. Noszczyk, “Shear Wave Elastography in the Evaluation of Facial Skin Stiffness after Focused Ultrasound Treatment”, Dermatologic Surgery, vol. 45, no. 12, pp. 1620-1626, 2019.
    DOI: https://doi.org/10.1097/DSS.0000000000001881
  6. M. Ambroziak, B. Noszczyk, P. Pietruski, G. Wieslaw, L. Paluch, “Elastography reference values of facial skin elasticity”, Advances in Dermatology and Allergology, vol. 36, no. 5, pp. 626-634, 2019.
    DOI: https://doi.org/10.5114/ada.2018.77502
  7. A.M. Alfuraih, A.L. Tan, P. O’Connor, P. Emery, R.J. Wakefield, “The effect of ageing on shear wave elastography muscle stiffness in adults”, Aging Clinical and Experimental Research, vol. 31, pp. 1755-1763, 2019.
    DOI: https://doi.org/10.1007/s40520-019-01139-0
  8. S.P. Barlett, I. Wornom, L.A. Whitaker, “Evaluation of facial skeletal aesthetics and surgical planning”, Clinical Plastic Surgery, vol. 18, no. 1, pp. 1-9, 1991.
    PMid: 2015737
  9. B. Ascher, P. Katz, “Facial lipoatrophy and the place of ultrasound”, Dermatologic Surgery, vol. 32, no. 5, pp. 698-708, 2006.
    DOI: https://doi.org/10.1111/j.1524-4725.2006.32143.x
  10. Т.Н. Киселева, М.Г. Катаев, Н.В. Ильина, М.А. Захарова, К.А. Рамазанова, “Метод ультразвукового сканирования в оценке состояния век”, Вестник офтальмологии, т. 130, н. 1, c. 46-51, 2014. (T.N. Kiseleva, M.G. Kataev, N.V. Ilyina, M.A. Zakharova, K.A. Ramazanova, “Ultrasound scanning method in assessing the condition of the eyelids”, Bulletin of Ophthalmology, vol. 130, no. 1, pp. 46-51, 2014.)
  11. Ю.А. Степанова, Д.А. Киселева, Н.О. Султанова, “Способ выбора тактики коррекции возрастных изменений мышечных тканей нижней трети лица по данным эластометрии”, Патент на изобретение №2721143, Заявка №2020103904/14(006020), приоритет изобретения от 20.01.2020. (Yu.A. Stepanova, D.A. Kiseleva, N.O. Sultanova, “Method for choosing tactics for correcting age-related changes in muscle tissues of the lower third of the face according to elastometry data”, Patent for invention No. 2721143 (Application No. 2020103904/14 (006020), priority of invention dated 20.01.2020)
  12. Ю.А. Степанова, Д.А. Киселева, Н.О. Султанова, “Способ определения степени возрастной атрофии мышечной ткани нижней трети лица по данным эластометрии”, Патент на изобретение №2721141, Заявка №2020103905/14(006021), приоритет изобретения от 20.01.2020 г. (Yu.A. Stepanova, D.A. Kiseleva, N.O. Sultanova, “Method for determining the degree of age-related atrophy of muscle tissue of the lower third of the face according to elastometry data”, Patent for invention No. 2721141 (Application No. 2020103905/14 (006021), priority of invention dated 20.01.2020)
Yu.A. Stepanova, D.A. Kiseleva, N.O. Sultanova, "Possibilities of sonoelastography in the evaluation of the lower third of face soft tissues changes determining the most effective method of correction: a pilot study using sonoelastography", RAD Conf. Proc, vol. 5, 2021, pp. 90–93, http://doi.org/10.21175/RadProc.2021.17


N.M. Chervyakov, A.V. Boyarintsev, S.A. Perevalov, S.I. Stepanov, S.E. Vinokurov

DOI: 10.21175/RadProc.2021.18

This article presents preliminary results of the study of neptunium(IV) oxide dissolution in aqueous solutions of Na2CO3 in the presence of ammonium persulfate and hydrogen peroxide. In these carbonate systems, the value of NpO2 dissolution yield did not exceed 1.5–1.6%. Ultrasonication makes it possible to significantly increase the dissolution rate of neptunium(IV) oxide in Na2CO 3 solutions in the presence of hydrogen peroxide. Under such conditions, about 25% of neptunium(IV) oxide powder can be dissolved in one dissolution step (210–270 min). A possible factor affecting the increase of NpO2 dissolution yield is the increase of oxidative and reaction activity in the carbonate systems under ultrasonic impact.
  1. T. Fanghänel, J. P. Glatz, R. J. M. Konings, V. V. Rondinella, J. Somers, “Transuranium elements in the nuclear fuel cycle,” in Handbook of Nuclear Engineering, D.G. Cacuci, Ed . Boston (Massachusetts), USA: Springer, 2010, vol. 5, ch. 26, pp. 2935–2998.
    DOI: https://doi.org/10.1007/978-0-387-98149-9
  2. P. Gotcu-Freis, High temperature thermodynamic studies on the transuranium oxides and their solid solutions , Amsterdam, The Netherlands: IOS Press, 2011.
  3. C. Z. Soderquist et al., “Dissolution of irradiated commercial UO2 fuels in ammonium carbonate and hydrogen peroxide,” Ind. Eng. Chem. Res., vol. 50, pp. 1813–1818, 2011.
    DOI: https://doi.org/10.1021/ie101386n
  4. S. M. Peper et al., “Kinetic study of the oxidative dissolution of UO 2 in aqueous carbonate media,” Ind. Eng. Chem. Res., vol. 43, pp. 8188–8193, 2004.
    DOI: https://doi.org/10.1021/ie049457y
  5. S. C. Smith, S. M. Peper, M. Douglas, K. L. Ziegelgruber, E. C. Finn, “Dissolution of uranium oxides under alkaline oxidizing conditions,” J. Radioanal. Nucl. Chem., vol. 282, no. 3, pp. 617–621, 2009.
    DOI: https://doi.org/10.1007/s10967-009-0182-8
  6. D. Y. Chung et al., “Oxidative leaching of uranium from SIMFUEL using Na2CO3-H2O2 solution,” J. Radioanal. Nucl. Chem., vol. 284, pp. 123–129, 2010.
    DOI: https://doi.org/10.1007/s10967-009-0443-6
  7. S. I. Stepanov, A. M. Chekmarev, “Concept of spent nuclear fuel reprocessing,” Dokl. Chem., vol. 423, no. 1, pp. 276–278, 2008.
    DOI: https://doi.org/10.1134/S0012500808110037
  8. N. Asanuma et al., “Anodic dissolution of UO2 pellet containing simulated fission products in ammonium carbonate solution,” J. Nucl. Sci. Tech., vol. 43, no. 3, pp. 255–262, 2006.
    DOI: https://doi.org/10.1080/18811248.2006.9711087
  9. N. Asanuma, M. Harada, Y. Ikeda, H. Tomiyasu, “New approach to the nuclear fuel reprocessing in non-acidic aqueous solutions,” J. Nucl. Sci. Technol., vol. 38, no. 10, pp. 866–871, 2001.
    DOI: https://doi.org/10.1080/18811248.2001.9715107
  10. K. W. Kim, G. I. Park, E. H. Lee, K. W. Lee, K. C. Song, “Electrolytic dissolutions of UO2 and SIMFUEL in carbonate solutions at several pHs,” Int. J. Chem. Mol. Eng., vol. 4, no. 11, pp. 707–710, 2010.
    DOI: https://doi.org/10.5281/zenodo.1077327
  11. W. Runde, L. F. Brodnax, S. M. Peper, B. I. Scott, G. Jarvinen, “Structure and stability of peroxo complexes of uranium and plutonium in carbonate solutions,” in Actinides 2005 Conf. Proc., Manchester, UK, 2005.
  12. M. Altmaier, X. Gaona, T. Fanghänel, “Recent advances in aqueous actinide chemistry and thermodynamics,” Chem. Rev., vol. 113, no. 2, pp. 901–943, 2013.
    DOI: https://doi.org/10.1021/cr300379w
  13. K. W. Kim et al., “A conceptual process study for recovery of uranium alone from spent nuclear fuel by using high–alkaline carbonate media,” Nucl. Technol., vol. 166, no. 2, pp. 170–179, 2009.
    DOI: https://doi.org/10.13182/NT09-A7403
  14. J. B. Hiskey, “Hydrogen peroxide leaching of uranium in carbonate solutions,” Transactions of the Institution of Mining and Metallurgy, Section C: Mineral Processing and Extractive Metallurgy, vol. 89, pp. 145–152, 1980.
  15. G. S. Goff, L. F. Brodnax, M. R. Cisneros, W. H. Runde, “Redox chemistry of actinides in peroxide-carbonate media: Applications to developing a novel process for spent nuclear fuel reprocessing,” AIChE Annual Meeting, Environmental Division, Salt Lake City (Utah), USA, Nov. 4–9, 2007, 271e.
  16. Z. Yoshida, S. G. Johnson, T. Kimura, J. R. Krsul, “Neptunium,” in The Chemistry of the Actinide and Transactinide Elements, L. R. Morss, N. M. Edelstein, J. Fuger, Eds., Dordrecht, The Netherlands: Springer, 2006, vol. 2, ch. 6, pp. 699–812.
    DOI: https://doi.org/10.1007/1-4020-3598-5
  17. G. D. Jarvinen, W. H. Runde, G. S. Goff, “Development of alkaline solution separation for potential partitioning of used nuclear fuels,” in Proc. SESTEC-2010, Indira Gandhi Center for Atomic Research, Kalpakkam, India, 2010, manuscript no. LA-UR-09-08250.
    Retrieved from: https://www.osti.gov/servlets/purl/981842
    Retrieved on: Jun. 15, 2021
  18. V. P. Shilov, A. B. Yusov, A. V. Gogolev, A. M. Fedoseev, “Behavior of Np(VI) and Np(V) ions in NaHCO3 solutions containing H 2O2,” Radiochem., vol. 47, no. 6, pp. 558–562, 2005.
    DOI: https://doi.org/10.1007/s11137-006-0007-3
  19. V. P. Shilov, A. M. Fedoseev, “Reaction of Np(VI) with Н2О 2 in carbonate solutions,” Radiochem., vol. 52, no. 3, pp. 245–249, 2010.
    DOI: https://doi.org/10.1134/S1066362210030045
  20. V. P. Shilov, A. M. Fedoseev, “Oxidation of Np(IV) with hydrogen peroxide in carbonate solutions,” Radiochem., vol. 55, no. 3, pp. 287–290, 2013.
    DOI: https://doi.org/10.1134/S1066362213030077
  21. V.P. Shilov, A.B. Yusov Redox reactions of actinides in carbonate and alkaline solutions, Russ. Chem. Rev., vol. 71, no. 6, pp. 465–488, 2002.
    DOI: https://doi.org/10.1070/RC2002v071n06ABEH000719
  22. С. И. Ровный, П. П. Шевцев, “Современное состояние и пути совершенствования радиохимической технологии выделения и очистки урана и плутония,” Вопросы радиационной безопасности, но. 2. стр. 5–13, 2007. (S. I. Rovny, P. P. Shevtsev, “Modern state and ways to improve radiochemical technology for the isolation and purification of uranium and plutonium,” Radiation Safety Issues, no. 2, pp. 5–13, 2007.)
  23. R. J. Lemire, An assessment of the thermodynamic bahaviour of neptunium in water and model groundwaters from 25 to 150°C, Rep. AECL-7817, Atomic Energy of Canada Limited Whiteshell Nuclear Research Establishment Pinawa, Manitoba, Canada, 1984.
    Retrieved from: https://inis.iaea.org/collection/NCLCollectionStore/_Public/16/041/16041385.pdf
    Retrieved on: Jun. 15, 2021
  24. S. S. Kim, M. H. Baik, K. C. Kang, “Solubility of neptunium oxide in the KURT (KAERI Underground Research Tunnel) groundwater,” J. Radioanal. Nucl. Chem., vol. 280, pp. 577–583, 2009.
    DOI: https://doi.org/10.1007/s10967-009-7481-y
  25. D. Rai, N. J. Hess, A. R. Felmy, D. A. Moore, M. Yui, “A thermodynamic model for the solubility of NpO2(am) in the aqueous K+–HCO3–CO32––OH –H2O system,” Radiochim. Acta, vol. 84, no. 3, pp. 159–169, 1999.
    DOI: https://doi.org/10.1524/ract.1999.84.3.159
  26. T. E. Eriksen et al., Solubility of the redox–sensitive radionuclides 99Tc and 237Np under reducing conditions in neutral to alkaline solutions. Effect of carbonate , SKB Tech. Rep. 93–18, Swedish Nuclear Fuel And Waste Management Co., Stockholm, Sweden, 1993.
    Retrieved from: https://www.skb.se/publikation/9249/TR93-18webb.pdf
    Retrieved on: Jun. 15, 2021
  27. A. Kitamura, Y. Kohara, “Solubility of neptunium(IV) in carbonate media,” J. Nucl. Sci. Tech., vol. 39, no. sup3, pp. 294–297, 2002.
    DOI: https://doi.org/10.1080/00223131.2002.10875466
  28. A. I. Moskvin, “Complex formation of neptunium(IV, V, VI) in carbonate solutions,” Sov. Radiochem., vol. 13, no. 5, pp. 694–699, 1971.
  29. P. Vitorge, H. Capdevila, Np(V) et Np(VI) en solution aqueuse bicarbonate/carbonate, Rapport CEA-R-5793, Commissariat à l'Energie Atomique, France, 1998. (P. Vitorge, H. Capdevila, Np(V) and Np(VI) in bicarbonate/carbonate aqueous solutions, Report CEA-R-5793, Atomic Energy Commission, France, 1998.)
  30. A. Saito, K. Ueno, “The precipitation of some actinide element complex ions by using hexammine cobalt(III) cation–V: Absorption spectra and the precipitation of neptunium(IV), (V) and (VI) carbonate complex ions,” J. Inorg. Nucl. Chem., vol. 39, no. 2, pp. 315–318, 1977.
    DOI: https://doi.org/10.1016/0022-1902(77)80021-3
  31. S. I. Stepanov, A. V. Boyarintsev, A. M. Chekmarev, “Physicochemical foundations of spent nuclear fuel leaching in carbonate solution,” Dokl. Chem., vol. 427, no. 2, pp. 202–206, 2009.
    DOI: https://doi.org/10.1134/S0012500809080060
  32. S. I. Stepanov et al., “CARBEX process, a new technology of reprocessing of spent nuclear fuel,” Russ. J. Gen. Chem., vol. 81, no. 9, pp. 1949–1959, 2011.
    DOI: https://doi.org/10.1134/S1070363211090404
  33. Б. А. Агранат, М. Н. Дубровин, Н. Н. Хавский, Г. И. Эскин, Основы физики и техники ультразвука, Москва, Высшая школа, 1987. (B. A. Agranat, M. N. Dubrovin, N. N. Havsky, G. I. Eskin, Fundamentals of physics and ultrasound technology, Moscow, Higher School, 1987.)
  34. M. V. Nikonov, V. P. Shilov, N. N. Krot, “The influence of ultrasound for redox reactions of actinide ions,” in International Conference on Actinides - 89, Tashkent, USSR, 1989, INIS-SU-257.
  35. A.В. Гоголев, В.П. Шилов, A.M. Федосеев, А.К. Пикаев, “Кинетика радиационно-химических реакций трех- и четырехвалентных актиноидов и лантаноидов в карбонатных растворах,” Известия АН СССР. Серия химическая, № 1, с. 28–32, 1990. (A.V. Gogolev, V.P. Shilov, A.M. Fedoseev, A.K. Pikaev, “Kinetics of radiation-chemical reactions of three- and four-valent actinoids and lanthanides in carbonate solutions,” Izvestiya AC USSR. Chemical series, no. 1, pp. 28–32, 1990.)
  36. М. В. Никонов, К. В. Куранов, В. П. Шилов, “Сонохомический метод получения нептуния(VII),” Известия АН СССР. Серия химическая, № 3, С. 717. 1988. (M. V. Nikonov, K. V. Kuranov, V. P. Shilov, “Sonochomical method of obtaining neptunium(VII),” Izvestia of the USSR Academy of Sciences. Chemical series, no. 3, pp. 717, 1988.)
  37. М. В. Никонов, В. П. Шилов, “Сонохимическое растворение NpO2 и PuO2 в водных щелочных растворах,” Радиохимия, т. 32, № 6, с. 43, 1990. (M. V. Nikonov, V. P. Shilov, “Sonochemical dissolution of NpO2 and PuO2 in aqueous alkaline solutions,” Radiochemistry, vol. 32, no. 6, p. 43, 1990.)
N.M. Chervyakov, A.V. Boyarintsev, S.A. Perevalov, S.I. Stepanov, S.E. Vinokurov, "Oxidative dissolution of neptunium(iv) oxide in carbonate solutions", RAD Conf. Proc, vol. 5, 2021, pp. 94–99, http://doi.org/10.21175/RadProc.2021.18


L. N. Komarova, A. A. Melnikova

DOI: 10.21175/RadProc.2021.19

The purpose of this work was to study the nature of the combined effect of ionizing radiation of accelerated 12C ions with the antitumor agent doxorubicin on malignant cells. In the course of the research, new results were obtained on the manifestation of the synergistic character of the interaction of the agents used on the cells of the MCF-7 tumor line, which is of important practical and theoretical significance for understanding the mechanism of the combined effect of ionizing radiation and the chemotherapy drug doxorubicin. The obtained data will help to optimize the combined effects in order to achieve maximum synergistic interaction.
  1. С. И. Ткачев, М. И. Нечушкин, Т. В. Юрьева, “Современные возможности лучевой терапии злокачественных опухолей,” Вестник РАМН, но. 12, cтр. 34–40, 2011. (S. I. Tkachev, M. I. Nechushkin, T. V. Yuryeva, “Modern possibilities of radiation therapy of malignant tumors,” Bull. of the Russian Academy of Medical Sciences, no. 12, pp. 34-40, 2011.)
  2. Д. В. Лосев, М. Ф. Ломанов, А. П. Черняев, “Аналитический расчет модифицированной кривой Брэгга,” Препринт НИИЯФ МГУ, но. 16, 2003. (D. V. Losev, M. F. Lomanov, A. P. Chernyaev, “Analytical calculation of the modified Bragg curve,” Preprint of the Moscow State University Research Institute of Nuclear Physics , no. 16, 2003.)
  3. Н. И. Переводчиковой, Руководство по химиотерапии опухолевых заболеваний, Москва: Практическая Медицина, 2011. (N. I. Perevodchikova, Guide to chemotherapy of tumor diseases, Moscow: Practical Medicine, 2011.)
  4. F. J. Rini, E. J. Hall, S. A. Marino, “The oxygen enhancement ratio as a function of neutron energy with mammalian cells in culture,” Radiat. Res., vol. 78, no. 1, pp. 25-37, 1979.
    DOI: https://doi.org/10.2307/3575004
  5. D. A. Kasatov et al., “Radiation at absorption of 2 MeV of protons in various materials,” Nuclear Physics, vol. 78, no. 11, pp. 963-969, 2015.
  6. L. A. Mostovich et al., “Influence the epithermal neutrons on viability of tumor cells of glioblastoma of in vitro,” Bull. Exper. Biology and Medicine, vol. 151, no. 2, pp. 229-235, 2011.
  7. С. П. Ярмоненко, А. А. Вайнсон, Радиобиология человека и животных, Москва: Высшая школа, 2004. (S. P. Yarmonenko, A. A. Vainson,Radiobiology of Humans and Animals, Moscow: Vysshaya shkola, 2004.)
  8. В. Г. Петин, Г. П. Жураковская, Л. Н. Комарова, Радиобиологические основы синергетических взаимодействий в биосфере , Москва: ГЕОС, 2012. (V. G. Petin, G. P. Zhurakovskaya, L. N. Komarova, Radiobiological bases of synergistic interactions in the biosphere, Moscow: GEOS, 2012.)
  9. Г. П. Жураковская, В. Г. Петин, “Принципы математического моделирования комбинированных воздействий в биологии и медицине (обзор литературы),” Радиация и Риск, т. 24, но. 1, стр. 61-73, 2015. (G. P. Zhurakovskaya, V. G. Petin “Principles of mathematical modeling of combined effects in biology and medicine (literature review),” Radiation and Risk, vol. 24, no. 1, pp. 61-73, 2015.)
  10. С. В. Белкина, Л. Н. Комарова, Р. О. Крицкий, “Прогнозирование синергических эффектов ионизирующего излучения и других повреждающих факторов на клетки млекопитающих и растения),” Радиация и риск, т. 15, но. 3-4, стр. 120-132, 2006. (S. V. Belkina, L. N. Komarova, R. O. Kritsky, “Prediction of synergistic effects of ionizing radiation and other damaging factors on mammalian and plant cells),” Radiation and Risk, vol. 15, no. 3-4, pp. 120-132, 2006.)
  11. Л. Н. Комарова, А. А. Мельникова, Д. А. Балдов, “Исследование комбинированного действия ионизирующего излучения и доксорубицина на клетках аденокарциномы молочной железы человека MCF-7,”Научные междисциплинарные исследования. Материалы XIII Международной научно-практической конференции, “КДУ”, “Добросвет”, стр. 14-22, 2021. (L. N. Komarova, A. A. Melnikova, D. A. Baldov, “Study of the combined effect of ionizing radiation and doxorubicin on human breast adenocarcinoma cells MCF-7,” in Scientific interdisciplinary research. Materials of the XIII International Scientific and Practical Conference , "KDU", "Dobrosvet", pp. 14-22, 2021.)
    DOI: https://doi.org/10.31453/kdu.ru.978-5-7913-1172-6-2021-14-21
  12. А. Melnikova, L. Komarova, “Research on the combined effects of radiation and chemotherapy on tumor cells,” in Book of Abstr. 9th Int. Conf. on Radiation in Various Fields of Research (RAD 2021), Herceg Novi, Montenegro, 2021, р. 228.
    DOI: https://doi.org/10.21175/rad.abstr.book.2021.32.6
L. N. Komarova, A. A. Melnikova, "Investigation of the combined effect of ionizing radiation of different quality and doxorubicin on breast adenocarcinoma cells ", RAD Conf. Proc, vol. 5, 2021, pp. 100–103, http://doi.org/10.21175/RadProc.2021.19
Radiation Detectors


Alexander Macris, Kevin McKay, William Charlton, Cheryl Brabec, Sheldon Landsberger

DOI: 10.21175/RadProc.2021.20

For radiological neutron surveying, neutron detectors require shielding to minimize contributions from sources outside the area of interest. To test the effectiveness of such a shield, Monte Carlo N-Particle Transport Codes (MCNP) were used to model a neutron detector so that the effectiveness of such a shield design could be explored. In this research, MCNP models of a 10B/ZnS detector within a shield were developed and compared to experimental results. By carefully modeling the specifics of the neutron detector as well as the neutron source used in the experiments, the simulation was able to accurately predict the experimental results within 20%.
  1. Neutron Detector Suitable for Second Line of Defense Program, Bridgeport Instruments LLC, Austin, TX, USA, 2020.
    Retrieved from: http://bridgeportinstruments.com/products/neutron/ndet_2x24_r1.pdf
    Retrieved on: August 20, 2021.
  2. P. A. Söderström et al., “Characterization of a Plutonium-Beryllium Neutron Source,” Applied Radiation and Isotopes, vol. 167, article no. 109441, Jan. 2021.
    DOI: https://doi.org/10.1016/j.apradiso.2020.109441
    PMid: 33002762
  3. S. F. Mughabghab, Thermal Neutron Capture Cross Sections Resonance Integrals and G-Factors , Rep. INDC(NDS)-440, IAEA, Vienna, Austria, 2003.
    Retrieved from: https://inis.iaea.org/collection/NCLCollectionStore/_Public/34/020/34020739.pdf?r=1
    Retrieved on: Sep. 17, 2021
  4. K. Guzman-Garcia et al., “10B+ZnS(Ag) as an Alternative to 3He-Based Detectors for Radiation Portal Monitors,” EPJ Web of Conferences, vol. 153, article no. 07008, 2017.
    DOI: https://doi.org/10.1051/epjconf/201715307008
  5. Atlas of Neutron Capture Cross Sections , Evaluated Data Library, IAEA, Vienna, Austria, 2010.
    Retrieved from: https://www.iaea.org/resources/databases/atlas-of-neutron-capture-cross-sections
    Retrieved on: August 20, 2021
  6. Compendium of Material Composition Data for Radiation Transport Modeling , Rep. 200-DMAMC-128170 PNNL-15870, Rev. 2, Pacific Northwest National Laboratory, Richland, WA, USA, Apr. 2021.
    Retrieved from: https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-15870Rev2.pdf
    Retrieved on: August 20, 2021
  7. W.B. Wilson et al., SOURCES 4A: A Code for Calculating (α, n), Spontaneous Fission, and Delayed Neutron sources and Spectra , Rep. LA-13639-MS, Los Alamos National Laboratory, Los Alamos, New Mexico, USA, 1999.
    DOI: https://doi.org/10.2172/15215
  8. J. K. Shultis., R. E. Faw, An MCNP Primer, Kansas State University, Manhattan, KS, USA, 2011.
    Retrieved from: https://www.mne.k-state.edu/~jks/MCNPprmr.pdf
    Retrieved on: August 20, 2021
  9. M.S. Dewey, H.P. Mumm, “Calibrations: Neutron Source Strength,” National Institute of Standards and Technology, U.S. Department of Commerce, Gaithersburg, MD, USA 2010.
    Retrieved from: https://www.nist.gov/programs-projects/calibrations-neutron-source-strength
    Retrieved on: November 18, 2021
  10. H.R. Vega-Carrillo et al. “Characterization of a 239PuBe Isotopic Neutron Source,” in Proceedings of the ISSSD, IAEA, Vienna, Austria, 2012.
    Retrieved from: https://inis.iaea.org/collection/NCLCollectionStore/_Public/44/026/44026243.pdf
    Retrieved on: November 18, 2021
Alexander Macris, Kevin McKay, William Charlton, Cheryl Brabec, Sheldon Landsberger, "Development of an mcnp model of a boron-10 zinc sulfide silver-activated [10B/ZnS(Ag)] detector and directional shielding using radiation counting", RAD Conf. Proc, vol. 5, 2021, pp. 104–109, http://doi.org/10.21175/RadProc.2021.20
Radiation Detectors


Conny Egozi, Francis Martinez, Brandon De Luna, James Terry, Sheldon Landsberger

DOI: 10.21175/RadProc.2021.21

Gamma-ray spectrometry is one of the most effective ways to determine the activity of 239Pu, depending on activity levels. However, often high backgrounds in complex spectra with low amounts of 239Pu can increase detection limits. The effectiveness of the use of gamma-gamma spectrometry in the characterization of 239Pu is studied for the first time. Using the XIA Pixie-16 digital pulse processor, gamma-gamma coincidences were measured to study the unshielded background radiation as a function of the source to detector distance, and gating of several gamma-rays from 239Pu. The Poisson distribution of the acquired pulses has been also verified. In addition, measurements demonstrated that the background radiation is strongly reduced, meaning gamma-gamma spectroscopy can be very effective to avoid the usual lead shielding. Other measurements were taken to assure Poisson statistics were attained in the digital system. Preliminary measurements revealed 3 orders of magnitude background reduction for the measurement of 239Pu using gated gamma-rays.
  1. R. Gunnink, J. B. Niday, P. D. Siemens, System for plutonium analysis by gamma ray spectrometry, Part I: Techniques for analysis of solutions , Rep. UCRL-51577(Pt.1), LLL, Livermore (CA), USA, 1974.
    DOI: https://doi.org/10.2172/4291806
  2. Th. E. Sampson, S-T. Hsue, J. L. Parker, S. S. Johnson, D. F. Bowersox, “The determination of plutonium isotopic composition by gamma-ray spectroscopy,” Nuc. Inst. Methods in Phys. Research, vol. 193, no. 1–2, pp. 177-183, 1982.
    DOI: https://doi.org/10.1016/0029-554X(82)90693-0
  3. S. Hurtado, M. García-León, R. García-Tenorio, “Optimized background reduction in low-level gamma-ray spectrometry at a surface laboratory,” Appl. Rad. Isot., vol. 64, no. 9, pp. 1006-1012, 2006.
    DOI: https://doi.org/10.1016/j.apradiso.2006.01.008
  4. N. Marković, P. Roos, S. P. Nielsen, “Digital gamma-gamma coincidence HPGe system for environmental analysis,” Appl. Rad. Isot., vol. 126, pp. 194-196, 2017.
    DOI: https://doi.org/10.1016/j.apradiso.2016.12.017
  5. J. A. Cooper, “Radioanalytical applications of gamma-gamma coincidence techniques with lithium-drifted germanium detectors,” Anal. Chem., vol. 43, no. 7, pp. 838-845, 1971.
    DOI: https://doi.org/10.1021/ac60302a017
  6. L. E. Wangen, E. S. Gladney, J. W. Starner, W. K. Hensley, “Determination of selenium in environmental standard reference materials by a .gamma.-.gamma. coincidence method using lithium-drifted germanium detectors,” Anal. Chem., vol. 52, no. 4, pp. 765–767, 1980.
    DOI: https://doi.org/10.1021/ac50054a037
  7. Truong Van, Minh et al., “Determination of selenium in environmental sample by gamma-gamma Coincidence method,” in Proc. of 3rd Int. Conf. on Advances in Applied Science and Environmental Engineering (ASEE 2015), Kuala Lumpur, Malaysia, 2015, pp. 67-70.
    Retrieved from: https://www.researchgate.net/publication/324967842_Determination_of_selenium_in_environmental_sample_by_gammagamma_Coincidence_method
    Retrieved on: August 1, 2021
  8. J. Konki et al., “Comparison of gamma-ray coincidence and low-background gamma-ray singles spectrometry,” Appl. Rad. Isot., vol. 70, no. 2, pp. 392-396, 2012.
    DOI: https://doi.org/10.1016/j.apradiso.2011.10.004
  9. W. Zhang et al., “A system for low-level the cosmogenic 22Na radionuclide measurement by gamma–gamma coincidence method using BGO detectors,” J. Radioanal. Nucl. Chem., vol. 287, pp. 551-555, 2011.
    DOI: http://doi.org/10.1007/s10967-010-0758-3
  10. W. Zhang et al., “A gamma–gamma coincidence spectrometric method for rapid characterization of uranium isotopic fingerprints,” J. Radioanal. Nucl. Chem., vol. 288, pp. 43–47, 2011.
    DOI: https://doi.org/10.1007/s10967-010-0868-y
  11. A. Drescher, M. Yoho, S. Landsberger, “Gamma–Gamma Coincidence in Neutron Activation Analysis,” J. Radioanal. Nucl. Chem. , vol. 318, pp. 527–532, 2018.
    DOI: https://doi.org/10.1007/s10967-018-6033-8
  12. Pixie-16: 16-Channel PXI Digital PULSE Processor for Nuclear Spectroscopy , XIA LLC, Oakland, CA, USA.
    Retrieved from: https://xia.com/dgf_pixie-16.html
    Retrieved on: August 1, 2021
  13. NuDat version 2 , NNDC at Brookhaven National Laboratory, Upton, NY, USA.
    Retrieved from: https://www.nndc.bnl.gov/nudat2/chartNuc.jsp
    Retrieved on: August 1, 2021
  14. T. E. Sampson, Plutonium isotopic composition by gamma-ray spectroscopy: a review , Rep. LA-10750-MS, Los Alamos National Laboratory, Los Alamos, NM, USA, 1986.
    DOI: https://doi.org/10.2172/5265462
Conny Egozi, Francis Martinez, Brandon De Luna, James Terry, Sheldon Landsberger, "A preliminary investigation for the use of digital gamma-gamma coincidence spectrometry to detect 239Pu",RAD Conf. Proc, vol. 5, 2021, pp. 110–114, http://doi.org/10.21175/RadProc.2021.21
Radiation Chemistry


Irina G. Antropova, Natalia V. Panferova, Eldar P. Magomedbekob

DOI: 10.21175/RadProc.2021.22

In this work, the reactivity of low-molecular-weight chitosan with a hydroxyl radical was evaluated. An enhancement of the antioxidant properties of chitosan in the presence of silver ions has been shown. It has been determined that under the action of irradiation on the chitosan-silver system, silver nanoparticles are formed, the size of which can be controlled by the type of action on the system.
  1. S-H. Lim, S. M. Hudson, “Review of сhitosan and its derivatives as antimicrobial agents and their uses as textile chemicals,” J. Macromol. Sci. Pt. C, vol. 43, no 2, pp. 223–269, 2003.
    DOI: https://doi.org/10.1081/MC-120020161
  2. M. G. Grigoriev, L. N. Babich, “The use of silver nanoparticles against socially significant diseases,” Young Scientist, vol. 9, pp. 396–401, 2015.
  3. K. Zielinska, A. G. Shostenko, S. Truszkowski, “Analysis of chitosan by gel permeation chromatography,” High Energy Chemistry, vol. 48, pp. 72–75, 2014.
    DOI: http://doi.org/10.1134/S0018143914020143
  4. A. A. Fenin, I. G. Antropova, S. V. Gornostaeva, Laboratory Workshop on Radiation Chemistry, D. Mendeleev University of Chemical Technology of Russia, Moscow, Russia, 2016.
  5. М. Я. Мельников, Экспериментальные методы химии высоких энергий, Москва, Россия: МСУ, 2009.(M. Y. Melnikov, Experimental Methods of High Energy Chemistry, Moscow, Russia: MSU, 2009.)
  6. А. К. Пикаев, Современная радиационная химия: Радиолиз газов и жидкостей, Москва, Россия: Наука, 1986. K. Pikaev, Modern radiation chemistry: Radiolysis of gases and liquids. Moscow, Russia: Science, 1986.)
Irina G. Antropova, Natalia V. Panferova, Eldar P. Magomedbekob , "Reduction of silver ions using chitosan and investigation of their reactivity",RAD Conf. Proc, vol. 5, 2021, pp. 115–118, http://doi.org/10.21175/RadProc.2021.22
Medical Imaging


Yulia A. Stepanova, Nora E. Arutyunyan, Naida O. Sultanova, Aleksey A. Kopyltsov, Dmitry V. Kalinin

DOI: 10.21175/RadProc.2021.23

Introduction.Over the past 30 years, minimally invasive methods of aesthetic medicine have become increasingly well-known in the world. Dermal fillers are among the most popular aesthetic procedures because they carry immediate results, very few risks and little recovery time. Despite the regulations governing the provision of aesthetic non-surgical medical services, the number of patients affected by the augmentation of vaseline oil into soft tissues to correct the shape of organs and soft tissues has increased. Nowadays, soft-tissue augmentation with large amounts of any foreign material and these types of procedures has been abandoned by health professionals and plastic surgeons all over the world. The administration of small doses (from 1 ml to 5 ml) of injectable preparations, mainly absorbed within 2-12 months, is permitted and widely used to correct minor contour of the face, wrinkles and soft tissues. Objective: development of an algorithm for radiological examination of patients at the stages of surgical correction of the consequences of the augmentation with vaseline oil into soft tissues for aesthetic purposes. Materials and methods.In a retrospective study, the results of the examination and surgical treatment of 17 women were evaluated. The patients were treated at various times with the consequences of the augmentation with vaseline oil in mammary glands, buttocks and shins. There were 11 (64.7%) patients with vaseline oil introduced into one region, into two regions- 5 (29.4%), and one woman 1 (5.9%) into three regions. The migration of vaseline oil to adjacent anatomical areas was observed in 13 out of 17 (76.5%) patients. All patients underwent ultrasound, MSCT, and/or MRI at the stages of surgical treatment. Results. Multiple-stages (from 1 to 8) surgical treatment was performed and in addition to excision of tissues affected by fibrosis and oleogranulomas, also reconstructive surgeries to restore the volume and contours of the organs were performed. Overall, 51 surgical interventions were performed. MSCT and MRI studies can identify oleogranulomas and determine the volume of soft tissue damage. If it is possible to choose the method of radiological investigation, preference should be given to MRI. The MR Imaging is carried out without radiation exposure and the introduction of a contrast agent and allows you to determine the full volume of soft tissue damage, as well as the presence of fibrous tissue, in the mode without fat suppression. Ultrasound is the easiest to perform, however, an effective method for diagnosing complications after soft tissues augmentation. And it is effective when searching for individual fat fragments during surgery and evaluating the intervention area around the perimeter. In the postoperative period, the ultrasound revealed limited fluid accumulations ranging in size from 12 to 36x47 mm. In 11 cases, the clusters regressed independently during ultrasound monitoring, and in 6 cases, it was considered appropriate to evacuate the contents under ultrasound control. Good and satisfactory results were obtained in 6 patients (MRI data and visual effect), and interventions, mainly of a reconstructive nature, are expected in 11 patients. Conclusion. The difficulties and multi-stage surgical treatment in patients after soft tissue augmentation with vaseline oil are associated with a large volume of tissue damage with a violation of their trophic function, the migration of vaseline oil to adjacent anatomical areas, the inability to eliminate the lesion and simultaneous reconstruction. MRI makes it possible to determine the extent of the lesion at all stages of surgical treatment, ultrasound is an important pre / intraoperative navigation during surgical treatment, and also allows postoperative management of patients.
  1. A.W. Klein, M.L. Elson, “The History of Substances for Soft Tissue Augmentation”, Dermatologic Surgery, vol. 26, no. 12, pp. 1096-1105, 2000.
    DOI: https://doi.org/10.1046/j.1524-4725.2000.00512.x
  2. R. Gersuny, “Ueber eine subcutane prothese”, Zeitschr Heilkunde Wien u Leipzig, vol. 21, sei. 199–201, 1900. (R. Gersuny, “Concerning a subcutaneous prosthesis”, Heilkunde Vienna and Leipzig Journal, vol. 21, pp. 199–201, 1900)
  3. M. L. Hedingsfeld, “Histopathology of paraffin prosthesis”, J. Cutan. Dis., vol. 24, pp. 513-521, 1906.
  4. W. Peters, V. Fornasier, “Complications from injectable materials used for breast augmentation”, Can. J. Plast. Surg., vol. 17, no. 3, pp. 89-96, 2009.
    DOI: https://doi.org/10.1177/229255030901700305
  5. J. Steffens et al., “Paraffinoma of the external genitalia after autoinjection of Vaseline”, Eur. Urol., vol. 38, no. 6, pp. 778-781, 2000.
    DOI: https://doi.org/10.1159/000020379
  6. Y. Tanaka, I. Morishima, K. Kikuchi, “Invasive micropapillary carcinomas arising 42 years after augmentation mammoplasty: A case report and literature review”, World J. Surg. Oncol., vol. 14, no. 6, article no. 33, 2008.
    DOI: https://doi.org/10.1186/1477-7819-6-33
  7. H. Bryant, P. Brasher, “Breast implant and breast cancer – reanalysis of a linkage study”, N. Engl. J. Med., vol. 332, pp. 1535–1539, 1995.
    DOI: https://doi.org/10.1056/NEJM199506083322302
  8. L.A. Brinton, S.L. Brown, “Breast implants and cancer”, J. Natl. Can. Inst., vol. 89, no. 18, pp. 1341–1349, 1997.
    DOI: https://doi.org/10.1093/jnci/89.18.1341
  9. K.A. Skinner et al., “Breast cancer after augmentation mammoplasty”, Ann. Surg, Oncol., vol. 8, pp. 138–144, 2001.
    DOI: https://doi.org/10.1007/s10434-001-0138-x
  10. S.A. Mclntosh, K. Horgan, “Breast cancer following augmentation mammoplasty – a review of its impact on prognosis and management”, J. Plast. Reconstr. Aesthet. Surg., vol. 60, no. 10, pp. 1127–1135, 2007.
    DOI: https://doi.org/10.1016/j.bjps.2007.03.017
  11. D.M. Deapen, E.M. Hirsch, G.S. Brody, “Cancer risk among Los Angeles women with cosmetic breast implants”, Plast. Reconstr. Surg., vol. 119, no. 7, pp. 1987–1992, 2007.
    DOI: https://doi.org/10.1097/01.prs.0000260582.23971.02
  12. H.F. Smetana, W. Bernhard, “Sclerosing lipogranuloma”, Arch. Path., vol. 50, pp. 296–325, 1950.
  13. V.D. Newcomer, J.H. Graham, R.R. Schafert, L. Kaplan, “Sclerosing lipogranuloma resulting from exogenous lipids”, AMA Arch. Derm., vol. 73, no. 4, pp. 361–372, 1956.
    DOI: https://doi.org/10.1001/archderm.1956.01550040055008
  14. G. Foxton, C. Vinciullo, C.P. Tait, R. Sinniah, “Sclerosing lipogranuloma of the penis”, Australasian J. Dermatol., vol. 52, no. 3, pp. e12–e14, 2011.
    DOI: https://doi.org/10.1111/j.1440-0960.2010.00665.x
  15. Е.П. Фисенко, “Инструментальная диагностика осложнений контурной пластики тела гелевыми имплантатами”, докторская диссертация, Российской Академии медицинских наук, Российский научный центр хирургии им. академика Б.В. Петровского, Москва, Россия, 2009. (E.P. Fisenko, “Instrumental diagnostics of complications of body contouring with gel implants”, Ph.D. dissertation, Russian Academy of Medical Sciences, Russian Scientific Center of Surgery named after A.I. Academician B.V. Petrovsky, Moscow, Russia, 2009.)
  16. R.E. Barlow, W.E. Torres, P.J. Sones Jr., A. Someren, “Sonographic demonstration of migrating silicone”, Am. J. Roentgenol., vol. 135, no. 1, pp. 170–171, 1980.
    DOI: https://doi.org/10.2214/ajr.135.1.170
  17. N.B. Khedher et al., “Imaging findings of breast augmentation with injected hydrophilic polyacrylamide gel: patient reports and literature review”. Eur. J. Radiol., vol. 78, no. 1, pp. 104–211, 2011.
    DOI: https://doi.org/10.1016/j.ejrad.2009.09.021
  18. P. Nyirády et al., “Treatment and outcome of vaseline-induced sclerosing lipogranuloma of the penis”, Urology, vol. 71, no. 6, pp. 1132–1137, 2008.
    DOI: https://doi.org/10.1016/j.urology.2007.12.081
  19. Q. Qiao et al., “Management for postoperative complications of breast augmentation by injected polyacrylamide hydrogel”, Aesth. Plast. Surg., vol. 29, no. 3, pp. 156–161, May-Jun 2005.
    DOI: https://doi.org/10.1007/s00266-004-0099-0
  20. N.B. Khedher et al., “Imaging findings of breast augmentation with injected hydrophilic polyacrylamide gel: Patient reports and literature review”, Eur. J. Radiol., vol. 78, no. 1, pp. 104–111, 2011.
    DOI: https://doi.org/10.1016/j.ejrad.2009.09.021
  21. Ю.А. Степанова, В.И. Шаробаро, И.П. Колганова, “Лучевая диагностика и лечение осложнений инъекционной контурной пластики молочных желез”, Хирургия. Журн. им. Н. И. Пирогова, № 4, с. 59-63, 2016. (Yu.A. Stepanova, V.I. Sharobaro, I.P. Kolganova, “Radiation diagnosis of complications of injection breast contouring”, Surgery Journal them. N.I. Pirogov, vol. 4, pp. 59-63, 2016.)
  22. T. Wong et al., “Magnetic resonance imaging of breast augmentation: a pictorial review”, Insights into Imaging, vol. 7, no. 3, pp. 399–410, 2016.
    DOI: https://doi.org/10.1007/s13244-016-0482-9
  23. И.Г. Мариничева, “Контурная пластика нижних конечностей”, докторская диссертация, Российский национальный исследовательский медицинский университет имени Н. И. Пирогова, Москва, Россия, 2019. (I.G. Marinicheva, “Contouring of the lower extremities”, Ph.D. dissertation, Pirogov Russian National Research Medical University, Moscow, Russia, 2019.)
Yulia A. Stepanova, Nora E. Arutyunyan, Naida O. Sultanova, Aleksey A. Kopyltsov, Dmitry V. Kalinin, "Radiology diagnostics of the consequences of vaseline oil introduction into soft tissues at the stages of surgical treatment",RAD Conf. Proc, vol. 5, 2021, pp. 119–124, http://doi.org/10.21175/RadProc.2021.23
Radiation Detectors


Abdulrahman Albarodi, M. Bilge Demirköz, Uğur Kılıç, Ahmet Baran Can, Deniz Orhun Boztemur, Egecan Karadöller, Aziz Ulvi Çalışkan, Güntekin Kabuli, Levent Balamir Tavacıoğlu

DOI: 10.21175/RadProc.2021.24

A compact radiation monitor which incorporates a Geiger-Müller counter and two silicon detectors was designed and tested for radiation measurements on Turkish space rockets. The large area silicon PIN detectors, each with 4 quadrants produced in Turkey by TÜBİTAK BİLGEM UEKAE YİTAL laboratories, vertically aligned inside a thin aluminum shielding, separated by 3 PCBs as degraders, to perform coincidence logic and energy discrimination. Each quadrant is amplified separately to reduce the noise on readout cards designed by METU The Research and Application Center for Space and Accelerator Technologies (İVMER) which generate logical signals per layer, which are then coincided in a 7.8ns time window by an FPGA. The prototype also incorporates a Geiger-Müller tube sensitive to electrons and gammas to compare the counts of particles outside the box measured during test period. The I-V and C-V characterization of the PIN diodes, as well as detailed calibration of the readout electronics were performed. The device was tested at the METU-DBL (METU Defocusing Beam Line) proton beam line with 15 and 30 MeV proton beams as well as radioactive alpha and beta sources and shown to be sensitive to different particle species. The dynamic range, which has been demonstrated up to 106 particles/second lays the foundation for a robust radiation measurement with more detector and degrader layers for a larger energy range on a satellite over the South Atlantic Anomaly as well as van Allen belts.
  1. T. Sato, “Analytical model for estimating terrestrial cosmic ray fluxes nearly anytime and anywhere in the world: extension of PARMA/EXPACS,” PLoS One, vol. 10, no. 12, article no. e0144679, Dec. 2015.
    DOI: https://doi.org/10.1371/journal.pone.0144679
  2. R. Engel, D. Heck, T. Pierog, “Extensive air showers and hadronic interactions at high energy,” Annu. Rev. Nucl. Part. Sci., vol. 61, pp. 467–489, Nov. 2011.
    DOI: https://doi.org/10.1146/annurev.nucl.012809.104544
  3. T. P. Dachev, “Profile of the ionizing radiation exposure between the Earth surface and free space,” J. Atmos. Sol.–Terr. Phys., vol. 102, pp. 148–156, Sep. 2013.
    DOI: https://doi.org/10.1016/j.jastp.2013.05.015
  4. M. Barrantes et al., “Atmospheric corrections of the cosmic ray fluxes detected by the Solar Neutron Telescope at the Summit of the Sierra Negra Volcano in Mexico,” Geofis. Int., vol. 57, no. 4, pp. 253–275, Oct. 2018.
    DOI: https://doi.org/10.22201/igeof.00167169p.2018.57.4.2105
  5. K. Copeland, “CARI-7A: development and validation,” Radiat. Prot. Dosim., vol. 175, no. 4, pp. 419–431, Aug. 2017.
    DOI: https://doi.org/10.1093/rpd/ncw369
  6. Y. I. Stozhkov, N. S. Svirzhevsky, V. S. Makhmutov, “Cosmic ray measurement in the atmosphere,” in Proc. Workshop on Ion-Aerosol-Cloud Interact (IACI), Geneva, Switzerland, 2001, pp. 41–62.
    DOI: https://doi.org/10.5170/CERN-2001-007
  7. R. G. Harrison, K. A. Nicol, K. L. Aplin, “Vertical profile measurements of lower troposphere ionization,” J. Atmos. Sol.–Terr. Phys., vol. 119, pp. 203–210, Nov. 2014.
    DOI: https://doi.org/10.1016/j.jastp.2014.08.006
  8. M. B. Demirköz et al., “Design of a space radiation monitor for a sounding rocket and results from the first Turkish sounding rocket flight,” presented at the Rad. Effects on Components and Systems ( RADECS), Vienna, Austria, Sep. 2021.
  9. “Türk roketi ilk kez sıvı yakıt ile uzayda,” ROKETSAN Haber, Kas. 13, 2020. (“Turkish rocket in space for the first time with liquid fuel,” ROKETSAN News, Nov. 13, 2020.)
    Retrieved from: https://www.roketsan.com.tr/tr/medya/haberler/turk-roketi-ilk-kez-sivi-yakitla-uzayda
    Retrieved on: Nov. 13, 2020
  10. A. Albarodi, “Design of a space radiation monitor for a spacecraft in LEO and results from a prototype on the first Turkish sounding rocket”, M.Sc. dissertation, Middle East Technical University, Dept. of Physics, Ankara, Turkey, 2021.
    Retrieved from: http://etd.lib.metu.edu.tr/upload/12626153/index.pdf
    Retrieved on: May 25, 2021
  11. S. Srivastava, R. Henry, A. Topka R., “Characterization of PIN diode silicon radiation detector,” Int. J. Intell. Electr. Syst., vol. 1, no. 1, pp. 47–51, 2007.
    DOI: https://doi.org/10.18000/ijies.30009
  12. J. M. Park et al., “Consideration of the Leakage-Current and the Radiation-Response characteristics of silicon PIN detectors with different N-Type Substrates and Their Application to a Personal γ-ray dosimeter,” J. Korean Phys. Soc., vol. 51, no. 1, pp. 10–17, 2007.
    DOI: https://doi.org/10.3938/jkps.51.10
  13. D. K. Schroder, “Carrier and Doping Density,” in Semiconductor Material and Device Characterization, 3rd ed., New Jersey, USA, J. Wiley and Sons, 2006, ch. 2, sec. 2, pp. 61–78.
    DOI: https://doi.org/10.1002/0471749095
  14. T. L. Floyd, D. Buchla, “Basic Op-amp Circuits” in Fundamentals of Analog Circuits, 2nd ed., USA, Prentice Hall, Pearson, 2002, ch. 8, ch. 1–4, pp. 418–445.
  15. R. Gaillard, “Single Event Effects: Mechanisms and Classification,” in Soft Errors in Modern Electronic Systems, 1st ed., Boston, MA, USA, Springer, 2011, ch. 2, pp. 27–54.
    DOI: https://doi.org/10.1007/978-1-4419-6993-4_2
  16. Geant4 Collaboration, Geant4 User’s Guide for Application Developers, Geant4 version 10.3, CERN, Geneva, Switzerland, 2016.
    Retrieved from: https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/BackupVersions/V10.3/html/index.html
    Retrieved on: Jul. 15, 2020
  17. M. Pinto, P. Gonçalves, “GUIMesh: A tool to import STEP geometries into Geant4 via GDML,” Comp. Phys. Commun., vol. 239, pp. 150–156, 2019.
    DOI: https://doi.org/10.1016/j.cpc.2019.01.024
  18. J. F. Ziegler, M. D. Ziegler, J. P. Biersack, “SRIM – The stopping and range of ions in matter,” Nucl. Instrum. Methods Phys. Res. Sec. B: Beam Interact. Mater. At., vol. 268, no. 11-12, pp. 1818–1823, Jun. 2010.
    DOI: https://doi.org/10.1016/j.nimb.2010.02.091
  19. Microsemi, DS0128: IGLOO2 and SmartFusion2 Datasheet, 12 th ed., Microchip, California, USA, 2008
    Retrieved from: https://www.microsemi.com/document-portal/doc_download/132042-igloo2-fpga-datasheet
    Retrieved on: Aug. 15, 2020
  20. A. Gencer, M. B. Demirkoz, I. Efthymiopoulos, M. Yiğitoğlu, “Defocusing beam line design for an irradiation facility at the TAEA SANAEM Proton Accelerator Facility,” Nucl. Instrum. Methods Phys. Res. Sec. A: Accel. Spectrom. Detect. Assoc. Equip., vol. 824, pp. 202–203, Jul. 2016.
    DOI: https://doi.org/10.1016/j.nima.2015.11.018
  21. M. B. Demirkoz, S. Niğdelioğlu, M. Yiğitoğlu, S. Aydın, I. Efthymiopoulos, “METU defocusing beam line project for the first SEE tests in Turkey and the results from the METU-DBL preliminary setup,” Nucl. Instrum. Methods Phys. Res. Sec. A: Accel. Spectrom. Detect. Assoc. Equip., vol. 936, pp. 54–56, Aug. 2018.
    DOI: https://doi.org/10.1016/j.nima.2018.11.075
  22. M. B. Demirkoz et al., “METU-Defocusing beamline: A 15-30 MeV proton irradiation facility and beam measurement system,” EPJ Web Conf., vol. 225, article no. 01008, Jan. 2020.
    DOI: https://doi.org/10.1051/epjconf/202022501008
  23. Red Pitaya Documentation, Redpitaya, Slovenia, 2020.
    Retrieved from: https://redpitaya.readthedocs.io/
    Retrieved on: May 25, 2020
  24. Z. Bielecki, “Readout electronics for optical detectors”, Opto-Electron. Rev., vol. 12, no. 1, pp. 129–137, 2004.
    Retrieved from: https://www.researchgate.net/publication/228798113_Readout_electronics_for_optical_detectors
    Retrieved on: Dec. 20, 2020
  25. M. Wijtvliet et al., “PR3: A system for radio-interferometry and radiation measurement on sounding rockets,” Microprocessors and Microsystems, vol. 77, article no. 103163, Sep. 2020.
    DOI: https://doi.org/10.1016/j.micpro.2020.103163
Abdulrahman Albarodi, M. Bilge Demirköz, Uğur Kılıç, Ahmet Baran Can, Deniz Orhun Boztemur, Egecan Karadöller, Aziz Ulvi Çalışkan, Güntekin Kabuli, Levent Balamir Tavacıoğlu, "Design and characterization of a compact radiation monitor for space rockets",RAD Conf. Proc, vol. 5, 2021, pp. 125–131, http://doi.org/10.21175/RadProc.2021.24


Šaćira Mandal

DOI: 10.21175/RadProc.2021.25

Leptin is a hormone secreted from adipose tissue (AT) that plays important role in metabolism of carbohydrate, proteins, and lipids. Also, leptin and its receptors are key regulators of body weight and energy metabolism. Previous studies, demonstrated that plasma leptin improved glucose and lipid metabolisms independently of the food intake reduction by decreasing in blood glucose and insulin levels as well as triacylglycerol stores in the body. Objective of this study was to evaluate the relationship between plasma leptin concentration and lipid profile in healthy and diabetic individuals. Twenty-six participants were recruited in the study, 13 newly diagnosed and non-treated Type 2 diabetes (T2D) patients and 13 healthy controls. Metabolic variables including glucose, glycated hemoglobin, lipids: total cholesterol, triacylglycerol, high density lipoprotein, low density lipoprotein and very low-density lipoprotein, and hormone concentrations leptin and insulin were measured. Plasma leptin concentration was an increased significantly (p<0.001) in diabetic patients compared to controls. Values of other biochemical characteristics were significant different between cases and controls (p<0.001). A significant association was demonstrated between leptin with BMI levels in participants (p<0.05) but not between leptin and lipid levels (p>0.05). Also, strong negative associations were observed between leptin and glucose levels among controls (p<0.009) as well a positive association leptin with HOMA-IS in diabetics (p<0.05). These results suggest that plasma leptin concentrations were affected by the increased levels of glucose, insulin and lipid profile in Bosnian study population. Therefore, leptin can be used as a biomarker of glucose and lipid control in newly diagnosed diabetic patients.
  1. American Diabetes Association, “Obesity Management for the Treatment of Type 2 Diabetes”, Diabetes Care, vol. 39, suppl. 1, pp. S47–S51, Jan. 2016.
    DOI: https://doi.org/10.2337/dc16-S009
  2. N. Katsiki, D.P. Mikhailidis, M. Banach, “Leptin, cardiovascular diseases and type 2 diabetes mellitus,” Acta Pharmacol. Sin., vol. 39, pp. 1176–1188, Jun. 2018.
    DOI: https://doi.org/10.1038/aps.2018.40
  3. A. Sarı, M.B. Sadeq, “The relationship the leptin hormone, obesity and diabetes,” Physical Sciences, vol. 15, no. 2, pp. 40–48, Apr. 2020.
    Retrieved from: https://dergipark.org.tr/en/pub/nwsaphysic/issue/53888/701533
    Retrieved on: Sep. 15, 2021
  4. T.H. Meek, G.J. Morton, “The role of leptin in diabetes: metabolic effects,” Diabetologia, vol. 59, no. 5, pp. 928–932, May. 2016.
    DOI: https://doi.org/10.1007/s00125-016-3898-3
  5. J. Seufert, “Leptin effects on pancreatic beta-cell gene expression and function,” Diabetes, vol. 53, suppl. 1, pp. S152–S158, Feb. 2004.
    DOI: https://doi.org/10.2337/diabetes.53.2007.S152
  6. T. Shiuchi et al., “Induction of glucose uptake in skeletal muscle by central leptin is mediated by muscle β2-adrenergic receptor but not by AMPK,” Sci. Rep., vol. 7, no. 1, article no. 15141, Nov. 2017.
    DOI: https://doi.org/10.1038/s41598-017-15548-6
  7. A.M. D’souza, U.H. Neuman, M.M. Glavas, T.J. Kieffer, “The glucoregulatory actions of leptin,” Molecular Metabolism, vol. 6, no. 9, pp. 1052–1065, Sep. 2017.
    DOI: https://doi.org/10.1016/j.molmet.2017.04.011
  8. T.M. Moonishaa et al., “Evaluation of leptin as a marker of insulin resistance in type 2 diabetes mellitus,” Int. J. Appl. Basic Med. Res., vol. 7, no. 3, pp. 176–180, 2017.
    DOI: https://doi.org/10.4103%2Fijabmr.IJABMR_278_16
  9. L. Marroquí et al., “Role of leptin in the pancreatic β-cell: effects and signaling pathways,” J. Mol. Endocrinol., vol. 49, no. 1, pp. R9–R17, 2012.
    DOI: https://doi.org/10.1530/jme-12-0025
  10. M.A. Buyukbese et al., “Leptin levels in obese women with and without type 2 diabetes mellitus,” Mediators of Inflammation, vol. 13, no. 5/6, pp. 321–325, Oct./Nov. 2004.
    DOI: https://doi.org/10.1080/09629350400008828
  11. W.I. Sivitz et al., “Leptin and body fat in type 2 diabetes and monodrug therapy,” The Journal of Clinical Endocrinology & Metabolism, vol. 88, no. 4, pp. 1543–1553, Apr. 2003.
    DOI: https://doi.org/10.1210/jc.2002-021193
  12. Y. Minokoshi, C. Toda, S. Okamoto, “Regulatory role of leptin in glucose and lipid metabolism in skeletal muscle,” Indian J. Endocrinol. Metab., vol. 16, suppl. 3, pp. S562–S568, Dec. 2012.
    Retrieved from: https://pubmed.ncbi.nlm.nih.gov/23565491/
    Retrieved on: Sep. 15, 2021
  13. L. O'Rourke, S.J. Yeaman, P.R. Shepherd, “Insulin and leptin acutely regulate cholesterol ester metabolism in macrophages by novel signaling pathways,” Diabetes, vol. 50, no. 5, pp. 955–961, May 2001.
    DOI: https://doi.org/10.2337/diabetes.50.5.955
  14. American Diabetes Association, “Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2021,” Diabetes Care 2021, vol. 44, suppl. 1, pp. S15–S33, 2021.
    DOI: https://doi.org/10.2337/dc21-S002
  15. D.R. Matthews et al., “Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man,” Diabetologia, vol. 28, no. 7, pp. 412–419, Jul. 1985.
    DOI: https://doi.org/10.1007/bf00280883
  16. S. Zhao, C.M. Kusminski, J.K. Elmquist, P.E. Scherer, “Leptin: less is more,” Diabetes, vol. 69, no. 5, pp. 823–829, May 2020.
    DOI: https://doi.org/10.2337/dbi19-0018
  17. W. Liu et al., “Serum leptin, resistin, and adiponectin levels in obese and non-obese patients with newly diagnosed type 2 diabetes mellitus: A population-based study,” Medicine, vol. 99, no. 6, article no. e19052, Feb. 2020.
    DOI: https://doi.org/10.1097/MD.0000000000019052
  18. R. Farooq et al., “Type 2 diabetes and metabolic syndrome – adipokine levels and effect of drugs,” Gynecol. Endocrinol., vol. 33, no. 1, pp. 75–78, 2017.
    DOI: https://doi.org/10.1080/09513590.2016.1207165
  19. O. Gruzdeva, D. Borodkina, E. Uchasova, Y. Dyleva, O. Barbarash, “Leptin resistance: underlying mechanisms and diagnosis,” Diabetes Metab. Syndr. Obes., vol. 12, pp. 191–198, Jan. 2019.
    DOI: https://doi.org/10.2147/DMSO.S182406
  20. M. Obradovic et al., “Leptin and Obesity: Role and Clinical Implication,” Front. Endocrinol., vol. 12, article no. 585887, May 2021.
    DOI: https://doi.org/10.3389/fendo.2021.585887
  21. H. Zuo et al., “Association between serum leptin concentrations and insulin resistance: a population-based study from China,” PLoS ONE, vol. 8, no. 1, article no. e54615, Jan. 2013.
    DOI: https://doi.org/10.1371/journal.pone.0054615
  22. J. Huang, X. Peng, K. Dong, J. Tao, Y. Yang, “The association between insulin resistance, leptin, and resistin and diabetic nephropathy in type 2 diabetes mellitus patients with different body mass indexes,” Diabetes Metab. Syndr. Obes. Targ. Ther., vol. 14, pp. 2357–2365, May 2021.
    DOI: https://doi.org/10.2147/DMSO.S305054
  23. M. Mehrdad et al., “Association of FTO rs9939609 polymorphism with serum leptin, insulin, adiponectin, and lipid profile in overweight adults,” Adipocyte, vol. 9, no. 1, pp. 51–56, Dec. 2020.
    DOI: https://doi.org/10.1080/21623945.2020.1722550
  24. S. Mandal, “New molecular biomarkers in precise diagnosis and therapy of type 2 diabetes,” Health Technol., vol. 10, pp. 601–608, May 2020.
    DOI: https://doi.org/10.1007/s12553-019-00385-6
  25. C. Vavruch et al., “Using proximity extension proteomics assay to discover novel biomarkers associated with circulating leptin levels in patients with type 2 diabetes,” Sci. Rep., vol. 10, no. 1, article no. 13097, Aug. 2020.
    DOI: https://doi.org/10.1038/s41598-020-69473-2
Šaćira Mandal, "Determination of the plasma concentration of the protein product of the ob gene and lipid profile in bosnian type 2 diabetic individuals ",RAD Conf. Proc, vol. 5, 2021, pp. 132–135, http://doi.org/10.21175/RadProc.2021.25
Medical Imaging


T.N. Kiseleva, Yu. A. Stepanova, N.V. Guseva, K.V. Lugovkina, V. V. Makukhina

DOI: 10.21175/RadProc.2021.26

The results of high-frequency grayscale B-scan, color Doppler imaging (CDI) and ultrasonic density measurement or echodensitometry (ED) of eyelids and periorbital tissues were presented. 48 healthy volunteers (96 eyes) aged from 17 to 46 years were enrolled. Echographic anatomy of eyelid layers, i.e. skin, orbicularis oculi muscle, tarsus, and Retro-Orbicularis Oculi Fat (ROOF), is described in details. Thickness and echodensitometry values for all layers were provided. Complex ultrasound examination should be performed prior to reconstructive and plastic surgery of eyelids in order to facilitate the choice of surgical tactics.
  1. D. Liu, W. M. Hsu, “Oriental eyelids. Anatomic difference and surgical consideration,” Ophthal. Plast. Reconstr. Surg., vol. 2, no. 2, pp. 59–64, 1986.
    DOI: http://doi.org/10.1097/00002341-198601050-00001
  2. S. Jeong et al., “The Asian upper eyelid: an anatomical study with comparison to the Caucasian eyelid”, Arch Ophthalmol., vol. 117, no. 7, pp. 907–912, Jul. 1999.
    DOI: http://doi.org/10.1001/archopht.117.7.907
  3. M. Deprez, S. Uffer, “Clinicopathological features of eyelid skin tumors. A retrospective study of 5504 cases and review of literature”, Am. J. Dermatopathol., vol. 31, no. 3, pp. 256–262, May 2009.
    DOI: https://doi.org/10.1097/dad.0b013e3181961861
  4. L. Wang et al., “Clinicopathological analysis of 5146 eyelid tumours and tumour-like lesions in an eye centre in South China, 2000–2018: a retrospective cohort study,” BMJ Open, vol. 11, no. 1, article no. e041854, Jan. 2021.
    DOI: http://doi.org/10.1136/bmjopen-2020-041854
  5. A. D. Singh, B. C. Hayden, “Clinical Methods: Ultrasound Biomicroscopy”, in Ophthalmic Ultrasonography, Philadelphia, USA: Elsevier/Saunders, 2012, ch. 4, pp. 25–29.
  6. V. H. Vasanthapuram, P. Saha, A. Mohamed, M. N. Naik, “Ultrasound biomicroscopic features of the normal lower eyelid,” Orbit, vol. 40, no. 5, pp. 375–380, Sep. 2020.
    DOI: https://doi.org/10.1080/01676830.2020.1812094
  7. H. Demirci, C.C. Nelson, “Ultrasound biomicroscopy of the upper eyelid structures in normal eyelids,” Ophthal. Plast. Reconstr. Surg., vol. 23, no. 2, pp. 122–125, Apr. 2007.
    DOI: http://doi.org/10.1097/iop.0b013e31802f2074
  8. M. T. Rajabi et al., “Ultrasonographic visualization of lower eyelid structures and dynamic motion analysis,” Int. J. Ophthalmol., vol. 6, no. 5, pp. 592–595, 2013.
    DOI: http://doi.org/10.3980/j.issn.2222-3959.2013.05.07
  9. M. T. Rajabi et al., “Ultrasonographic motion analysis of lower eyelid compartments in patients with chronic thyroid associated ophthalmopathy,” J. Curr. Ophthalmol., vol. 29, no. 4, pp. 310–317, Dec. 2017.
    DOI: http://doi.org/10.1016/j.joco.2017.07.002
  10. P. Saonanon, P. Thongtong, T. Wongwuticomjon, “Differences between single and double eyelid anatomy in Asians using Ultrasound biomicroscopy,” Asia Pac. J. Ophthamol., vol. 5, no. 5, pp. 335–338, Sep-Oct. 2016.
    DOI: http://doi.org/10.1097/APO.0000000000000185
  11. D. O. Kikkawa, R. Ochabski, R. N. Weinreb, “Ultrasound biomicroscopy of eyelid lesions,” Ophthalmologica, vol. 217, no. 1, pp. 20–23, Feb. 2003.
    DOI: http://doi.org/10.1159/000068253
  12. S.F. Byrne, R.L. Green, “Color Doppler Imaging of the Eye and Orbit”, in Ultrasound of the eye and orbit , Philadelphia, USA: Mosby Inc., 2002, ch. 14, pp. 374–375.
  13. T.A Ferreira et al., “MR and CT Imaging of the Normal Eyelid and its Application in Eyelid Tumors,” Cancers, vol. 12, no. 3, p. 658, Mar. 2020.
    DOI: http://doi.org/10.3390/cancers12030658
  14. M. H. Banu, N. G. Ayer, G. Zilelioglu, A. H. Elhan, “Ultrasound biomicroscopy of the levator aponeurosis in congenital and aponeurotic blepharoptosis,” Ophthalmic Plast. Reconstr. Surg., vol. 20, no. 4, pp. 308–311, Jul. 2004.
    DOI: https://doi.org/10.1097/01.iop.0000129532.33913.e7
T.N. Kiseleva, Yu. A. Stepanova, N.V. Guseva, K.V. Lugovkina, V. V. Makukhina, "High-frequency ultrasound scanning in eyelids assessment",RAD Conf. Proc, vol. 5, 2021, pp. 136–140, http://doi.org/10.21175/RadProc.2021.26
Medical Imaging


Yulia A. Stepanova, Vlada Yu. Raguzina, Tatiana P. Baitman, Olesya A. Chekhoeva, Irina V. Miroshkina, Aleksandr A. Gritskevich

DOI: 10.21175/RadProc.2021.27

An organ-sparing approach is preferable at the treatment of patients with cancer of a solitary kidney, but doesn’t always comply with the oncological radicalism. The technique of extracorporeal renal resection followed by autologous transplantation was developed to preserve renal function in patients with obligatory indications for organ-preserving treatment. The aim is to evaluate the possibilities of ultrasound (US) at the stages of extracorporeal resection of a single kidney in the treatment of renal cell carcinoma. Materials and methods. The study included 22 patients treated with renal cell carcinoma of a single kidney in 2013-21 (average age 60.45±7 years). Men prevailed (73%). Multiple primary metachronous cancer occurred in 16 (73%) cases, multiple primary synchronous cancer – in 2 (9%), previous nephrureterectomy was performed in connection with benign kidney diseases (primary contracted kidney, hydronephrosis) – in 2 (10%), a congenital single kidney was in 2 (10%) patients. Previously underwent surgery on a single kidney for a malignant neoplasm of the same etiology for which 6 (27%) patients are being treated in this hospitalization. All the patients underwent US examination in B-mode and duplex scanning at the pre-/intra- and postoperative stage. If necessary, echo-contrast US (Sonovue) was performed intraoperatively and in the early postoperative period. Also, all patients underwent preoperative contrast-enhanced multidetected computed tomography (MDCT). MRI was performed in 7 cases. All the patients were operated with histological verification. Results. Staging according to the TNM system: pT1a-T3vN0-2M0-1G1-3, of which the tumor size exceeded 7 cm in 10 (50%) patients, distant metastases were in 8 (40%) cases. Reno-caval tumor thrombus was detected in 3 patients. Intraoperative US was performed at the stages of surgery: navigation to the stage of resection and assessment of the restoration of blood supply in the intervention area after kidney resection and wound closure. In 3 cases, extracorporeal renal resection was performed simultaneously with thrombectomy and resection of the inferior vena cava for reno-caval tumor thrombus. In 4 cases, renal vessel replacement was performed. The tumor involved vessels in 3 cases and in 1 IOUS after resection showed thrombosis of the renal artery, which eventually required prosthetics. There were no intraoperative complications. All patients underwent US-monitoring on the 1st, 3rd and 5th days after surgery, more often and further as needed. The follow-up period (US, MSCT) was 19-85 months (53.3±17.2). Tumor progression occurred in 3 (15%) cases. One patient died due to the progression of the tumor process 20 months after the operation. Conclusion. US make it possible to control all the stages of extracorporeal resection of a single kidney under pharmaco-cold anti-ischemic protection with orthotopic replantation of renal vessels. The results of this surgical intervention are satisfactory, which indicates the advisability of further development of organ-saving treatment.
  1. Под ред. А.Д. Каприна, В.В. Старинского, Г.В. Петровой, Злокачественные новообразования в России в 2018 году (заболеваемость и смертность) , М.: МНИОИ им. П.А. Герцена - филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2019. (A.D. Caprin, V.V. Starinskiy, G.V. Petrova, Eds., Malignant neoplasms in Russia in 2018 (morbidity and mortality), Moscow: Moscow P.A. Gertsen Research Institute of Oncology, 2019.)
    Retrieved from: https://glavonco.ru/cancer_register/%D0%97%D0%B0%D0%B1%D0%BE%D0%BB_2018_%D0%AD%D0%BB%D0%B5%D0%BA%D1%82%D1%80.pdf
    Retrieved on: Aug. 15, 2021
  2. M. Tanaka et al., “Prognostic factors of renal cell carcinoma with extension into inferior vena cava”, Int. J. Urol., vol. 15, no. 5, pp. 394-398, May 2008.
    DOI: https://doi.org/10.1111/j.1442-2042.2008.02017.x
  3. T.K. Choueiri et al., “Updated efficacy results from the JAVELIN Renal 101 trial: first-line avelumab plus axitinib versus sunitinib in patients with advanced renal cell carcinoma”, Ann. Oncol., vol. 31, no. 8, pp. 1030–1039, Aug. 2020.
    DOI: https://doi.org/10.1016/j.annonc.2020.04.010
  4. E. Shapiro, D.A. Goldfarb, M.L. Ritchey, “The congenital and acquired solitary kidney”, Rev Urol., vol. 5, no. 1, pp. 2–8, 2003.
    PMid: 16985610
    PMCid: PMC1472993
  5. E. Tantisattamo et al., “Current Management of Patients with Acquired Solitary Kidney”, Kidney International Reports, vol. 4, no. 9, pp. 1205–1218, 2019.
    DOI: https://doi.org/10.1016/j.ekir.2019.07.001
  6. P.K.-T. Li et al., “Kidney Health for Everyone Everywhere – From Prevention to Detection and Equitable Access to Care”, Kidney Diseases, vol. 6, no. 3, pp. 136–143, 2020.
    DOI: https://doi.org/10.1159/000506528
  7. S. Groen in't Woud, L. van der Zanden, M.F. Schreuder, “Risk stratification for children with a solitary functioning kidney”, Pediatric Nephrology, vol. 36, pp. 3499–3503, 2021.
    DOI: https://doi.org/10.1007/s00467-021-05168-8
  8. А.А. Теплов и др., «Метод экстракорпоральной резекции почки в условиях фармако-холодовой ишемии без пересечения мочеточника с ортотопической реплантацией сосудов при почечно-клеточном раке», Экспериментальная и клиническая урология, № 2, с. 52–62, 2015. (A.A. Teplov et al., “The method of extracorporeal resection of the kidney in conditions of pharmaco-cold ischemia without crossing the ureter with orthotopic replantation of vessels in renal cell carcinoma”, Experimental and Clinical Urology, vol. 2, pp. 52–62, 2015.)
    Retrieved from: https://readera.org/142188379
    Retrieved on: Aug. 15, 2021
Yulia A. Stepanova, Vlada Yu. Raguzina, Tatiana P. Baitman, Olesya A. Chekhoeva, Irina V. Miroshkina, Aleksandr A. Gritskevich, "Ultrasound diagnostics at the stages of extracorporeal resection of a single kidney in the treatment of renal cell carcinoma ",RAD Conf. Proc, vol. 5, 2021, pp. 141-147, http://doi.org/10.21175/RadProc.2021.27