Volume 5, 2021 |
Table of contents |
List of Reviewers |
CANCER IN THE COUNTRIES OF THE SEE (BALKANS) REGION AND THE FUTURE PARTICLE THERAPY CENTER – SEEIIST
Mimoza Ristova, Manjit Dosanjh, Herwig Schopper
Abstract | References | Cite This | Full Text (PDF)
- Radiotherapy In Cancer Care: Facing the Global Challenge , E. Rosenblatt, E. Zubizarreta, Eds., Vienna, Austria: IAEA, 2017.
Retrieved from: https://www-pub.iaea.org/MTCD/Publications/PDF/P1638_web.pdf
Retrieved on: November 1, 2020. - Latest global cancer data: Cancer burden rises to 18.1 million new cases and 9.6 million cancer deaths in 2018 , Press release no. 263, IARC, Lyon CEDEX, France, 2018.
Retrieved from: https://www.iarc.fr/wp-content/uploads/2018/09/pr263_E.pdf
Retrieved on: November 1, 2020. - M. Steverson, “Ageing and health”, WHO, Oct. 4, 2021.
Retrieved from: https://www.who.int/news-room/fact-sheets/detail/ageing-and-health
Retrieved on: October 5, 2021. - U. Serajuddin, N. Hamadeh, “New World Bank country classifications by income level: 2020-2021”, World Bank Blog, Jul. 1, 2020.
Retrieved from: https://blogs.worldbank.org/opendata/new-world-bank-country-classifications-income-level-2020-2021
Retrieved on: October 1, 2020. - EUROSTAT.
Retrieved from: https://ec.europa.eu/eurostat/databrowser/view/HLTH_RS_EQUIP__custom_569701/bookmark/table?lang=en&bookmarkId=893a61db-eacb-4633-beff-996e7d0a653d
Retrieved on: March 15, 2021. - World Economic Forum.
Retrieved from: http://www3.weforum.org/docs/WEF_TheGlobalCompetitivenessReport2019.pdf
Retrieved on: January 12, 2021. - GLOBOCAN.
Retrieved from: https://gco.iarc.fr
Retrieved on: March 15, 2021. - ENLIGHT.
Retrieved from: https://enlight.web.cern.ch/
Retrieved on: March 15, 2021. - SEEIIST.
Retrieved from: https://seeiist.eu/
Retrieved on: March 15, 2021. - CERN Yellow Reports: Monographs –A Facility for Tumour Therapy and Biomedical Research in South-Eastern Europe , U. Amaldi, ed., vol. 2, CERN-2019-002, Geneva, Switzerland: CERN, 2019.
DOI: https://doi.org/10.23731/CYRM-2019-002 - U. Amaldi et al. “South East European International Institute for Sustainable Technologies (SEEIIST)”, Frontiers in Physics, vol. 8, article no. 567466, pp. 601–611, Jan. 2021.
DOI: https://doi.org/10.3389/fphy.2020.567466 - R. N. Izairi Bexheti, M. M. Ristova, M. Dosanjh, “State-of-the-art and the future of particle therapy (perspectives for SEE countries)”, Physics AUC,
vol. 30 (part II), pp. 246–262, 2020.
http://cis01.central.ucv.ro/pauc/vol/2020_30_part2/pauc_2020_part2.html - M. Ristova, V. Gersan, U. Amaldi, H. Schopper, M. Dosanjh, “Patients with cancer in the countries of South-East Europe (the Balkans) region and prospective of the Particle Therapy Center: South-East European International Institute for Sustainable Technologies (SEEIIST)”, Advances in Radiation Oncology, vol. 6, no. 6, article no. 100772, Aug. 2021.
DOI: https://doi.org/10.1016/j.adro.2021.100772 - R. Baskar, K.A. Lee, R. Yeo, K-W. Yeoh, “Cancer and radiation therapy: Current advances and future directions”, Int. J. Med. Sci., vol. 9, no. 3,
pp. 193–199, 2012.
DOI: https://doi.org/10.7150/ijms.3635 - J.M. Borras et al., “How many new cancer patients in Europe will require radiotherapy by 2025? An ESTRO-HERO analysis”, Radiotherapy and Oncology, vol. 119, no. 1, pp. 5–11, Feb. 2016.
DOI: https://doi.org/10.1016/j.radonc.2016.02.016 - M. M. Ristova et al., “Cancer patients, diagnostics and radiation therapy equipment in the countries of the SEE region”, (submitted for publication), Journal of Global Oncology, 2021.
- Planning national radiotherapy services: A practical tool , IAEA Human Health Series no. 14, Vienna, Austria: IAEA, 2010.
Retrieved from: https://www.iaea.org/publications/8419/planning-national-radiotherapy-services-a-practical-tool
Retrieved on: November 1, 2020. - CERN.
Retrieved from: https://cern.ch/
Retrieved on: March 15, 2021.
LOW-MASS RADIATION-HARD BEAM PROFILE MONITORS FOR HIGH ENERGY PROTONS USING MICROFABRICATED METALTHIN-FILMS
Didier Bouvet, Jacopo Bronuzzi, Blerina Gkotse, Georgi Gorine, Alessandro Mapell, Isidre Mateu, Viktoria Meskova, Giuseppe Pezzullo, Federico Ravotti, Jean-Michel Sallese, Ourania Sidiropoulou
Abstract | References | Cite This | Full Text (PDF)
-
B. Gkotse et al., “A New High-intensity Proton Irradiation Facility at the
CERN PS East Area,” in Proc. PoS TIPP2014, Amsterdam, Netherlands,
2014, article no. 354.
DOI: https://doi.org/10.22323/1.213.0354 -
F. Ravotti, et al., “The Beam Profile Monitoring System for the CERN IRRAD
Proton Facility” in Proc. 5th International Beam Instrumentation Conference (IBIC), Barcelona,
Spain, 2016, pp. 825–828.
DOI: https://doi.org/10.18429/JACoW-IBIC2016-WEPG75 -
H. Seiler, “Secondary electron emission in the scanning electron
microscope”, J. Appl. Phys., vol. 54, no. 11, pp. R1 –R18, 1983.
DOI: https://doi.org/10.1063/1.332840 -
B. Gkotse, M. Glaser, E. Matli, F. Ravotti, “System architecture and data
processing capabilities of the Beam Profile Monitor for the CERN IRRAD
Facility”, presented at the IEEE Nuclear Science Symposium Conf.
(NSS/MIC/RTSD), Strasbourg, France, 2016.
DOI: https://doi.org/10.1109/NSSMIC.2016.8069891 -
C. Cuccagna et al., “Beam parameters optimization and characterization for
a Turning LInac for Protontherapy”, Physica Medica, vol. 54, pp
152 – 156, Oct 2018
DOI: https://doi.org/10.1016/j.ejmp.2018.08.019 -
V. Agoritsas, “Secondary emission chambers for monitoring the CERN Proton
Synchrotron ejected beams”, presented at Daresbury Symposium on Beam Intensity Measurement, Daresbury,
England, 1968.
Retrieved from: http://cds.cern.ch/record/299104/files/CERN-MPS-Int-co-68-9.pdf
Retrieved on: February 13, 2020 -
S. Weisz, “A luminosity monitor for the LHC”, Ph.D. dissertation,
University of Lausanne, Lausanne, Switzerland, 2001.
Retrieved from: https://cds.cern.ch/record/508769/files/thesis-2001-013.pdf
Retrieved on: February 13, 2020 -
F. Roncarolo et al., “Wire grid and wire scanner design for the CERN
LINAC4”, in Proc. of Linear Accelerator Conference (LINAC2010),
Tsukuba, Japan, 2010, pp. 650–652.
Retrieved from: https://cds.cern.ch/record/1303302/files/tup101.pdf
Retrieved on: February 13, 2020 -
Koyama, T. Shikata, H. Sakairi, “Secondary Electron Emission from Al, Cu, Ag and Au Metal Targets under Proton Bombardment”, Jpn. J. Appl. Phys., vol. 20, no. 1, pp. 65–70, 1981.
DOI: https://doi.org/10.1143/jjap.20.65 -
E. J. Sternglass, “Theory of Secondary Electron Emission by High-Speed
Ions”, Phys. Rev., vol. 108, no. 1, pp. 1–12, 1957.
DOI: https://doi.org/10.1103/PhysRev.108.1 -
T. Koshikawa, R. Shimizu, “A Monte Carlo calculation of low-energy
secondary electron emission from metals”, J. Phys. D: Appl. Phys.,
vol. 7, no. 9, pp. 1303–1315, 1974.
DOI: https://doi.org/10.1088/0022-3727/7/9/318 -
V. Baglin et al., “The secondary electron yield of technical materials and
its variation with surface treatments”, in Proc. 7th European Particle Accelerator Conference (EPAC 2000),
Vienna, Austria, 2000.
Retrieved from: https://accelconf.web.cern.ch/e00/PAPERS/THXF102.pdf
Retrieved on: February 13, 2020 -
Center of MicroNanoTechnology (CMi), EPFL.
Retrieved from: https://cmi.epfl.ch/
Retrieved on: February 13, 2020 -
CERN Linear Electron Accelerator for Research (CLEAR), CERN.
Retrieved from: https://clear.cern/clear
Retrieved on: February 13, 2020 - D. Bouvet et al, “NanoRadMet: Development of Multi-Purpose, Low Mass, Beam Profile Monitors by Nanometric Metal Films Deposition.”, Submitted to International Conference on Technology and Instrumentation for Particle Physics (TIPP) , Vancouver, 2020.
DOES ALTITUDE HAVE AN EFFECT ON PIGMENT CONTENT OF WILD GROWING PLANTS IN RILA MOUNTAIN?
Tsveta Angelova, Christo Angelov, Nikolai Tyutyundzhiev, Svetla Gateva, Gabriele Jovtchev
Abstract | References | Cite This | Full Text (PDF)
-
N. Nikolova, J. Laporte, G. Tomova, “Extreme temperature months in Rila
Mountain, Bulgaria (1960-2012)”, Glasnik Srpskog geografskog društva, vol. 98, no. 1, pp. 49–59,
2018.
DOI: https://doi.org/10.2298/GSGD180415007N - R. G. Barry, Mountain weather and climate, London, UK: Methuen, 1981, 313 pages.
-
N. Kumar, S. Kumar, K. Vats, P. S. Ahuja, “Effect of altitude on the
primary products of photosynthesis and the associated enzymes in barley and
wheat”, Photosynthesis Research, vol. 88, pp. 63–71, 2006.
DOI: https://doi.org/10.1007/s11120-005-9028-6 -
Y. Li, D. Yang, S. Xiang, G. Li, “Different responses in leaf pigments and
leaf mass per area to altitude between evergreen and deciduous woody
species”, Australian Journal of Botany, vol. 61, pp. 424–435,
2013.
DOI: https://doi.org/10.1071/BT13022 -
Y. Li et al., “Factors influencing leaf chlorophyll content in natural
forests at the biome scale”, Front. Ecol. Evol., vol. 6, article
no. 64, 2018.
DOI: https://doi.org/10.3389/fevo.2018.00064 - V. Vasileva, A. Ilieva, “Some physiological parameters in mixtures of cocksfoot and tall fescue with subterranean clove”, Bulgarian Journal of Agricultural Science, vol. 23, no. 1, pp. 71–75, 2017.
- M. Titova, “Content of photosynthetic pigments in needles ofPicea Abies and Picea koraiensis”, Vestnik of taiga station of DVORAS, vol. 12, no. 118, pp. 9–12, 2010.
- J. Nurmakova, “Photosynthetic characteristics of sorghum, soybeans and mixed crops in agro-ecosystems”, Natural Science, vol. 2, pp. 196–201, 2013.
- E. Smirnova, V. Reshetnikova, T. Makarova, G. Karavaeva, “Features of genotic relations in the one-specy and mixed crops of Mellilotus officinalis L.” in Proceedings of the Samara scientific center of RAS, vol. 15, no. 3, pp. 793–795, 2013.
-
W. Zielewicz, B. Wróbel, G. Niedbała, “Quantification of chlorophyll and
carotene pigments content in Mountain Melick (Melica nutans L.) in
relation to edaphic variables”, Forests, vol. 11, no. 11, article
no. 1197, 2020.
DOI: https://doi.org/10.3390/f11111197 - K. Rajalakshmi, N. Banu, “Extraction and estimation of chlorophyll from medicinal plants”, Intern. J. Sci. Res., vol. 4, no. 11, pp. 209–212, 2015.
-
Rila National Park, Management Plan 2001–2010, Jun 2001.
Retrieved from: http://ril anationalpark.bg/assets/userfiles/Rila%20NP-en.pdf
Retrieved on: May 15, 2021 -
S. P. Gateva et al., “Effect of UV radiation and other abiotic stress
factors on DNA of different wild plant species grown in three successive
seasons in alpine and subalpine regions.” Phyton, vol. 91, no. 2,
pp. 293–313, 2022.
DOI: https://doi.org/10.32604/phyton.2022.016397 -
D. I. Arnon, “Copper enzyme in isolated chloroplast polyphenol oxidase in
Beta vulgaris”, Plant Phys., vol. 24, no. 1, pp. 1–15, 1949.
DOI: https://doi.org/10.1104/pp.24.1.1 -
W. W. Covington, “Altitudinal variation of chlorophyll concentration and
reflectance of the bark of Populus tremuloides”, Ecology,
vol. 56, pp. 715–720, 1975.
DOI: https://doi.org/10.2307/1935507 -
S. Nautiyal, “High altitude acclimatization in Artemisia: changes
in chlorophyll contents”, Indian J. Plant Physiol., vol. 29, no.
1, pp. 89-94, 1986.
Retrieved from: https://www.samviti.com/img/1341/society/publication/ijpp-29o-1-012.pdf
Retrieved on: May 15, 2021 -
P. Rajsnerová et al., “Morphological, biochemical and physiological traits
of upper and lower canopy leaves of European beech tend to converge with
increasing altitude”, Tree Physiology, vol. 35, no. 1, pp. 47–60,
2015.
DOI: https://doi.org/10.1093/treephys/tpu104 -
G. Cui et al., “Physiological analysis of the effect of altitudinal
gradients on Leymus secalinus on the Qinghai-Tibetan Plateau”, PLOS ONE, vol. 13, no. 9, article no. e0202881, 2018.
DOI: https://doi.org/10.1371/journal.pone.0202881 -
K. S. Ahmad et al., “Morpho-anatomical and physiological adaptations to
high altitude in some Aveneae grasses from Neelum Valley, Western
Himalayan Kashmir”, Acta Physiologiae Plantarum, vol. 38, no. 4,
article no. 93, 2016.
DOI: https://doi.org/10.1007/s11738-016-2114-x
SUPPORT FOR A EUROPEAN METROLOGY NETWORK ON RELIABLE RADIATION PROTECTION: GAPS IN RADIATION PROTECTION AND RELATED METROLOGY
Behnam Khanbabaee, Annette Röttger, Rolf Behrens, Stefan Röttger, Sebastian Feige, Oliver Hupe, Hayo Zutz, Paula Toroi, Paul Leonard, Liset de la Fuente Rosales, Pete Burgess, Vincent Gressier, José–Luis Gutiérrez Villanueva, Rodolfo Cruz Suárez, Dirk Arnold
Abstract | References | Cite This | Full Text (PDF)
-
Council Directive 2013/59/EURATOM laying down basic safety standards
for protection against the dangers arising from exposure to ionising
radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom,
96/29/Euratom, 97/43/Euratom and 2003/122/Euratom
, Official Journal of the European Union, The Council of the European
Union, Brussels, Belgium, 2013.
Retrieved from: http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32013L0059&from=EN
Retrieved on: Aug. 03, 2021 -
Support for a European Metrology Network on reliable radiation
protection regulation
, EMPIR project 19NET03 supportBSS, EURAMET, Braunschweig, Germany.
Retrieved from: https://www.euramet.org/research-innovation/search-research-projects/details/project/support-for-a-european-metrology-network-on-reliable-radiation-protection-regulation/?L=0&tx_eurametctcp_project%5Baction%5D=show&tx_eurametctcp_project%5Bcontrol
Retrieved on: Oct.22, 2021 -
EMN for Radiation Protection
, EURAMET, Braunschweig, Germany.
Retrieved from: https://www.euramet.org/european-metrology-networks/radiation-protection/
Retrieved on: Aug. 03, 2021 -
Gaps in radiation protection metrology
, virtual workshop, PTB, Braunschweig, Germany, Sep. 2020.
Retrieved from: https://www.ptb.de/cms/en/ptb/fachabteilungen/abt6/seminare/gaps-in-radiation-protection-metrology.html
Retrieved on: Aug. 03, 2021 -
Metrology for radon monitoring,
EMPIR project, EURAMET, Braunschweig, Germany.
Retrieved from: http://metroradon.eu/
Retrieved on: Aug. 03, 2021 -
Radon metrology for use in climate change observation and radiation
protection at the environmental level,
EMPIR project 19ENV01, EURAMET, Braunschweig, Germany.
Retrieved from: http://traceradon-empir.eu/
Retrieved on: Aug. 03, 2021 -
A. Roettger et al., “New metrology for radon at the environmental level”, Meas. Sci. Technol., vol. 32,
no. 12, article no. 124008, Oct. 2021.
DOI: https://doi.org/10.1088/1361-6501/ac298d -
The European Partnership on Metrology
,
EURAMET, Braunschweig, Germany, Jun. 2020.
Retrieved from: https://ec.europa.eu/info/sites/default/files/research_and_innovation/funding/documents/ec_rtd_he-partnerships-metrology.pdf
Retrieved on: Oct.22, 2021 -
Partnership Call,
EURAMET, Braunschweig, Germany.
Retrieved from:
https://msu.euramet.org/calls.html
Retrieved on: Oct.22, 2021 -
Directory of RAdiotherapy Centres (DIRAC), IAEA
,
Vienna, Austria.
Retrieved from: https://dirac.iaea.org/
Retrieved on: Sep. 03, 2020 -
J. Busse, H. Zutz, “Setting up and characterizing high-energy and pulsed
reference fields to ensure radiation protection at accelerator facilities
in medicine and in research”, Bull. PTB, Scientific news from division 6, News 2020, Braunschweig,
Germany, Dec. 2020.
Retrieved from: https://www.ptb.de/cms/en/ptb/fachabteilungen/abt6/forschungsnachrichtenabt6/news-2020.html
Retrieved on: Oct.22, 2021 -
R. J. Tanner et al., “Neutron area survey instrument measurements in the
EVIDOS project”, Radiat. Prot. Dosim., vol. 125, no. 1-4, pp.
300–303, Jul. 2007.
DOI: https://doi.org/10.1093/rpd/ncm160 -
“Operational Quantities for External Radiation Exposure”, ICRU Rep. no. 95, Journal of the ICRU,
vol. 20, no. 1, pp. 24–29, Dec. 2020
DOI: https://doi.org/10.1177%2F1473669120966213 -
J. Helt-Hansen, H.E. Larsen, P. Christensen “Portable triple silicon
detector telescope spectrometer for skin dosimetry”, NIMA, vol.
438, no. 2-3, pp. 523–539,
Dec. 1999.
DOI: https://doi.org/10.1016/S0168-9002(99)00802-5 -
R. Schlichte, “Radiation protection for medical staff: Novel spectrometric
dosimeter for characterizing workplaces in X-ray medicine”, PTB-News, no. 2, Braunschweig, Germany, Apr. 2020.
Retrieved from: https://www.ptb.de/cms/fileadmin/internet/publikationen/ptb_news/pdf/englisch/PTBnews_2020_2_e.pdf
Retrieved on: Oct.22, 2021 -
“ICRU Rep. no. 88, Measurement and Reporting of Radon Exposures”, Journal of the ICRU, vol. 12, no. 2, Dec. 2012.
Retrieved from: https://www.icru.org/report/icru-report-88-measurement-and-reporting-of-radon-exposures/
Retrieved on: Aug. 03, 2021 -
RadoNorm project Managing risks from radon and NORM under
EURATOM Horizon 2020.
Retrieved from: https://www.radonorm.eu/
Retrieved on: Aug. 03, 2021 -
R. Behrens, “Standards collection for radiation protection: Dosimetry of
external radiation (AKD) and Physikalisch-Technische Bundesanstalt (PTB)”, Bull. PTB, Braunschweig, Germany, Feb. 2020
Retrieved from: www.ptb.de/cms/fileadmin/internet/fachabteilungen/abteilung_6/6.3/information/norm_lst.pdf
Retrieved on: Aug. 03, 2021
MULTIPLE THROMBOSES AS LATE COMPLICATIONS IN A PATIENT WITH PNEUMONIA CAUSED BY COVID-19 INFECTION
Mitko Mitev
Abstract | References | Cite This | Full Text (PDF)
-
J. Helms et al., “High risk of thrombosis in patients with severe
SARS-CoV-2 infection: a multicenter prospective cohort study,” Intensive Care Med., vol. 46, no. 6, pp. 1089–1098, May 2020.
DOI: https://doi.org/10.1007/s00134-020-06062-x
PMid: 32367170 -
P. Vulliamy, S. Jacob, R.A. Davenport, “Acute aorto-iliac and mesenteric arterial thromboses as presenting features of COVID-19,” Br. J. Haem., vol. 189, no. 6, pp. 1053–1054, May 2020.
DOI: https://doi.org/10.1111/bjh.16760
PMid: 32353183 -
P. Kaur et al., “Acute upper limb ischemia in a patient with COVID-19,” Hematol. Oncol. Stem. Cell. Ther., vol. 14, no. 6, pp. 1658–3876, May 2020.
DOI: https://doi.org/10.1016/j.hemonc.2020.05.001
PMid: 32405288 -
O. de Barry et al., “Arterial and venous abdominal thrombosis in a 79-year-old woman with COVID-19 pneumonia,” Radiol. Case Rep., vol. 15, no. 7, pp. 1054–1057, Apr. 2020.
DOI: https://doi.org/10.1016/j.radcr.2020.04.055
PMid: 32351657 -
C. Schweblin, A.L. Hachulla, M. Roffi, F. Glauser, “Delayed manifestation
of COVID-19 presenting as lower extremity multilevel arterial thrombosis: a
case report,” European Heart Journal – Case Reports, vol. 4, no. 6, pp. 1–4, Dec. 2020.
DOI: https://doi.org/10.1093/ehjcr/ytaa371
PMid: 33437919 -
J.F. Llitjos et al., “High incidence of venous thromboembolic events in
anticoagulated severe COVID-19 patients,” J. Thromb. Haemost.,
vol. 18, no. 7, pp. 743–1746, May 2020.
DOI: https://doi.org/10.1111/jth.14869
PMid: 32320517 -
D. Wichmann et al., “Autopsy findings and venous thromboembolism in patients with COVID-19: a prospective cohort study,” Ann. Intern. Med., vol. 173, no. 4, pp. 268–277, Aug. 2020.
DOI: https://doi.org/10.7326/M20-2003
PMid: 32374815 -
P. Fontana et al., “Venous thromboembolism in COVID-19: systematic review
of reported risks and current guidelines,” Swiss. Med. Wkly., vol.
150, article no. w20301, Jun. 2020.
DOI: https://doi.org/10.4414/smw.2020.20301
PMid: 32640479 -
V.O. Costa et al., “Acute arterial occlusion of the lower limb as the main
clinicalmanifestation in a patient with Covid-19 – Case Report,” International Journal of Surgery Case Reports, vol. 77,
pp. 454–458, Nov. 2020.
DOI: https://doi.org/10.1016/j.ijscr.2020.11.046
PMid: 33200062 -
I. Cheruiyot et al., “Arterial Thrombosis in Coronavirus Disease 2019
Patients: A Rapid Systematic Review,” Ann. Vasc. Surg., vol. 70,
pp. 273–281, Aug. 2020.
DOI: https://doi.org/10.1016/j.avsg.2020.08.087
PMid: 32866574 -
I.A. Goldman, K. Ye, M.H. Scheinfeld, “Lower-extremity Arterial Thrombosis
Associated with COVID-19 Is Characterized by Greater Thrombus Burden and
Increased Rate of Amputation and Death,” Radiol., vol. 297, no. 2, pp. E263–E269, Jul. 2020.
DOI: https://doi.org/10.1148/radiol.2020202348
PMid: 32673190
YTTRIUM-90 SEPARATION IN CARBONATE MEDIA BY SOLVENT EXTRACTION
Igor Smirnov, Ahmed Harb, Igor Balantsev, Maria Karavan
Abstract | References | Cite This | Full Text (PDF)
-
R. Chakravarty, A. Dash, “Availability of Yttrium-90 from Strontium-90: A
Nuclear Medicine Perspective,” Cancer Biother. Radiopharm., vol.
27, no. 10, pp. 621–641, Dec. 2012.
DOI: https://doi.org/10.1089/cbr.2012.1285 -
P. Pichestapong, W. Sriwiang, U. Injarean, “Separation of Yttrium-90 from
Strontium-90 by Extraction Chromatography Using Combined Sr Resin and RE
Resin,” Energy Procedia, vol. 89, pp. 366–372, Jun. 2016.
DOI: https://doi.org/10.1016/j.egypro.2016.05.048 -
H. Tazoe et al., “Determination of strontium-90 from direct separation of
yttrium-90 by solid phase extraction using DGA Resin for seawater
monitoring,” Talanta, vol. 152, pp. 219–227, May 2016.
DOI: https://doi.org/10.1016/j.talanta.2016.01.065 -
N. Vajda, C.-K. Kim, “Determination of radiostrontium isotopes: A review of
analytical methodology,” Appl. Radiat. Isot., vol. 68, no. 12,
pp. 2306–2326, Dec. 2010.
DOI: https://doi.org/10.1016/j.apradiso.2010.05.013 -
C. Xu, J. Wang, J. Chen, “Solvent Extraction of Strontium and Cesium: A
Review of Recent Progress,” Solvent Extr. Ion Exch., vol. 30, no.
6, pp. 623–650, Oct. 2012.
DOI: https://doi.org/10.1080/07366299.2012.700579 -
IAEA, “Production of Long Lived Parent Radionuclides for Generators:68Ge, 82Sr, 90Sr and 188W”, Radioisot. Radiopharm. Ser. No. 2, Austria, Vienna: IAEA, 2010.
Retrieved onfrom https://www.iaea.org/publications/8268/production-of-long-lived-parent-radionuclides-for-generators-68ge-82sr-90sr-and-188w
Retrieved on: July 15, 2021 -
D. W. Wester et al., “Large-scale purification of 90Sr from nuclear waste
materials for production of 90Y, a therapeutic medical radioisotope,” Appl. Radiat. Isot., vol. 59, no. 1, pp. 35–41, Jul. 2003.
DOI: https://doi.org/10.1016/S0969-8043(03)00151-9 - D. F. Peppard, G. W. Mason, S. W. Moline, “The use of dioctyl phosphoric acid extraction in the isolation of carrier-free 90Y, 140La, 144Ce, 143Pr, and 144 Pr,” J. Inorg. Nucl. Chem., vol. 5, no. 2, pp. 141–146, 1957. DOI: https://doi.org/10.1016/0022-1902(57)80055-4
-
M. Y. Mirza, “A new method for the carrier-free production of 90
Y from 90Sr-90Y mixture and 89Sr from
neutron-irradiated Y2O3,” Anal. Chim. Acta.,
vol. 40, pp. 229–233, 1968.
DOI: https://doi.org/10.1016/S0003-2670(00)86718-5 -
J. S. Wike, C.E. Guyer, D.W. Ramey, B.P. Phillips, “Chemistry for
commercial scale production of yttrium-90 for medical research,”
Int. J. Radiat. Appl. Instrumentation. Part A. Appl. Radiat. Isot., vol. 41, no. 9, pp. 861–865, 1990.
DOI: https://doi.org/10.1016/0883-2889(90)90064-N -
K. Yoshizuka, Y. Sakamoto, Y. Baba, K. Inoue,
F. Nakashio, “Solvent extraction of holmium and yttrium with
bis(2-ethylhexyl)phosphoric acid,” Ind. Eng. Chem. Res., vol. 31,
no. 5, pp. 1372–1378,
May 1992.
DOI: https://doi.org/10.1021/ie00005a018 -
E. Anticó et al., “Solvent extraction of yttrium from chloride media by
di(2-ethylhexyl)phosphoric acid in kerosene. Speciation studies and gel
formation,” Anal. Chim. Acta., vol.327, no. 3, pp. 267–276, 1996.
DOI: https://doi.org/10.1016/0003-2670(96)00103-1 -
J. T. Chuang, J. G. Lo, “The solvent extraction of carrier-free90Y from 90Sr with crown ethers,” J. Radioanal. Nucl. Chem. Artic., vol. 189, pp. 307–317, Jan.
1995.
DOI: https://doi.org/10.1007/BF02042610 -
E. P. Horwitz, W. W. Schulz, “Solvent Extraction in the Treatment of Acidic
High-Level Liquid Waste: Where Do We Stand?”, in: Metal-Ion Separation and Preconcentration: Progress and Opportunities,
A.H. Bond, M.L. Dietz, R.D. Rogers, Eds., Washington, DC, USA, ACS Symposium Series, American Chemical Society, 1999, ch. 3, pp. 20–50.
DOI: https://doi.org/10.1021/bk-1999-0716.ch003 -
I.V. Smirnov, V.S. Shirokova, A.Z. Yumaguen,
M.V. Logunov, “Extraction of Strontium and Yttrium from Alkaline Carbonate
Media with Functionalized Calix[8]arenes”, Radiochemistry, vol. 60, pp. 248–254, Jun. 2018.
Retrieved onfrom https://www.readcube.com/articles/10.1134%2Fs1066362218030050
Retrieved on: July 15, 2021 -
G. Cote, D. Bauer, “Liquid—liquid extraction of germanium with oxine
derivatives,” Hydrometallurgy, vol. 5, no. 2-3, pp. 149–160,
Feb. 1980.
DOI: https://doi.org/10.1016/0304-386X(80)90035-3 -
S. Shibata, “Spectrophotometric determination of rare earth metals with
1-(2-pyridylazo)-2-naphthol,” Anal. Chim. Acta, vol. 28, pp.
388–392, 1963.
DOI: https://doi.org/10.1016/S0003-2670(00)87250-5 -
L. Sommer, H. Novotná, “Complexation of aluminium, yttrium, lanthanum and
lanthanides with 4-(2-pyridylazo)resorcinol (par),” Talanta, vol.
14,
no. 4, pp. 457–471 , Apr. 1967.
DOI: https://doi.org/10.1016/0039-9140(67)80072-9
SIMULATION OF RADIOLUMINESCENCE INDUCED BY ALPHA PARTICLES IN THE AIR BY THE MONTE CARLO METHOD
Ioana Lalau, Mihail-Razvan Ioan
Abstract | References | Cite This | Full Text (PDF)
-
Radiation oncology physics – a handbook for teachers and students, E. B. Podgorsak, Ed., Vienna, Austria: IAEA, 2005.
Retrieved from: https://www-pub.iaea.org/MTCD/publications/PDF/Pub1196_web.pdf
Retrieved on: Jul. 14, 2021 -
M. J. Berger, J. S. Coursey, M. A. Zucker, and J. Chang, Stopping-power and range tables for electrons, protons, and helium ions
, NIST Standard Reference Database 124, NIST, Gaithersburg, MD, USA, 1998.
DOI: https://doi.org/10.18434/T4NC7P -
W. Huggins, L. Huggins, “On the spectrum of the spontaneous luminous radiation of radium at ordinary temperatures,” in Proceedings of the Royal Society of London, vol. 72, no. 477-486, pp. 196 – 199, 1904.
DOI: https://doi.org/10.1098/rspl.1903.0038 -
T. Waldenmaier, “Spectral resolved measurement of the nitrogen fluorescence yield in air induced by electrons”, Ph.D. Dissertation, Forschungzentrum Karlsruhe, Germany, 2006.
Retrieved from: https://inis.iaea.org/search/search.aspx?orig_q=RN:37092315
Retrieved on: Jul. 14, 2021 - G. Knoll, Radiation Detection and Measurement, New York, US: J. Wiley & Sons, 2010.
-
T. Waldenmaier, “Spectral resolved measurement of the nitrogen fluorescence yield in air induced by electrons,” Dissertation, Wissenschaftliche Berichte FZKA, Germany, 2006.
Retrieved from: https://inis.iaea.org/search/search.aspx?orig_q=RN:37092315
Retrieved on: Jul. 14, 2021 -
A. N. Bunner, “Cosmic Ray Detection by Atmospheric Fluorescence”, Ph.D. dissertation, Cornell University, Ithaca, NY, USA, 1967.
Retrieved from: https://inspirehep.net/literature/1087629
Retrieved on: Jul.14, 2021 -
T. Waldenmaier, J. Blümer, H. Klages, “Spectral resolved measurement of the nitrogen fluorescence emissions in air induced by electrons”, Astroparticle Physics, vol. 29, no. 3, pp. 205 – 222, 2008.
DOI: https://doi.org/10.1016/j.astropartphys.2008.01.004 -
A. Lofthus, P. H. Krupenie, “The spectrum of molecular nitrogen”, Journal of Physical and Chemical Reference Data, vol. 6, no. 1,
pp. 113 – 307, 1977.
DOI: https://doi.org/10.1063/1.555546 -
J. Sand, “Alpha Radiation Detection via Radioluminescence of Air,” Ph.D. Dissertation, Tampere University of Technology, Tampere, Finland, 2016.
Retrieved from: https://cris.tuni.fi/ws/portalfiles/portal/9072621/sand_1449.pdf
Retrieved on: Jul. 14, 2021 -
M. M. Fraga et al., “Temperature-dependent quenching of UV fluorescence of N2,” Nuclear Instruments and Methods in Physics Research Section A, vol. 597, no. 1, pp. 75 – 82, 2008.
DOI: https://doi.org/10.1016/j.nima.2008.08.046 -
M. Zubek, “Excitation of the C 3Πu state of N2 by electron impact in the near threshold region,” Journal of Physics B: Atomic, Molecular and Optical Physics, vol. 27, no. 3, p. 573, 1994.
DOI: https://doi.org/10.1088/0953-4075/27/3/021 -
J. T. Fons, R. S. Schappe, C. C. Lin, “Electron-impact excitation of the second positive band system (C 3Πu → B 3Π g) and the C 3Πu electronic state of the nitrogen molecule,” Physical Review A, vol. 53, no. 4, pp. 2239 – 2247, 1996.
DOI: https://doi.org/10.1103/PhysRevA.53.2239 -
G. Poparić, M. Vićić, D. Belić, “Vibrational excitation of the C3Πu state of N2 by electron impact,” Chemical Physics, vol. 240, no. 1-2, pp. 283 – 289, 1999.
DOI: https://doi.org/10.1016/S0301-0104(98)00383-8 -
F. Blanco, F. Arqueros, “The role of secondary electrons in some experiments determining fluorescence emission from nitrogen C 3Π u levels,” Physics Letters A, vol. 345, no. 4-6, pp. 355 – 361, 2005.
DOI: https://doi.org/10.1016/j.physleta.2005.07.059 -
Y. Itikawa, “Cross sections for electron collisions with nitrogen molecules,” Journal of Physical and Chemical Reference Data, vol. 35, no. 1, pp. 31 – 53, 2006.
DOI: https://doi.org/10.1063/1.1937426 -
A. Ferrari, P.R. Sala, A. Fassò, J. Ranft, FLUKA: a multi-particle transport code, Report CERN-2005-10, INFN/TC_05/11, SLAC-R-773, CERN, Geneva, Switzerland, 2005.
Retrieved from: https://www.slac.stanford.edu/cgi-bin/getdoc/slac-r-773.pdf
Retrieved on: Jul.14, 2021 -
T.T. Böhlen et al., “The FLUKA Code: Developments and Challenges for High Energy and Medical Applications”, Nuclear Data Sheets, vol. 120, 211- 214, 2014.
DOI: https://doi.org/10.1016/j.nds.2014.07.049 -
V. Vlachoudis, “FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA”, in
Proc. Int. Conf. On Mathematics, Computational Methods & Reactor Physics (M&C)
, Saratoga Springs, New York, USA, 2009.
Retrieved from: https://flair.web.cern.ch/flair/doc/Flair_MC2009.pdf
Retrieved on: Jul.14, 2021 -
T. Sato, “Analytical Model for Estimating the Zenith Angle Dependence of Terrestrial Cosmic Ray Fluxes”, PLOS ONE, vol. 11, no. 8, 2016.
DOI: https://doi.org/10.1371/journal.pone.0160390 -
T. Sato, “Analytical model for estimating terrestrial cosmic ray fluxes nearly anytime and anywhere in the world: Extension of PARMA/EXPACS”, PLOS ONE, vol. 10, no. 12, 2015.
DOI: https://doi.org/10.1371/journal.pone.0144679 -
EXPACS version 4.10, Japan Atomic Energy Agency, Ibaraki, Japan
Retrieved from: http://phits.jaea.go.jp/expacs/
Retrieved from: Jul. 14, 2021
FAST METHOD FOR STUDYING THE EXTRACTION OF THE MAIN HLW COMPONENTS WITH CROWN ETHERS IN NEW FLUORINE-CONTAINING DILUENTS
V.V. Timoshenko, A.A. Brechalov, Y.E. Ermolenko, I.V. Smirnov
Abstract | References | Cite This | Full Text (PDF)
-
Итоги деятельности Государственной корпорации по атомной энергии
«РОСАТОМ» за 2019 год
., Москва, Россия, с. 75, 2019. (
Results of the activities of the State Atomic Energy Corporation
"ROSATOM" for 2019
, Moscow, Russia, p.75, 2019.)
Retrieved from: https://rosatom.ru/upload/iblock/033/03395b2a9751b4fcd385d746a2f9df15.pdf
Retrieved on: Jun. 15, 2021 -
V. V. Yakshin et al., “Selective Extraction of Alkali Metals with Solutions
of Dibenzocrown Ethers in Organofluorine Diluents from Nitric Acid Media,” Dokl. Phys. Chem., vol. 422, pp. 271–274, 2008.
DOI: http://doi.org/10.1134/S0012501608100072 -
Ch. Xu, J. Wang, J. Chen, “Solvent Extraction of Strontium and Cesium: A
Review of Recent Progress,” Solvent Extraction and Ion Exchange,
vol. 30, no. 6, pp. 623–650, 2012.
DOI: http://doi.org/10.1080/07366299.2012.700579 -
J. Ma et al., “Supramolecular adsorbents in extraction and separation techniques - A review,” Analytica Chimica Acta, vol. 1122, pp. 97-113, 2020.
DOI: https://doi.org/10.1016/j.aca.2020.04.054 -
Y. Sasaki et al., “Solvent Extraction of Cesium Using DtBuDB18C6 into Various Organic Solvents,” Solvent Extraction Research and Development, vol. 28, no. 2, pp. 121-131, 2021.
DOI: https://doi.org/10.15261/serdj.28.121 -
Ю.В. Сапрыкин и др., «Экстракция цезия краун-эфирами в различных средах», Успехи в химии и химической технологии, том 25, номер 7, страницы:
33-37, 2011. (Yu. V. Saprykin et al., “Extraction of cesium with crown ethers in various
media,” Advances in chemistry and chemical technology, vol. 25,
no. 7, pp. 33-37, 2011)
Retrieved from: https://elibrary.ru/item.asp?id=20230054
Retrieved on: Jun. 15, 2021 -
J. Rais et al., “Extraction of Radioactive Cs and Sr from Nitric Acid
Solutions with 25,27-Bis(1-octyloxy)calix[4]-26,28-Crown-6 and
Dicyclohexyl-18-Crown-6: Effect of Nature of the Organic Solvent,” Separation Science and Technology, vol. 50, no. 8, pp. 1202-1212, 2015.
DOI: https://doi.org/10.1080/01496395.2014.978464 -
M. Alyapyshev et al., “New polar fluorinated diluents for diamide
extractants,” Journal of Radioanalytical and Nuclear Chemistry,
vol. 310, pp. 785–792, 2016.
DOI: https://doi.org/10.1007/s10967-016-4907-1 -
P. Distler et al, “Fluorinated Carbonates as New Diluents for Extraction
and Separation of f-Block Elements,” Solvent Extraction and Ion Exchange, vol. 38, no. 2, pp. 180-193,
2020.
DOI: https://doi.org/10.1080/07366299.2019.1708004 -
V. Babain et al. “Extraction of Actinides with Tributyl Phosphate
in Carbonates of Fluorinated Alcohols,” Solvent Extraction and Ion Exchange, vol. 39, no. 3, pp. 255-270,
2021.
DOI: https://doi.org/10.1080/07366299.2020.1837421 -
J. N. Sharma et al., “Separation of strontium-90 from a highly saline high level liquid waste solution using 4,4′(5′)-[di-tert-butyldicyclohexano]-18-crown-6 + isodecyl alcohol/n-dodecane solvent,” Separation and Purification Technology, vol. 229, article no. 115502, 2019.
DOI: https://doi.org/10.1016/j.seppur.2019.04.032
DYNAMIC TEST OF ALKALINE HLW PROCESSING WITH HYDROXYCALIX[6]ARENES BASED SOLVENT
Igor V. Smirnov, Maria D. Karavan, Albert Z. Yumaguen
Abstract | References | Cite This | Full Text (PDF)
- R. E. Gephart, R. E. Lundgren, Hanford Tank Cleanup: A Guide to Understanding the technical Issues , Columbus (OH), USA: Battelle Press, 1998.
-
S. I. Stepanov et al., “CARBEX Process, A New Technology of Reprocessing of
Spent Nuclear Fuel,” Russian Journal of General Chemistry, vol.
81, no. 9, article no. 1949, 2011.
DOI: https://doi.org/10.1134/S1070363211090404 - П.В. Козлов и др., «Варианты реализации технологии предварительной подготовки осветленной фазы ёмкостей-хранилищ накопленных ВАО к отверждению», Вопросы радиационной безопасности, том 70, но. 2, стр. 34-47, 2013. (P. Kozlov et al., “Implementation Options for the Technology of Preliminary Preparation of Clarified Phase Obtained from Storage Tanks Containing Accumulated HLW for Solidification,” Radiat. Saf. Probl., vol. 70, no. 2, pp. 34–47, 2013)
-
B. A. Moyer et al., Next Generation Solvent Development for Caustic-Side Solvent Extraction of Cesium,
Rep. ORNL/TM-2014/22, ORNL, DOE, Oak Ridge (TN), USA, 2014.
DOI: https://doi.org/10.2172/1167005 -
I. Smirnov et al., “Americium and cesium extraction from alkaline media by
calix[8]arenes with p-tert-butyl and isononyl substituents on the upper
rim: aggregation effect,” Macroheterocyles, vol. 10, no. 2, pp.
196–202, 2017.
DOI: https://doi.org/10.6060/mhc161070s -
I. V. Smirnov et al., “Cesium and americium extraction from
carbonate-alkaline media with
O-substituted p-alkylcalix[8]arenes,” J. Radioanal. Nucl. Chem.,
vol. 314, no. 2, pp. 1257–1265, 2017.
DOI: https://doi.org/10.1007/s10967-017-5505-6 -
I. V. Smirnov et al., “Extraction of Cesium-137 and Americium-241 by
Calix[n]arenes from Carbonate-Alkaline Media,” Doklady Chemistry,
vol. 479, no. 1, pp. 36–40, 2018.
DOI: https://doi.org/10.1134/S0012500818030035 -
С.Р. Зарипов, «Синтез липофильных каликс[n]аренов для извлечения ионов
Cs (I) и Am (III) из щелочных высокоактивных отходов ядерного
производства», докторская диссертация, Казанский (Приволжский) федеральный
университет, Казань, Россия, 2018. (S.R. Zaripov, “Synthesis of lipophilic
calix[n]arenes for the extraction of Cs(I) and Am(III) ions from alkaline
high-level nuclear waste,” Ph.D. dissertation, Kazan Federal University,
Kazan, Russia, 2018.)
Retrieved from: https://shelly.kpfu.ru/e-ksu/docs/DISSERTATION/F466590126/Dissertaciya_Zaripov_S.R_06_11_18.pdf
Retrieved on: Jun. 15, 2021 - М.Д. Караван, «Экстракционное выделение трансплутониевых, редкоземельных и некоторых осколочных элементов из карбонатно-щелочных растворов с помощью полифенольных макроциклических лигандов», Вопросы радиационной безопасности, том 100, но. 4, стр. 23-34, 2020. (M. D. Karavan, “Extraction of transplutonium, rare-earth and some fission elements from carbonate-alkaline solutions using polyphenolic macrocyclic ligands,” Radiat. Saf. Probl., vol. 100, no. 4, pp. 23-34, 2020).
-
I. V. Smirnov et al., “Hydroxycalix[6]arenes with p-isononyl
substituents for alkaline HLW processing,” J. Radioanal. Nucl. Chem., vol. 326, no. 1, pp. 675–681, 2020.
DOI: https://doi.org/10.1007/s10967-020-07325-z
COMBINED EXPOSURE TO HALOTHANE AND 1 OR 2 Gy IONIZING RADIATION CAUSES A SYNERGISTIC EFFECT IN DNA DAMAGE IN THE BLOOD AND LIVER OF SWISS ALBINO MICE
Vesna Benković, Nikola Borojević, Nada Oršolić, Gordana Brozović, Anica Horvat Knežević, Mirta Milić
Abstract | References | Cite This | Full Text (PDF)
-
Radiation: Monographs on the Evaluation of Carcinogenic Risks to Humans Volume 100D , Lyon, France: IARC, 2012.
Retrieved from: https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Radiation-2012
Retrieved on: May 1, 2021 -
J. M. Borras et al., “Estimating the number of fractions by tumour site for European countries in 2012 and 2025: An ESTRO-HERO analysis,” Radiother. Oncol., vol. 126, no. 2, pp. 198-204, 2018.
DOI: https://doi.org/10.1016/j.radonc.2017.11.009 -
C. Fiorino, M. Guckenberger, M. Schwarz, U. H. Heide, B. Heijmen, “Technology‐driven research for radiotherapy innovation,” Mol. Oncol., vol. 14, no. 7, pp. 1500-1513, Mar. 2020.
DOI: https://doi.org/10.1002/1878-0261.12659 -
J. S. Vaidya et al., “Long term survival and local control outcomes from single dose targeted intraoperative radiotherapy during lumpectomy (TARGIT-IORT) for early breast cancer: TARGIT-A randomised clinical trial”, B.M.J., vol. 370, article no. m2836, Aug. 2020.
DOI: https://doi.org/10.1136/bmj.m2836 -
Radiotherapy dose fractionation, 3rd ed., London, UK: The Royal College of Radiologist, 2019.
Retrieved from: http://www.rcr.ac.uk/publication/radiotherapy-dose-fractionation-third-edition
Retrieved on: May 27, 2021 -
R. Arunkumar, E. Rebello, P. Owusu-Agyemang, “Anesthetic techniques for unique cancer surgery procedures,” Best Pract. Res. Clin. Anaesthesiol., vol. 27, no. 4, pp. 513-526, Dec. 2013.
DOI: https://doi.org/10.1016/j.bpa.2013.09.002 -
S. M. Ntouka et al., “Minimizing General Anesthetic Use in Pediatric
Radiation Therapy”, Pract. Radiat. Oncol., vol. 10, no. 3, pp.
e159-e165, May 2020.
DOI: https://doi.org/10.1016/j.prro.2019.12.001 -
M. J. Gyorfi, P. Y. Kim, “Halothane Toxicity”, in StatPearls [Internet], Treasure Island (FL), USA: StatPearls Publishing, 2021
Retrieved from: https://www.ncbi.nlm.nih.gov/books/NBK545281/
Retrieved on: Aug. 27, 2021 -
J. A. Campagna, K. W. Miller, S. A. Forman, “Mechanisms of actions of
inhaled anesthetics,” N. Engl. J. Med., vol. 348, no. 21, pp.
2110-2124, May 2003.
DOI: https://doi.org/10.1056/NEJMra021261 -
S. Chiao, Z. Zuo, “A double-edged sword: volatile anesthetic effects on the neonatal brain,” Brain Sci., vol. 4, no. 2, pp. 273-294, Apr. 2014.
DOI: https://doi.org/10.3390/brainsci4020273 -
D. Schifilliti, G. Grasso, A. Conti, V. Fodale, “Anesthetic-Related Neuroprotection,” CNS Drugs, vol. 24, pp. 893–907, 2010.
DOI: https://doi.org/10.2165/11584760-000000000-00000 -
S. Yılmaz, N. Ç. Çalbayram, “Exposure to anesthetic gases among operating
room personnel and risk of genotoxicity: A systematic review of the human
biomonitoring studies,” J. Clin. Anesth., vol. 35, pp. 326-331, Dec. 2016.
DOI: https://doi.org/10.1016/j.jclinane.2016.08.029 -
G. Brozovic et al., “DNA damage and repair after exposure to sevoflurane in
vivo, evaluated in Swiss albino mice by the alkaline comet assay and
micronucleus test,” J. Appl. Genet., vol. 51, no. 1, pp. 79-86,
2010.
DOI: https://doi.org/10.1007/BF03195714 -
G. Brozović et al., “Sevoflurane and isoflurane genotoxicity in kidney
cells of mice,” Arh. Hig. Rada Toksikol., vol. 68, no. 3, pp.
228-35, Sep. 2017.
DOI: https://doi.org/10.1515/aiht-2017-68-2941 -
Hrvatski Sabor (4. list. 2017), Zakon o zaštiti životinja, NN 102/17. (Croatian Parliament (Oct. 4, 2017), Animal Protection Act, O.G. 102/17.)
Retrieved from: https://narodne-novine.nn.hr/clanci/sluzbeni/2017_10_102_2342.html
Retrieved on: May 21, 2021. -
Hrvatski Sabor (8. svi. 2013.), Pravilnik o zaštiti životinja koje se koriste u znanstvene svrhe, NN 55/13. (Croatian Parliament, Ordinance on the protection of animals used for scientific purposes, O.G. 55/13.)
Retrieved from: https://narodne-novine.nn.hr/clanci/sluzbeni/2013_05_55_1129.html
Retrieved on: May 21, 2021 -
The European Parliament and the Council of the European Union (Sep. 22, 2010), Directive 2010/63/EU.
Retrieved from: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:276:0033:0079:en:PDF
Retrieved on: May 21, 2021 -
D. J. Gaertner, T. M. Hallman, F. C. Hankenson, M. A. Batchelder., “Anesthesia and Analgesia in Rodents” in Anesthesia and Analgesia in Laboratory Animals, R.E. Fish, M.J. Brown, P.J. Danneman, A.Z. Karas, Eds., 2nd ed., London, UK: Academic Press, Elsevier, 2008, ch. 10, pp. 240-261.
DOI: https://doi.org/10.1016/B978-012373898-1.50014-0 -
B. A. Siddiqui, P. Y. Kim, “Anesthesia Stages”, in: StatPearls [Internet], Treasure Island (FL), USA: StatPearls
Publishing, Jan. 2021.
Retrieved from: https://www.ncbi.nlm.nih.gov/books/NBK557596/ -
N. P. Singh, M. T. McCoy, R. R. Tice, L. L. Schneider, “A simple technique for quantitation of low levels of DNA damage in individual cells,” Exp. Cell Res., vol. 175, no. 1, pp. 184-191, Mar. 1988.
DOI: https://doi.org/10.1016/0014-4827(88)90265-0 -
G. G. Nair C. K. Nair, “Protection of cellular DNA and membrane from γ-radiation-induced damages and enhancement in DNA repair by sesamol,” Cancer Biother. Radiopharm., vol. 25, no. 6, pp. 629-635, Dec. 2010.
DOI: https://doi.org/10.1089/cbr.2010.0803
PURIFICATION OF URANIUM(VI) FROM IMPURITIES OF FISSION PRODUCT SURROGATES BY SOLVENT EXTRACTION IN THE CARBEX PROCESS
S.O. Frankiv, A.V. Boyarintsev, S.I. Stepanov, E.A. Skuratova, N.M. Chervyakov
Abstract | References | Cite This | Full Text (PDF)
- С. И. Ровный, П. П. Шевцев, “Современное состояние и пути совершенствования радиохимической технологии выделения и очистки урана и плутония,” Вопросы радиационной безопасности, но 2, cтр. 5–13, 2007. (S. I. Rovny, P. P. Shevtsev, “Modern state and ways to improve radiochemical technology for the isolation and purification of uranium and plutonium,” Radiation Safety Issues, no. 2, pp. 5–13, 2007.)
- H. Tomiyasu, Y. Asano, “Environmentally acceptable nuclear fuel cycle development of a new reprocessing system”, Prog. Nucl. Energ., vol. 32, no. 3–4, pp. 421–427, 1998.
DOI: https://doi.org/10.1016/S0149-1970(97)00037-1 - G. S. Goff et al., “Development of a novel alkaline based process for spent nuclear fuel recycling”, AIChE Annual Meeting, Nuclear Engineering Division, Salt Lake City (Utah), USA, Nov. 4–9, 2007.
-
C. Z. Soderquist et al., “Dissolution of irradiated commercial UO2 fuels in ammonium carbonate and hydrogen peroxide,” Ind. Eng. Chem. Res., vol. 50, no. 4 pp. 1813–1818, Jan. 2011.
DOI: https://doi.org/10.1021/ie101386n -
S. I. Stepanov, A. M. Chekmarev, “Concept of spent nuclear fuel
reprocessing”, Dokl. Chem., vol. 423, no. 1, pp. 276–278, 2008.
DOI: https://doi.org/10.1134/S0012500808110037 -
S. I. Stepanov, A. V. Boyarincev, A. A. Chehlov, A. M. Chekmarev, A. Yu. Tsivadze, “Chemistry of the CARBEX process. Identification of the absorption bands of the ligands in the electronic spectra of U(VI) extracts with methyltrioctylammonium carbonate,” Dokl. Chem., vol. 473, no. 1, pp. 63–66, 2017.
DOI: https://doi.org/10.1134/S0012500817030065 - Б. В. Громов, Введение в химическую технологию урана, Москва, Россия: Атомиздат, 1978. (B. V. Gromov, Introduction to the chemical technology of uranium, Moscow, Russia: Atomizdat, 1978.)
-
S. I. Stepanov et al., “CARBEX process, a new technology of reprocessing of spent nuclear fuel,” Russ. J. Gen. Chem., vol. 81, no. 9, pp. 1949–1959, 2011.
DOI: https://doi.org/10.1134/S1070363211090404 - И. А. Шевчук, Л. И. Коноваленко, Т. Н. Симонова, “Влияние размеров радикалов солей алкиламинов и четвертичных аммониевых оснований на экстракцию карбонатных комплексов металлов,” Ж. неорг. химии., Т. 28, № 12, c. 3193–3195, 1983. (I. A. Shevchuk, L. I. Konovalenko. T. N. Simonova “The effect of the radical sizes of alkylamine salts and quaternary ammonium bases on the extraction of carbonate complexes of metals,” J. Neorg. Chem., vol. 28, no. 12, pp. 3193–3195, 1983.)
-
D. J. Crouse, K. B. Brown, W. D. Arnold, J. G. Moore, R. S. Lowrie, Progress report on uranium extraction with organonitrogen compounds, Rep. ORNL-2099, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA, 1956.
Retrieved from: https://www.osti.gov/servlets/purl/4373382
Retrieved on: Jun. 15, 2021 -
W. E. Clifford, E. P. Bullwinkel, L. A. McClaine, P. Noble Jr., “The solvent extraction of uranium(VI) from carbonate solutions,” J. Am. Chem. Soc., vol. 80, no. 12, pp. 2959–2961, 1958.
DOI: https://doi.org/10.1021/ja01545a014 -
F. G. Seeley, F. J. Hurst, D. J. Crouse, “Solvent extraction of uranium from carbonate solutions,” Rep. ORNL-3106, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA, 1961.
Retrieved from: https://www.osti.gov/servlets/purl/4843667
Retrieved on: Jun. 15, 2021 - K. B. Brown, “Chemical technology division chemical development section С progress report on separations process research for January-June,” Rep. ORNL-3496, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA, 1963.
- Ю. А. Афанасьев, Ю. А. Фролов, А. А. Цей, “Опыт извлечения микроколичеств урана из карбонатного раствора,” Радиохимия, Т. 23, № 5, c. 772–773, 1981. (Yu. A. Afanasyev, Yu. A. Frolov, A. A. Tsey, “The experience of extracting trace amounts of uranium from a carbonate solution,” Radiochemistry, vol. 23, no. 5, pp. 772–773, 1981.)
- Р. Раймонд, “Аминные экстракционные системы,” Химия экстракции, c. 180–195, 1971. (R. Raymond, “Amine extraction systems,” Extraction chemistry, pp. 180–195, 1971.)
- Ю. А. Золотов, “Новые экстрагенты,” Химия экстракции, Новосибирск, 1984, c. 24–34. (Yu. A. Zolotov, “New extractants,” Extraction chemistry, Novosibirsk, 1984, pp. 24–34.)
- Э. А. Межов, “Экстракция аминами и чао,” Актиниды: Справочник Энергоатомиздат, 1987, c. 86. (E. A. Mezhov, “Extraction by amines and qab,” Actinides: Handbook of Energoatomizdat, 1987, pp. 86)
-
Z. Zhaowu, P. Yoko, Y. C. Chu, “Uranium solvent extraction and separation
from vanadium in alkaline solutions,” Separation Science and Technology, vol. 48, no. 9, pp. 1402–1408, 2013.
DOI: https://doi.org/10.1080/01496395.2012.738277 -
N. D. Mokhine, M. Mathuthu, E. Stassen, “Recovery of uranium from residue
generated during Mo-99 production, using organic solvent extraction,” Physics and Chemistry of the Earth, Parts A/B/C, vol. 115, article no. 102822, 2020.
DOI: https://doi.org/10.1016/j.pce.2019.102822 -
M. Mathuthu, N. D. Mokhine, E. Stassen, “Organic solvent extraction of
uranium from alkaline nuclear waste,” J. Radioanal. Nucl. Chem.,
vol. 319, pp. 687–693, 2019.
DOI: https://doi.org/10.1007/s10967-019-06430-y -
F. A. Shehata, A. S. Ahmed, Y. A. El Nadi, H. F. Aly, “Extraction of
uranium from alkaline medium by Aliquat 336 in different diluent,” Second Arab Conference on the Peaceful uses of Atomic Energy, Cairo, Egypt, Nov. 5–9, 1994, pp. 457-464.
Retrieved from: https://inis.iaea.org/collection/NCLCollectionStore/_Public/28/029/28029339.pdf
Retrieved on: Jun. 15, 2021 -
М. Т. Sardina, R. P. Cellini, B. T. Rodriques, “Extraction of uranium from
solutions of complex uranylcarbonate by cetyldumetil benzyl ammonium
chloride,” J. Inorg. Nucl. Chem., vol. 24, no. 6, pp. 721–728,
1962.
DOI: https://doi.org/10.1016/0022-1902(62)80091-8 -
C. Keller, D. Fang, “Uber karbonatokomplexe des dreiwertigen Americiums
sowie des vier- und sechswertigen Urans und Plutoniums,” Radiochimica Acta., vol. 11, no. 3/4, pp. 123–127, 1969. (C. Keller, D. Fang, “About carbonate complexes of trivalent americium as
well as tetravalent and hexavalent uranium and plutonium,” Radiochimica Acta., vol. 11, no. 3/4, pp. 123–127, 1969.)
DOI: https://doi.org/10.1524/ract.1969.11.34.123 -
K. Ueno, A. Saito, “Extraction of several elements with
trioctylmonomethylammonium chloride,” J. Anal. Chim. Acta., vol.
56, no. 3, pp. 427–434, 1971.
DOI: https://doi.org/10.1016/S0003-2670(01)80932-6 -
A. V. Boyarintsev et al., “Reprocessing of simulated voloxidized
uranium–oxide SNF in the CARBEX process,” Nucl. Eng. Technol.,
vol. 51, no. 7, pp. 1799–1804, 2019.
DOI: https://doi.org/10.1016/j.net.2019.05.020 - В. К. Марков, А. В. Виноградов, С. В. Елинсон, Уран, методы его определения, Москва, Россия: Атомиздат, 1960. (V. K. Markov, E. A. Vernyi, A. V. Vinogradov, Uranium, methods of its definition, Moscow, Russia: Atomizdat, 1960.)
- Analytical Spectroscopy Library Volume 10: Separation, preconcentration, and spectrophotometry in inorganic analysis, Z. Marczenko, M. Balcerzak, Eds., 1st ed., New York (NY), USA: Elsevier Science, 2000.
APPLICATION OF COMPUTED TOMOGRAPHY IN THE DIAGNOSIS OF CHRONIC APICAL PERIODONTITIS
Anatoly A. Adamchik, Valerii V. Tairov, Maria V. Adamchik, Natalya I. Bykova, Ekaterina S. Zaporozhskaya-Abramova, Viktoria A. Ivashenko, Kseniya D. Kirsh, Zhanna V. Solovyeva
Abstract | References | Cite This | Full Text (PDF)
-
М.А. Чибисова, Н.М. Батюков, «Методы рентгенологического обследования и современной лучевой диагностики, используемые в стоматологии», Институт Стоматологии, том 88, номер 3, стр. 24-33, 2020. (M.A. Chibisova, N.M. Batyukov, “Methods of X-ray examination and modern radiation diagnostics used in dentistry”, The Dental Institute, vol. 88, no. 3, pp. 24-33, 2020.)
Retrieved from: https://elibrary.ru/download/elibrary_44076240_42799355.pdf
Retrieved on: Jun. 15, 2021 -
А.И. Громов, «Проблема точности денситометрических показателей в
современной многослойной компьютерной томографии», Медицинская визуализация, но. 3, стр. 133-142, 2016. (A.I. Gromov et al., “The problem of the accuracy of densitometric
indicators in modern multilayer computed tomography”, Medical Vizualization, no. 6, pp. 133-142, 2016.)
Retrieved from: https://medvis.vidar.ru/jour/article/viewFile/368/356
Retrieved on: Jul. 21, 2021 -
Е. В. Кайзеров, А. В. Холин, М. А. Чибисова, А. А. Зубарева, «Дифференциальная клинико–рентгенологическая характеристика различных типов одонтогенных кист челюстно–лицевой области», Лучевая диагностика и терапия, но. 1, стр. 11-23, 2018. (E.V. Kaiserov, A.V. Kholin, M.A. Chibisova, A.A. Zubareva, Differential clinical and radiological characteristics of odontogenic cysts of the maxillofacial region are of different types, Diagnostic radiology and radiotherapy, no. 1, pp. 11-23, 2018.)
DOI: https://doi.org/10.22328/2079-5343-2018-9-1-11-23 -
В.В. Ким, Ю.А. Мингазеев, В.С. Новиков, «Клинический опыт применения метода
конусно-лучевой компьютерной томографии в эндодонтии», Эндодонтия Today, том 10, но. 1, стр. 53-56, 2012. (V.V. Kim, Ju.A. Mingazeeva, V.S. Novikov, “Clinical experience of using
the method of cone-beam computed tomography in endodontics”, Endodontics Today, no. 1, pp. 53-56, 2012.)
Retrieved from: https://www.endodont.ru/jour/article/view/709/583
Retrieved on: Jun. 15, 2021 -
И.П. Королюк, «ROC анализ (операционные характеристики наблюдателя): базовые принципы и применение в лучевой диагностике», Медицинская визуализация, но. 6, стр. 113-123, 2013. (I.P. Korolyuk, “ROC analysis (Receiver Operating Characteristic Analysis): basic principles and application in diagnostic radiology”, Medical Vizualization, no .6, pp. 113-123, 2013.)
Retrieved from: http://vidar.ru/Article.asp?fid=MV_2013_6_113
Retrieved on: Jun. 15, 2021 -
А.Ю. Ногина, «Особенности применения метода конусно-лучевой компьютерной
томографии в эндодонтической практике», Эндодонтия Today, но. 2,
стр. 50-54, 2015. (A.Yu. Nogina, “Application features of the cone-beam computerized
tomography method in endodontic practice”, Endodontics Today, no.
2, pp. 50-54, 2015.)
Retrieved from: https://www.endodont.ru/jour/article/view/436/350
Retrieved on: Jun. 16, 2021 -
Г.И. Ронь и др., «Количественная оценка трехмерной реконструкции
челюстно-лицевой области и возможности проведения денситометрии на
конусно-лучевом компьютерном томографе в динамическом наблюдении пациентов
с заболеваниями пародонта», Институт Стоматологии, но. 4, стр.
55-57, 2015. (G.I. Ron et al., “Quantitative assessment of three-dimensional
reconstruction of the maxillofacial region and the possibility of
densitometry on a cone-beam computed tomograph in the dynamic observation
of patients with periodontal diseases”, The Dental Institute, no.
4, pp. 55-57, 2015.)
Retrieved from: https://instom.spb.ru/catalog/article/10380/?view=pdf
Retrieved on: Jun. 15, 2021 -
О.Б. Селина и др., «Сравнительный анализ данных традиционной рентгенографии и дентальной конусно-лучевой компьютерной томографии при диагностике хронического гранулирующего периодонтита», Российский стоматологический журнал, том 20, номер 4, стр. 201-205, 2016. (O.B. Selina et al., “Comparative analysis of traditional dental radiography and cone beam computed tomography in the diagnosis of chronic granulating periodontitis”, Russian Journal of Dentistry, vol. 20, no. 4, pp. 201-205, 2016.)
Retrieved from: https://rjdentistry.com/1728-2802/article/view/42068
Retrieved on: Jun. 15, 2021 -
С. В. Сирак и др., «Морфологические и гистохимические изменения в околокорневых гранулемах при хроническом гранулематозном периодонтите», Медицинский алфавит, том 2, но. 11, стр. 48–51, 2017. (S.V. Sirak et al., “Morphological and histochemical changes in oculocardiac granulomas in chronic granulomatous periodontitis”, Medical Alphabet, vol. 2, no. 11, pp. 48–51, 2017.)
Retrieved from: https://www.med-alphabet.com/jour/article/view/178/178
Retrieved on: Jun. 15, 2021 -
С. В. Сирак и др., «Экспериментальная оценка регенераторного потенциала
тканей пародонта», Пародонтология, том 21, но. 3, стр. 15-18,
2016. (S.V. Sirak еt al., “Experimental evaluation of the regenerative potential
of periodontal tissues” Parodontology, vol. 21, no. 3, pp. 15-18,
2016.)
Retrieved from: https://www.parodont.ru/jour/article/view/187/187
Retrieved on: Jun. 16, 2021 -
М.А. Чибисова, А.А. Зубарева, А.Л. Дударев, Е.В. Кайзеров, «Современные подходы к дифференциальной
клинико-рентгенологической характеристике одонтогенных кист челюстно-лицевой области различных этиопатогенетических типов», Институт Стоматологии, но. 3, стр. 78-83, 2017. (M.A. Chibisova, D.V. Zubarev, A.L. Dudarev, E.V. Kajzerov, “Modern approaches to the differential clinical and radiological characteristics of odontogenic cysts of the maxillofacial region of various etiopathogenetic types”, The Dental Institute,
no. 3, pp. 78-83, 2017.)
Retrieved from: https://instom.spb.ru/catalog/article/10954/?view=pdf
Retrieved on: Jun. 15, 2021 -
J. Guo et al., “Evaluation of the reliability and accuracy of using cone-beam computed tomography for diagnosing periapical cysts from granulomas”, J. Endod., vol. 39, no. 12, pp. 1485-1490, 2013.
DOI: https://doi.org/10.1016/j.joen.2013.08.019 -
W.D. Grimm et al., “Neural crest-related stem cells of oral origins in vitro and used in osteoporotic sheep model for being investigated due to therapeutic effects in alveolar bone regeneration”, Medical News of North Caucasus, vol. 11, no. 2, pp. 192-196, 2016.
DOI: https://doi.org/10.14300/mnnc.2016.11034 -
C.S. De Rosa et al., “Differentiation of periapical granuloma from radicular cyst using cone beam computed tomography images texture analysis”, Heliyon, vol.6, no. 10, article no. E05194, 2020.
DOI: https://doi.org/10.1016/j.heliyon.2020.e05194 -
P.N.R. Nair, U. Sjögren, E. Schumacher, G. Sundqvist, “Radicular cyst affecting a root-filled human tooth: a
long-term post-treatment follow-up”, Int. Endod. J., vol. 26, no. 4, pp. 225–233, 1993.
DOI: https://doi.org/10.1111/j.1365-2591.1993.tb00563.x
PMid: 8225641 -
P.N.R. Nair, “New perspectives on radicular cysts: do they heal?”, Int. Endod. J., vol. 31, no. 3, pp. 155–160, 1998.
DOI: https://doi.org/10.1046/j.1365-2591.1998.00146.x
PMid: 10321160 -
E. Natkin, R.J. Oswald, L.I. Carnes “The relationship of lesion size to diagnosis, incidence and treatment of periapical cysts and granulomas”, Oral Surg., Oral Med., Oral Pathol., vol. 57, no. 1, pp. 82–94, 1984.
DOI: https://doi.org/10.1016/0030-4220(84)90267-6
PMid: 6364008 -
S. Patel at al., “European Society of Endodontology position statement: The
use of CBCT in Endodontics”, Int. Endod. J., vol. 47, no. 6, pp. 502-504, 2014.
DOI: https://doi.org/10.1111/iej.12267
PMid: 24815882 -
P.A. Rosenberg et al., “Evaluation of pathologists (histopathology) and radiologists (cone beam computed tomography) differentiating radicular cysts from granulomas”, J. Endod., vol. 36, no. 3, pp. 423–428, 2010.
DOI: https://doi.org/10.1016/j.joen.2009.11.005
PMid: 20171356 -
J.H.S. Simon, “Incidence of periapical cysts in relation to the root canal”, J. Endod., vol. 6, no. 11, pp. 845–847, 1980.
DOI: https://doi.org/10.1016/S0099-2399(80)80039-2
PMid: 6935342
OXIDATIVE DISSOLUTION OF TRIURANIUM OCTOXIDE IN CARBONATE SOLUTIONS
N.M. Chervyakov, A.V. Boyarintsev, A.V. Andreev, S.I. Stepanov
Abstract | References | Cite This | Full Text (PDF)
-
H. Tomiyasu, Y. Asano, “Environmentally acceptable nuclear fuel cycle development of a new
reprocessing system”, Prog. Nucl. Energ., vol. 32, no. 3–4 pp. 421–427, 1998.
DOI: https://doi.org/10.1016/S0149-1970(97)00037-1 - G. S. Goff et al., “Development of a novel alkaline based process for spent nuclear fuel recycling”, AIChE Annual Meeting, Nuclear Engineering Division, Salt Lake City (Utah), USA, Nov. 4–9, 2007.
- K. W. Kim et al., “A study on a process for recovery of uranium alone from spent nuclear fuel in a high alkaline carbonate media”, NRC 7, Budapest, Hungary, Aug. 24–29, 2008.
-
S. I. Stepanov, A. M. Chekmarev, “Concept of spent nuclear fuel
reprocessing”, Dokl. Chem., vol. 423 no. 1, pp. 276–278, 2008.
DOI: https://doi.org/10.1134/S0012500808110037 -
C. Z. Soderquist et al., “Dissolution of irradiated commercial UO2 fuels in ammonium carbonate and hydrogen peroxide”, Ind. Eng. Chem. Res., vol. 50 no. 4, pp. 1813–1818, 2011.
DOI: https://doi.org/10.1021/ie101386n -
N. Asanuma, M. Harada, Y. Ikeda, H. Tomiyasu, “New approach to the
nuclear fuel reprocessing in non–acidic aqueous solutions”, J. Nucl. Sci. Technol. vol. 38, no. 10, pp. 866–871, 2001.
DOI: https://doi.org/10.1080/18811248.2001.9715107 -
K. W. Kim et al., “A conceptual process study for recovery of uranium
alone from spent nuclear fuel by using high–alkaline carbonate media”, Nucl. Technol., vol. 166, no. 2, pp. 170–179, 2009.
DOI: https://doi.org/10.13182/NT09-A7403 -
S. M. Peper et al., “Kinetic study of the oxidative dissolution of UO 2 in aqueous carbonate media”, Ind. Eng. Chem. Res
., vol. 43, no. 26, pp. 8188–8193, 2004.
DOI: https://doi.org/10.1021/ie049457y -
S. C. Smith, S. M. Peper, M. Douglas K. L. Ziegelgruber, E. C. Finn, “Dissolution of uranium oxides under alkaline oxidizing conditions”, J. Radioanal. Nucl. Chem., vol. 282, no. 3, pp. 617–621, 2009.
DOI: https://doi.org/10.1007/s10967-009-0182-8 - S. A. Steward, E. T. Mones, “Aqueous dissolution rates of uranium oxides”, in American Nuclear Society's International High Level Waste Management Conference , Las Vegas (Nevada), USA, 1995.
-
D. Y. Chung et al., “Oxidative leaching of uranium from SIMFUEL using
Na2CO3–H2O2 solution”, J. Radioanal. Nucl. Chem., vol. 284, pp. 123–129, 2010.
DOI: https://doi.org/10.1007/s10967-009-0443-6 - K. W. Kim et al., “An oxidative leaching of uranium in a H2O 2–CO32– system for a recovery of U alone from spent fuel without TRU”, GLOBAL 2009 Congress: The Nuclear Fuel Cycle: Sustainable Options and Industrial Perspectives , Paris, France, Sep. 6–11, 2009.
-
K. W. Kim et al., “Preparation of uranium oxide powder for nuclear fuel
pellet fabrication with uranium peroxide recovered from uranium oxide
scraps by using a carbonate–hydrogen peroxide solution”, J. Radioanal. Nucl. Chem., vol. 292 pp. 909–916, 2012.
DOI: https://doi.org/10.1007/s10967-011-1534-8 -
S. I. Stepanov, A. V. Boyarintsev, A. M. Chekmarev, “Physicochemical
foundations of spent nuclear fuel leaching in carbonate solutions”, Dokl. Chem. vol. 427, no. 2, pp. 202–206, 2009.
DOI: https://doi.org/10.1134/S0012500809080060 -
F. Clarens et al., “The oxidative dissolution of unirradiated UO2 by hydrogen peroxide as a function of pH”, J. Nucl. Mater., vol. 345, no. 2–3, pp. 225–231, 2005.
DOI: https://doi.org/10.1016/j.jnucmat.2005.06.002 -
S. A. Steward, W. J. Gray, “Comparison of uranium dissolution rates
from spent fuel and uranium dioxide”,
International high level radioactive waste management conference
, UCRL–JC–115355, Las Vegas, NV, USA, May 1994.
DOI: https://doi.org/10.2172/10163296 -
S. A. Steward, E. T. Mones, “Comparison and modeling of aqueous
dissolution rates of various uranium oxides”, Materials Research Society Conference,
UCRL–JC–124602, Boston, MA, USA, 1996.
Retrieved from: https://www.nrc.gov/docs/ML0334/ML033490600.pdf
Retrieved on: Jun. 15, 2021 -
S. N. Nguyen, H. C. Weed, H. R. Leider, R. B. Stout, “Dissolution
kinetics of UO2, Flow–through tests, on UO2,00
pellets and polycrystalline schoepite samples in oxygenated,
carbonate/bicarbonate buffer solutions at 25°C”, Material Research Society Conference UCRL–JC–107478, Strasbourg, France, 1991.
Retrieved from: https://www.osti.gov/servlets/purl/6021724
Retrieved on: Jun. 15, 2021 -
E. Ekeroth, M. Jonsson, “Oxidation of UO2 by radiolytic
oxidants”, J. Nucl. Mater., vol. 322, no. 2–3, pp.
242–248, 2003.
DOI: https://doi.org/10.1016/j.jnucmat.2003.07.001 -
J. S. Goldik, J. J. Noël, D. W. Shoesmith, “Surface electrochemistry of
UO2 in dilute alkaline hydrogen peroxide solutions: Part II.
Effects of carbonate ions”, Eletrochim. Acta., vol.
51, no. 16, pp. 3278–3286, 2006.
DOI: https://doi.org/10.1016/j.electacta.2005.09.019 -
T. Suzuki, A. Abdelouas, B. Grambow, T. Mennecart, G. Blondiaux, “Oxidation and dissolution rates of UO2(s) in carbonate–rich solutions under external alpha irradiation in initially reducing conditions”, Radiochim. Acta., vol. 94, no. 9–11, pp. 567–573, 2006.
DOI: https://doi.org/10.1524/ract.2006.94.9-11.567 -
J. de Pablo, I. Casas, F. Clarens, F. El. Aamrani, M. Rtovira,“The effect of hydrogen peroxide concentration on the oxidative dissolution of unirradiated uranium dioxide”, MRS Online Proceedings Library, vol. 663, article no. 409, 2000.
DOI: https://doi.org/10.1557/PROC-663-409 - J. B. Hiskey, “Hydrogen peroxide leaching of uranium in carbonate solutions”, Transactions of the Institution of Mining and Metallurgy, Section C: Mineral Processing and Extractive Metallurgy vol. 89, pp. 145–152, 1980.
- В. К. Марков, А. В. Виноградов, С. В. Елинсон, Уран, методы его определения, Москва, Россия: Атомиздат, 1960.(V. K. Markov, E. A. Vernyi, A. V. Vinogradov, Uranium, methods of its definition, Moscow, Russia: Atomizdat, 1960.)
- Analytical Spectroscopy Library Volume 10 : Separation, preconcentration, and spectrophotometry in inorganic analysis , Z. Marczenko, M. Balcerzak, Eds., 1st ed., New York (NY), USA: Elsevier Science, 2000.
- B. Bertsch-Frank, A. Dorfer, G. Goor, H. U. Süss, “Hydrogen peroxide and inorganic peroxy compounds,” Ind. Inorg. Chem.: Prod. Uses pp. 175–198, 1995.
THE EFFECT OF SEED TREATMENT WITH NON-THERMAL PLASMA
D. I. Petrukhina, I. M. Medzhidov, V. A. Kharlamov, M. G. Pomyasova, O. V. Tkhorik, S. A. Gorbatov, V.I. Shishko, A. Yu. Shesterikov, V. N. Tikhonov, A. V. Tikhonov, I. I. Ivanov
Abstract | References | Cite This | Full Text (PDF)
-
V. Scholtz, J. Pazlarova, H. Souskova, J. Khun, J. Julak, “Nonthermal plasma — A tool for decontamination and disinfection,” Biotechnol. Adv., vol. 33, no. 6, part 2, pp. 1108 – 1119, Nov. 2015.
DOI: https://doi.org/10.1016/j.biotechadv.2015.01.002 -
M. Ito, J.-S. Oh, T. Ohta, M. Shiratani, M. Hori, “Current status and
future prospects of agricultural applications using atmospheric-pressure
plasma technologies,” Plasma Proc. Polym., vol. 15, no. 2, article no. e1700073, Oct. 2017.
DOI: https://doi.org/10.1002/ppap.201700073 -
J. Ehlbeck et al., “Low temperature atmospheric pressure plasma sources for
microbial decontamination,” J. Phys. D: Appl. Phys., vol. 44, no. 1, article no. 013002, Dec. 2010.
DOI: https://doi.org/10.1088/0022-3727/44/1/013002 -
N. Puač, M. Gherardi, M. Shiratani, “Plasma agriculture: A rapidly emerging
field,” Plasma Proc. Polym., vol. 15, no. 2, article no. e1700174,
Nov. 2017.
DOI: https://doi.org/10.1002/ppap.201700174 -
S.K. Pankaj et al., “Applications of cold plasma technology in food
packaging,” Trends Food Sci. Technol., vol. 35, no. 1, pp. 5-17,
Jan. 2014.
DOI: https://doi.org/10.1016/j.tifs.2013.10.009 -
J. Guo, K. Huang, J. Wang, “Bactericidal effect of various non-thermal
plasma agents and the influence of experimental conditions in microbial
inactivation: A review,” Food Control, vol. 50, pp. 482-490, Apr.
2015.
DOI: https://doi.org/10.1016/j.foodcont.2014.09.037 -
D. Ziuzina, “Atmospheric cold plasma as a tool for microbiological
control,” Ph.D. dissertation, Dublin Institute of Technology, Dublin,
Ireland, 2015.
DOI: https://doi.org/10.21427/D7FW2Z - N.N. Misra, O.K. Schlüter, P.J. Cullen, “Quality of Cold Plasma Treated Plant Foods” in Cold Plasma in Food and Agriculture: Fundamentals and Applications, San Diego, USA: Academic Press, 2016, ch. 10, pp. 253-271.
-
V. Tikhonov, S. Gorbatov, I. Ivanov, A. Tikhonov, “The Low-Cost Microwave Source of Non-Thermal Plasma,” in Book of Abstr. 7th Int. Cong. on Energy Fluxes and Radiation Effects (EFRE) - 15th Int. Conf. on Modification of Materials with Particle Beams and Plasma Flows, Tomsk, Russia, 2020, pp.596-599.
DOI: http://doi.org/10.1109/EFRE47760.2020.9242089 -
Д.И. Петрухина, М.Г. Помясова, Е.И. Карпенко, “Исследование возможности применения нетермальной плазмы для фитосанитарной обработки семян ячменя,” Техника и оборудование Для Села, но. 9, стр. 30-33, 2020. (D. I. Petrukhina, M. G. Pomyasova, E. I Karpenko “Research of possibility of application of non-thermal plasma for phytosanitary treatment of barley seeds”, Mach. Equip. Rural Area, no. 9, pp. 30-33, 2020).
DOI: http://doi.org/10.33267/2072-9642-2020-9-30-33 - В.А. Харламов, И.В. Полякова, Д.И. Петрухина, “Биоцидное действие нетермальной аргоновой плазмы на микробиоту семян ячменя,” Техника и оборудование для села, т. 4, но. 286, cтр. 20–23, 2021. (V.A. Kharlamov, I.V. Polyakova, D.I. Petrukhin, “Biocidal effect of non-thermal argon plasma on the microbiota of barley seeds,” Mach. Equip. Rural Area, vol. 4, no. 286, pp. 20-23, 2021.)
-
Д.И. Петрухина, И.В. Полякова, С.А. Горбатов, “Биоцидная эффективность нетермальной аргоновой плазмы атмосферного давления,” Техника и технология пищевых производств, т. 51, но. 1, стр. 86-97, 2021. (D. Petrukhina, I. Polyakova, S. Gorbatov, “Biocide effect of non-thermal atmospheric pressure plasma,” Food Process. Techniq. Technol., vol. 51, no. 1, pp. 86–97, 2021.)
DOI: https://doi.org/10.21603/2074-9414-2021-1-86-97
PRECIPITATIVE RE-EXTRACTION OF URANIUM(VI) FROM ORGANIC SOLUTIONS OF METHYLTRIOCTILAMMONIUM URANYL PEROXO-CARBONATE COMPLEXES
S.O. Frankiv, A.V. Boyarintsev, S.I. Stepanov
Abstract | References | Cite This | Full Text (PDF)
The article discusses the results of the uranium(VI) re-extraction(stripping) from the methyltrioctilammonium organic phase loaded by uranium(VI) peroxo-carbonate species using ammonium carbonate and ammonium bicarbonate aqueous solutions or gaseous carbon dioxide. Conditions for 97–99% re-extraction of uranium(VI) to obtain crystalline ammonium uranyl carbonate with structure (NH4)4[UO 2(CO3)3] were determined.
-
S. I. Stepanov, A. M. Chekmarev, “Concept of spent nuclear fuel
reprocessing,” Dokl. Chem., vol. 423, no. 1, pp. 276–278, 2008.
DOI: https://doi.org/10.1134/S0012500808110037 - G. S. Goff et al., “Development of a novel alkaline based process for spent nuclear fuel recycling”, AIChE Annual Meeting, Nuclear Engineering Division, Salt Lake City (Utah), USA, Nov. 4–9, 2007.
-
N. Asanuma, M. Harada, Y. Ikeda, H. Tomiyasu, “New approach to the nuclear fuel reprocessing in non-acidic aqueous solutions,” J. Nucl. Sci. Technol., vol. 38, no. 10, pp. 866–871, 2001.
DOI: https://doi.org/10.1080/18811248.2001.9715107 -
K. W. Kim et al., “Development of a treatment process and immobilization method for the volume reduction of uranium-bearing spent catalysts for final disposal,” J. Nucl. Sci. Tech., vol. 55, no. 12, pp. 1459–1472, 2018.
DOI: https://doi.org/10.1080/00223131.2018.1516578 -
C. Z. Soderquist et al., “Dissolution of irradiated commercial UO2 fuels in ammonium carbonate and hydrogen peroxide,” Ind. Eng. Chem. Res., vol. 50, no. 4, pp. 1813–1818, 2011.
DOI: https://doi.org/10.1021/ie101386n - С. И. Степанов, А. М. Чекмарёв, “Экстракция редких металлов солями четвертичных аммониевых оснований,” Москва, Россия: ИздАТ, 2004. (S. I. Stepanov, A. M. Chekmarev, Extraction of rare metals by the salts of quaternary ammonium bases, Moscow, Russia: IzdAT, 2004.)
-
V. Baran , F. Škvor, V. Voseček, “Formation of the ammonium-uranyl-carbonate complexes of the type (NH 4)4[UO2(CO3)3], prepared by precipitative re-extraction,” Inorg. Chim. Acta , vol. 81, pp. 83–89, 1984.
DOI: https://doi.org/10.1016/S0020-1693(00)88739-3 - S. Chegrouche, A. Kebir, “Study of ammonium uranyl carbonate re-extraction-crystallization process
by ammonium carbonate,” Hydrometallurgy, vol. 28, no. 2, pp. 135–147, 1992.
DOI: https://doi.org/10.1016/0304-386X(92)90126-K - Ю. А. Ревенко и др., “Способ переработки облученного ядерного топлива,” патент RU2366012, Россия, Публ. 27.08.2009. (Yu. A. Revenko et al., “Method of irradiated nuclear fuel treatment,” patent RU2366012, Russia, Publ. 08.27.2009.)
-
B. Yahi, A. Kebir, “Influence of process re-extraction-crystallization parameters on the
properties of ammonium uranyl-tricarbonate crystals,”
Hydrometallurgy, vol. 34, no. 1, pp. 65–78, 1993.
DOI: https://doi.org/10.1016/0304-386X(93)90081-N - I. I. Chernyaev, Complex compounds of uranium, New York (NY), USA: Daniel Davey & Co., Ink., 1966.
-
S. I. Stepanov et al., “CARBEX process, a new technology of reprocessing of
spent nuclear fuel,” Russ. J. Gen. Chem., vol. 81, no. 9,
pp. 1949–1959, 2011.
DOI: https://doi.org/10.1134/S1070363211090404 -
S. I. Stepanov, A. V. Boyarincev, A. A. Chehlov, A. M. Chekmarev, A. Yu. Tsivadze, “Chemistry of the CARBEX process.
Identification of the absorption bands of the ligands in the electronic
spectra of U(VI) extracts with methyltrioctylammonium carbonate,” Dokl. Chem., vol. 473, no. 1, pp. 63–66, 2017.
DOI: https://doi.org/10.1134/S0012500817030065 -
A. V. Boyarintsev et al., “Separation of uranium(VI) and americium(III) by extraction from Na2CO3-H2O2 solutions using methyltrioctylammonium carbonate in toluene,” Solvent Extr. Ion Exch., vol. 39, no. 7, pp. 745–763, 2021.
DOI: https://doi.org/10.1080/07366299.2021.1876993 - В. К. Марков, А. В. Виноградов, С. В. Елинсон, Уран, методы его определения, Москва, Россия: Атомиздат, 1960. (V. K. Markov, E. A. Vernyi, A. V. Vinogradov, Uranium, methods of its definition, Moscow, Russia: Atomizdat, 1960.)
- Analytical Spectroscopy Library Volume 10: Separation, preconcentration, and spectrophotometry in inorganic analysis , Z. Marczenko, M. Balcerzak, Eds., 1st ed., New York (NY), USA: Elsevier Science, 2000.
- Н. С. Тураев, И. И. Жерин, Химия и технология урана, Москва, Россия: ЦНИИАТОМИНФОРМ, 2005. (N. S. Turaev, I. I. Gerin, Chemistry and uranium technology, Moscow, Russia: TSNIYATOMINFORM, 2005.)
- А. К. Бабко, В. С. Коденская, “Равновесия в растворе карбонатных комплексов уранила,” ЖНХ, т. 5, но. 11, с. 2568–2574, 1960. (A. S. Babko, V. S. Kodenskaya, “Study of equilibria in a solution of uranyl carbonate complexes,” Russ. J. Inorg. Chem., vol. 5, no. 11, pp. 2568–2574, 1960.)
RADIATION DEFECTS IN GaP, GaAsP, InGaN LEDs
R. Vernydub, O. Kyrylenko, O. Konoreva, O. Radkevych, D. Stratilat, V. Tartachnyk
Abstract | References | Cite This | Full Text (PDF)
-
В. И. Светцов, И. В. Холодков, Физическая электроника и электронные приборы, Иваново, Россия:
Ивановский государственный химико-технологический университет, 2008.
(V. I. Svetsov, I. V. Holodkov, Physical electronics and electronic devices, Ivanovo, Russia:
Ivanovo State University of Chemistry and Technology, 2008.)
Retrieved from: https://www.isuct.ru/dept/nochem/tpmet/images/stories/met/fizel.pdf
Retrieved on: July 15, 2021 -
А.С. Васюра, Елементи та пристрої систем управління автоматики,
Вінниця, Україна: ВДТУ, 1999.
(А.S. Vasyura, Elements and devices of automation control systems,
Vinnitsa, Ukraine: VDTU, 1999.)
Retrieved from: http://pdf.lib.vntu.edu.ua/books/Vasyura_P3_2001_134.pdf
Retrieved on: July 15, 2021 -
С.С. Вильчинская, В.М. Лисицын, Оптические материалы и технологии,
Томск, Россия: ТПУ, 2011.
(S.S. Vilchinskaya, V.M. Lisitsyn, Optical materials and technologies, Tomsk, Russia: TPU, 2011.)
Retrieved from: https://docplayer.ru/34552133-Opticheskie-materialy-i-tehnologii.html
Retrieved on: July 15, 2021 -
В.С. Осадчук, О.В. Осадчук, “Напівпровідникові прилади з від’ємним опором”, Вінниця, Україна: ВДТУ, 2006. (V.S. Оsаdchyk, О.V. Osаdchyk, “Negative resistance semiconductors”, Vinnitsa, Ukraine: VDTU, 2006.)
Retrieved from: http://ir.lib.vntu.edu.ua/bitstream/handle/123456789/7957/%D0%9D%D0%9F_%D0%92%D0%9E_1.pdf?sequence=1&isAllowed=y
Retrieved on: July 15, 2021 - Ф.П. Коршунов, Ю.В. Богатырев, В.А. Вавилов, Воздействие радиации на интегральные микросхемы, Минск, Беларусь: Наука и техника, 1986. (F.P. Korshunov, Yu.V. Bogatyrev, V.А. Vavilov, Impact of radiation on integrated microcircuits, Minsk, Belarus: Science and Technology, 1986.)
-
І.А. Большакова, Я.Я. Кость, О.Ю. Макідо, А.П. Штабалюк, Ф.М. Шуригін, “Радіаційна модифікація як спосіб стабілізації
параметрів Іn-вмісних напівпровідникових матеріалів”,
Вісник Національного університету “Львівська політехніка”, Електроніка,
№ 734, с. 28-33, 2012. (I.A. Bolchakova, Ya.Ya. Kost, O.Yu. Makido, A.P. Stabalyuk, F.M. Shyrygin, “Radiation mоdification as a method of paraments stabilization for in-containing semiconductor materials”,Visnyk Natsionalnoho Universytetu «Lvivska Politekhnika», Elektronika, vol. 734, pp. 28-33, 2012.)
Retrieved from: http://ena.lp.edu.ua:8080/bitstream/ntb/16051/1/6-Bolshakova-28-33.pdf
Retrieved on: July 15, 2021 -
С.В. Луньов, Ю.А. Удовицька, М.В. Хвищун, С.А. Мороз, В.Т. Маслюк, “Технологія одержання чутливого елемента для датчика інфрачервоного випромінювання”, Перспективні технології та прилади, №14, с. 77-81, 2019.
(S.V. Luniov, Yu.A. Udovytska, M.V. Khvyshchun, S.A. Moroz, V.Т. Maslyuk, “Technology for obtaining a sensitive element for an infrared radiation sensor”. Perspective Technologies and Devices, no. 14, pp. 77-81, 2019.)
DOI: https://doi.org/10.36910/6775-2313-5352-2019-14-13 -
I.F. Chang et al., “Effects of proton irradiations on GaN-based materials”. Physica Status Solidi (c), vol. 1, no. 10, p. 2466-2469, 2004.
DOI: https://doi.org/10.1002/pssc.200405017 -
Б.П. Коман, “Вплив альфа-опромінення на кремнієві мон-транзистори”, Сенсорна електроніка і мікросхемні технології, том 9, № 1, с.
88-96, 2012.
(B.P. Koman, “The influence of alpha-irradiation on the silicon
MOS–transistors”, Sensor Electronics and Microsystem Technologies,
vol. 9, no. 1, pp. 88-96, 2012.)
DOI: https://doi.org/10.18524/1815-7459.2012.1.112938 -
D. Iida et al., “633-nm InGaN-based red LEDs grown on thick underlying GaN
layers with reduced in-plane residual stress”, Applied Physics Letters, vol. 116, article no. 162101, 2020.
DOI: https://doi.org/10.1063/1.5142538 -
D. Iida, Z. Zhuang, P. Kirilenko, M. Velazgues–Riso, K. Ohkava, “Demonstration of low forward voltage InGaN-based red LEDs”, Applied Physics Express,
vol. 13, no. 3, article no. 031001, 2020.
DOI: https://doi.org/10.35848/1882-0786/ab7168 -
S.H. Back, H.J. Lee, S.N. Lee, “High-performance flat-type InGaN-based
light-emitting diodes with local breakdown conductive channel”, Scientific Reports,
vol. 9, article no. 13654, 2019.
DOI: https://doi.org/10.1038/s41598-019-49727-4 -
S.H. Han, S.H. Back, H.J. Lee, H.S. Kim, S.N. Lee, “Breakdown-induced
conductive channel for III-nitride light-emitting devices”, Scientific Reports, vol. 8, article no. 16547, 2018.
DOI: https://doi.org/10.1038/s41598-018-34869-8 -
S. Zhou, X. Liu, “Effects of V-pits embedded InGaN/GaN superlattices on
optical and electrical properties of GaN-based green light-emitting diodes”, Physica Status Solidi (a),
vol. 214, no. 5, 2017.
DOI: https://doi.org/10.1002/pssa.201600782 -
M. Liu et al., “An InGaN/GaN Superlattice to Enhance the Performance of
Green LED’s: Exploring the Role of V-pits”, Nanomaterials, vol. 8, no. 7, article no. 450, 2018.
DOI: https://doi.org/10.3390/nano8070450 -
F. Olives et al., “Influence of size-reduction on the performances of
GaN-based micro-LEDs for display application”, Journal of Luminescence, vol. 191, part B, pp. 112-116, 2017.
DOI: https://doi.org/10.1016/j.jlumin.2016.09.052 -
K.M. Song, S.W. Lee, K.B. Kim, S.N. Lee, “Observation of applied
bias-dependent dot-like luminescence in GaInN-based light-emitting diodes”, Journal of Alloys and Compounds, vol. 660, pp. 392-397, 2016.
DOI: https://doi.org/10.1016/j.jallcom.2015.11.130 -
S. Zhou et al., “High efficient and reliable high power LED’s with
patterned sapphire subtract and strip-shaped distributed current blocking
layer”, Applied Surface Science, vol. 355, pp. 1013-1019, 2015.
DOI: https://doi.org/10.1016/j.apsusc.2015.07.194 -
П.Г. Літовченко та ін., “Випромінювальна рекомбінація в опроміненному фосфіді
галію”, Фізика і хімія твердого тіла, том 6, №. 1, с.
50-56, 2005.
(P.H. Lytovchenko et al., “Radiation recombination on irradiation Gallium
Phosphide”, Physics and Chemistry of Solid State, vol. 6, no. 1,
pp. 50-56, 2005).
Retrieved from: http://page.if.ua/uploads/pcss/vol6/0601-06.pdf
Retrieved on: July 15, 2021 -
G. Gaydar et al., “About bond model of S-type negative
differential resistance in GaP LEDs”, Superlattices and Microstructures, vol. 104, pp. 316-320, 2017.
DOI: https://doi.org/10.1016/j.spmi.2017.02.042 -
E.Yu. Brailovskii, I.D. Konozenko, V.G. Makarenko, V.S. Manzhara, V.P. Tartachnik,
Introduction and annealing of defects in GaP upon electron irradiation,
Rep. AED-Conf--74-328-021, 1974.
Retrieved from: https://inis.iaea.org/search/searchsinglerecord.aspx?recordsFor=SingleRecord&RN=6163679
Retrieved on: July 15, 2021 -
Ф. Шуберт, Светодиоды, пер. с англ. под ред. А.Э. Юновича, 2-е изд., Москва, Россия: ФИЗМАТЛИТ, 2008.
(F. Schubert, LEDs, Translated from English by A.E. Yunovich, 2nd ed., Moscow: Fizmatlit, 2008.)
Retrieved from: https://www.elec.ru/files/2019/10/02/Svetodiody_2008.pdf
Retrieved on: July 15, 2021
POSSIBILITIES OF SONOELASTOGRAPHY IN THE EVALUATION OF THE LOWER THIRD OF FACE SOFT TISSUES CHANGES DETERMINING THE MOST EFFECTIVE METHOD OF CORRECTION: A PILOT STUDY USING SONOELASTOGRAPHY
Yu.A. Stepanova, D.A. Kiseleva, N.O. Sultanova
Abstract | References | Cite This | Full Text (PDF)
-
J. Chuang, C. Barnes, B.J.F. Wong, “Overview of Facial Plastic Surgery and
Current Developments”, Surg. J. (N-Y), vol. 2, no. 1, pp. e17-e28,
2016.
DOI: https://doi.org/10.1055/s-0036-1572360 -
M.S. Taljanovic et al., “Shear-wave elastography: Basic physics and
musculoskeletal applications”, RadioGraphics, vol. 37, no. 3, pp.
855-870, 2017.
DOI: https://doi.org/10.1148/rg.2017160116 -
Y. Sowa, T. Numajiri, K. Nishino, “Ultrasound shear-wave elastography for
follow-up fat induration after breast reconstruction with an autologous
flap”, Plastic and Reconstructive Surgery–Global Open, vol. 3, no.
9, article no. e518, 2015.
DOI: https://doi.org/10.1097/GOX.0000000000000493 -
Y. Sowa, T. Numajiri, S. Itsukage, K. Nishino, “Comparison of Shear-Wave
and Strain Ultrasound Elastography for Evaluating Fat Induration after
Breast Reconstruction”, Plastic and Reconstructive Surgery-Global Open, vol. 4, no. 4,
article no. e677, 2016.
DOI: https://doi.org/10.1097/GOX.0000000000000678 -
L. Paluch, M. Ambroziak, P. Pietruski, B. Noszczyk, “Shear Wave
Elastography in the Evaluation of Facial Skin Stiffness after Focused
Ultrasound Treatment”, Dermatologic Surgery, vol. 45, no. 12, pp.
1620-1626, 2019.
DOI: https://doi.org/10.1097/DSS.0000000000001881 -
M. Ambroziak, B. Noszczyk, P. Pietruski, G. Wieslaw, L. Paluch,
“Elastography reference values of facial skin elasticity”, Advances in Dermatology and Allergology, vol. 36, no. 5, pp.
626-634, 2019.
DOI: https://doi.org/10.5114/ada.2018.77502 -
A.M. Alfuraih, A.L. Tan, P. O’Connor, P. Emery, R.J. Wakefield, “The effect of ageing on shear wave elastography muscle
stiffness in adults”, Aging Clinical and Experimental Research,
vol. 31, pp. 1755-1763, 2019.
DOI: https://doi.org/10.1007/s40520-019-01139-0 -
S.P. Barlett, I. Wornom, L.A. Whitaker, “Evaluation of facial skeletal
aesthetics and surgical planning”, Clinical Plastic Surgery, vol.
18, no. 1, pp. 1-9, 1991.
PMid: 2015737 -
B. Ascher, P. Katz, “Facial lipoatrophy and the place of ultrasound”, Dermatologic Surgery, vol. 32, no. 5, pp. 698-708, 2006.
DOI: https://doi.org/10.1111/j.1524-4725.2006.32143.x - Т.Н. Киселева, М.Г. Катаев, Н.В. Ильина, М.А. Захарова, К.А. Рамазанова, “Метод ультразвукового сканирования в оценке состояния век”, Вестник офтальмологии, т. 130, н. 1, c. 46-51, 2014. (T.N. Kiseleva, M.G. Kataev, N.V. Ilyina, M.A. Zakharova, K.A. Ramazanova, “Ultrasound scanning method in assessing the condition of the eyelids”, Bulletin of Ophthalmology, vol. 130, no. 1, pp. 46-51, 2014.)
- Ю.А. Степанова, Д.А. Киселева, Н.О. Султанова, “Способ выбора тактики коррекции возрастных изменений мышечных тканей нижней трети лица по данным эластометрии”, Патент на изобретение №2721143, Заявка №2020103904/14(006020), приоритет изобретения от 20.01.2020. (Yu.A. Stepanova, D.A. Kiseleva, N.O. Sultanova, “Method for choosing tactics for correcting age-related changes in muscle tissues of the lower third of the face according to elastometry data”, Patent for invention No. 2721143 (Application No. 2020103904/14 (006020), priority of invention dated 20.01.2020)
- Ю.А. Степанова, Д.А. Киселева, Н.О. Султанова, “Способ определения степени возрастной атрофии мышечной ткани нижней трети лица по данным эластометрии”, Патент на изобретение №2721141, Заявка №2020103905/14(006021), приоритет изобретения от 20.01.2020 г. (Yu.A. Stepanova, D.A. Kiseleva, N.O. Sultanova, “Method for determining the degree of age-related atrophy of muscle tissue of the lower third of the face according to elastometry data”, Patent for invention No. 2721141 (Application No. 2020103905/14 (006021), priority of invention dated 20.01.2020)
OXIDATIVE DISSOLUTION OF NEPTUNIUM(IV) OXIDE IN CARBONATE SOLUTIONS
N.M. Chervyakov, A.V. Boyarintsev, S.A. Perevalov, S.I. Stepanov, S.E. Vinokurov
Abstract | References | Cite This | Full Text (PDF)
-
T. Fanghänel, J. P. Glatz, R. J. M. Konings, V. V. Rondinella, J. Somers, “Transuranium elements in the nuclear fuel
cycle,” in Handbook of Nuclear Engineering, D.G. Cacuci, Ed . Boston (Massachusetts), USA: Springer, 2010, vol. 5, ch. 26, pp.
2935–2998.
DOI: https://doi.org/10.1007/978-0-387-98149-9 - P. Gotcu-Freis, High temperature thermodynamic studies on the transuranium oxides and their solid solutions , Amsterdam, The Netherlands: IOS Press, 2011.
-
C. Z. Soderquist et al., “Dissolution of irradiated commercial UO2 fuels in ammonium carbonate and hydrogen peroxide,” Ind. Eng. Chem. Res., vol. 50,
pp. 1813–1818, 2011.
DOI: https://doi.org/10.1021/ie101386n -
S. M. Peper et al., “Kinetic study of the oxidative dissolution of UO 2 in aqueous carbonate media,” Ind. Eng. Chem. Res.,
vol. 43, pp. 8188–8193, 2004.
DOI: https://doi.org/10.1021/ie049457y -
S. C. Smith, S. M. Peper, M. Douglas, K. L. Ziegelgruber, E. C. Finn,
“Dissolution of uranium oxides under alkaline oxidizing conditions,” J. Radioanal. Nucl. Chem., vol. 282, no. 3, pp. 617–621, 2009.
DOI: https://doi.org/10.1007/s10967-009-0182-8 -
D. Y. Chung et al., “Oxidative leaching of uranium from SIMFUEL using Na2CO3-H2O2 solution,” J. Radioanal. Nucl. Chem., vol. 284, pp. 123–129, 2010.
DOI: https://doi.org/10.1007/s10967-009-0443-6 -
S. I. Stepanov, A. M. Chekmarev, “Concept of spent nuclear fuel
reprocessing,” Dokl. Chem., vol. 423, no. 1, pp. 276–278, 2008.
DOI: https://doi.org/10.1134/S0012500808110037 -
N. Asanuma et al., “Anodic dissolution of UO2 pellet containing
simulated fission products in ammonium carbonate solution,” J. Nucl. Sci. Tech., vol. 43, no. 3, pp. 255–262, 2006.
DOI: https://doi.org/10.1080/18811248.2006.9711087 -
N. Asanuma, M. Harada, Y. Ikeda, H. Tomiyasu, “New approach to the nuclear
fuel reprocessing in non-acidic aqueous solutions,” J. Nucl. Sci. Technol., vol. 38, no. 10, pp. 866–871, 2001.
DOI: https://doi.org/10.1080/18811248.2001.9715107 -
K. W. Kim, G. I. Park, E. H. Lee, K. W. Lee, K. C. Song, “Electrolytic
dissolutions of UO2 and SIMFUEL in carbonate solutions at
several pHs,” Int. J. Chem. Mol. Eng., vol. 4, no. 11, pp.
707–710, 2010.
DOI: https://doi.org/10.5281/zenodo.1077327 - W. Runde, L. F. Brodnax, S. M. Peper, B. I. Scott, G. Jarvinen, “Structure and stability of peroxo complexes of uranium and plutonium in carbonate solutions,” in Actinides 2005 Conf. Proc., Manchester, UK, 2005.
-
M. Altmaier, X. Gaona, T. Fanghänel, “Recent advances in aqueous actinide
chemistry and thermodynamics,” Chem. Rev., vol. 113, no. 2, pp.
901–943, 2013.
DOI: https://doi.org/10.1021/cr300379w -
K. W. Kim et al., “A conceptual process study for recovery of uranium alone
from spent nuclear fuel by using high–alkaline carbonate media,” Nucl. Technol., vol. 166, no. 2, pp. 170–179, 2009.
DOI: https://doi.org/10.13182/NT09-A7403 - J. B. Hiskey, “Hydrogen peroxide leaching of uranium in carbonate solutions,” Transactions of the Institution of Mining and Metallurgy, Section C: Mineral Processing and Extractive Metallurgy, vol. 89, pp. 145–152, 1980.
- G. S. Goff, L. F. Brodnax, M. R. Cisneros, W. H. Runde, “Redox chemistry of actinides in peroxide-carbonate media: Applications to developing a novel process for spent nuclear fuel reprocessing,” AIChE Annual Meeting, Environmental Division, Salt Lake City (Utah), USA, Nov. 4–9, 2007, 271e.
-
Z. Yoshida, S. G. Johnson, T. Kimura, J. R. Krsul, “Neptunium,” in The Chemistry of the Actinide and Transactinide Elements, L. R.
Morss, N. M. Edelstein, J. Fuger, Eds., Dordrecht, The Netherlands:
Springer, 2006, vol. 2, ch. 6, pp. 699–812.
DOI: https://doi.org/10.1007/1-4020-3598-5 -
G. D. Jarvinen, W. H. Runde, G. S. Goff, “Development of alkaline solution
separation for potential partitioning of used nuclear fuels,” in Proc. SESTEC-2010, Indira Gandhi Center for Atomic
Research, Kalpakkam, India, 2010, manuscript no. LA-UR-09-08250.
Retrieved from: https://www.osti.gov/servlets/purl/981842
Retrieved on: Jun. 15, 2021 -
V. P. Shilov, A. B. Yusov, A. V. Gogolev, A. M. Fedoseev, “Behavior of
Np(VI) and Np(V) ions in NaHCO3 solutions containing H 2O2,” Radiochem., vol. 47, no. 6, pp. 558–562, 2005.
DOI: https://doi.org/10.1007/s11137-006-0007-3 -
V. P. Shilov, A. M. Fedoseev, “Reaction of Np(VI) with Н2О 2 in carbonate solutions,” Radiochem., vol. 52, no. 3,
pp. 245–249, 2010.
DOI: https://doi.org/10.1134/S1066362210030045 -
V. P. Shilov, A. M. Fedoseev, “Oxidation of Np(IV) with hydrogen peroxide
in carbonate solutions,” Radiochem., vol. 55, no. 3, pp. 287–290,
2013.
DOI: https://doi.org/10.1134/S1066362213030077 -
V.P. Shilov, A.B. Yusov Redox reactions of actinides in carbonate and
alkaline solutions, Russ. Chem. Rev., vol. 71, no. 6, pp. 465–488,
2002.
DOI: https://doi.org/10.1070/RC2002v071n06ABEH000719 - С. И. Ровный, П. П. Шевцев, “Современное состояние и пути совершенствования радиохимической технологии выделения и очистки урана и плутония,” Вопросы радиационной безопасности, но. 2. стр. 5–13, 2007. (S. I. Rovny, P. P. Shevtsev, “Modern state and ways to improve radiochemical technology for the isolation and purification of uranium and plutonium,” Radiation Safety Issues, no. 2, pp. 5–13, 2007.)
-
R. J. Lemire, An assessment of the thermodynamic bahaviour of neptunium in water and model
groundwaters from 25 to 150°C, Rep. AECL-7817, Atomic Energy of Canada Limited Whiteshell Nuclear
Research Establishment Pinawa, Manitoba, Canada, 1984.
Retrieved from: https://inis.iaea.org/collection/NCLCollectionStore/_Public/16/041/16041385.pdf
Retrieved on: Jun. 15, 2021 -
S. S. Kim, M. H. Baik, K. C. Kang, “Solubility of neptunium oxide in the
KURT (KAERI Underground Research Tunnel) groundwater,” J. Radioanal. Nucl. Chem., vol. 280, pp. 577–583, 2009.
DOI: https://doi.org/10.1007/s10967-009-7481-y -
D. Rai, N. J. Hess, A. R. Felmy, D. A. Moore, M. Yui, “A thermodynamic
model for the solubility of NpO2(am) in the aqueous K+–HCO3––CO32––OH ––H2O system,” Radiochim. Acta, vol. 84, no.
3, pp. 159–169, 1999.
DOI: https://doi.org/10.1524/ract.1999.84.3.159 -
T. E. Eriksen et al.,
Solubility of the redox–sensitive radionuclides 99Tc and 237Np under reducing conditions in neutral to alkaline
solutions. Effect of carbonate , SKB Tech. Rep. 93–18, Swedish Nuclear Fuel And Waste Management Co.,
Stockholm, Sweden, 1993.
Retrieved from: https://www.skb.se/publikation/9249/TR93-18webb.pdf
Retrieved on: Jun. 15, 2021 -
A. Kitamura, Y. Kohara, “Solubility of neptunium(IV) in carbonate media,” J. Nucl. Sci. Tech., vol. 39, no. sup3, pp. 294–297, 2002.
DOI: https://doi.org/10.1080/00223131.2002.10875466 - A. I. Moskvin, “Complex formation of neptunium(IV, V, VI) in carbonate solutions,” Sov. Radiochem., vol. 13, no. 5, pp. 694–699, 1971.
- P. Vitorge, H. Capdevila, Np(V) et Np(VI) en solution aqueuse bicarbonate/carbonate, Rapport CEA-R-5793, Commissariat à l'Energie Atomique, France, 1998. (P. Vitorge, H. Capdevila, Np(V) and Np(VI) in bicarbonate/carbonate aqueous solutions, Report CEA-R-5793, Atomic Energy Commission, France, 1998.)
-
A. Saito, K. Ueno, “The precipitation of some actinide element complex ions
by using hexammine cobalt(III) cation–V: Absorption spectra and the
precipitation of neptunium(IV), (V) and (VI) carbonate complex ions,” J. Inorg. Nucl. Chem., vol. 39, no. 2, pp. 315–318, 1977.
DOI: https://doi.org/10.1016/0022-1902(77)80021-3 -
S. I. Stepanov, A. V. Boyarintsev, A. M. Chekmarev, “Physicochemical
foundations of spent nuclear fuel leaching in carbonate solution,” Dokl. Chem., vol. 427, no. 2, pp. 202–206, 2009.
DOI: https://doi.org/10.1134/S0012500809080060 -
S. I. Stepanov et al., “CARBEX process, a new technology of reprocessing of
spent nuclear fuel,” Russ. J. Gen. Chem., vol. 81, no. 9, pp.
1949–1959, 2011.
DOI: https://doi.org/10.1134/S1070363211090404 - Б. А. Агранат, М. Н. Дубровин, Н. Н. Хавский, Г. И. Эскин, Основы физики и техники ультразвука, Москва, Высшая школа, 1987. (B. A. Agranat, M. N. Dubrovin, N. N. Havsky, G. I. Eskin, Fundamentals of physics and ultrasound technology, Moscow, Higher School, 1987.)
- M. V. Nikonov, V. P. Shilov, N. N. Krot, “The influence of ultrasound for redox reactions of actinide ions,” in International Conference on Actinides - 89, Tashkent, USSR, 1989, INIS-SU-257.
- A.В. Гоголев, В.П. Шилов, A.M. Федосеев, А.К. Пикаев, “Кинетика радиационно-химических реакций трех- и четырехвалентных актиноидов и лантаноидов в карбонатных растворах,” Известия АН СССР. Серия химическая, № 1, с. 28–32, 1990. (A.V. Gogolev, V.P. Shilov, A.M. Fedoseev, A.K. Pikaev, “Kinetics of radiation-chemical reactions of three- and four-valent actinoids and lanthanides in carbonate solutions,” Izvestiya AC USSR. Chemical series, no. 1, pp. 28–32, 1990.)
- М. В. Никонов, К. В. Куранов, В. П. Шилов, “Сонохомический метод получения нептуния(VII),” Известия АН СССР. Серия химическая, № 3, С. 717. 1988. (M. V. Nikonov, K. V. Kuranov, V. P. Shilov, “Sonochomical method of obtaining neptunium(VII),” Izvestia of the USSR Academy of Sciences. Chemical series, no. 3, pp. 717, 1988.)
- М. В. Никонов, В. П. Шилов, “Сонохимическое растворение NpO2 и PuO2 в водных щелочных растворах,” Радиохимия, т. 32, № 6, с. 43, 1990. (M. V. Nikonov, V. P. Shilov, “Sonochemical dissolution of NpO2 and PuO2 in aqueous alkaline solutions,” Radiochemistry, vol. 32, no. 6, p. 43, 1990.)
INVESTIGATION OF THE COMBINED EFFECT OF IONIZING RADIATION OF DIFFERENT QUALITY AND DOXORUBICIN ON BREAST ADENOCARCINOMA CELLS
L. N. Komarova, A. A. Melnikova
Abstract | References | Cite This | Full Text (PDF)
- С. И. Ткачев, М. И. Нечушкин, Т. В. Юрьева, “Современные возможности лучевой терапии злокачественных опухолей,” Вестник РАМН, но. 12, cтр. 34–40, 2011. (S. I. Tkachev, M. I. Nechushkin, T. V. Yuryeva, “Modern possibilities of radiation therapy of malignant tumors,” Bull. of the Russian Academy of Medical Sciences, no. 12, pp. 34-40, 2011.)
- Д. В. Лосев, М. Ф. Ломанов, А. П. Черняев, “Аналитический расчет модифицированной кривой Брэгга,” Препринт НИИЯФ МГУ, но. 16, 2003. (D. V. Losev, M. F. Lomanov, A. P. Chernyaev, “Analytical calculation of the modified Bragg curve,” Preprint of the Moscow State University Research Institute of Nuclear Physics , no. 16, 2003.)
- Н. И. Переводчиковой, Руководство по химиотерапии опухолевых заболеваний, Москва: Практическая Медицина, 2011. (N. I. Perevodchikova, Guide to chemotherapy of tumor diseases, Moscow: Practical Medicine, 2011.)
-
F. J. Rini, E. J. Hall, S. A. Marino, “The oxygen enhancement ratio as a
function of neutron energy with mammalian cells in culture,” Radiat. Res., vol. 78, no. 1, pp. 25-37, 1979.
DOI: https://doi.org/10.2307/3575004 - D. A. Kasatov et al., “Radiation at absorption of 2 MeV of protons in various materials,” Nuclear Physics, vol. 78, no. 11, pp. 963-969, 2015.
- L. A. Mostovich et al., “Influence the epithermal neutrons on viability of tumor cells of glioblastoma of in vitro,” Bull. Exper. Biology and Medicine, vol. 151, no. 2, pp. 229-235, 2011.
- С. П. Ярмоненко, А. А. Вайнсон, Радиобиология человека и животных, Москва: Высшая школа, 2004. (S. P. Yarmonenko, A. A. Vainson,Radiobiology of Humans and Animals, Moscow: Vysshaya shkola, 2004.)
- В. Г. Петин, Г. П. Жураковская, Л. Н. Комарова, Радиобиологические основы синергетических взаимодействий в биосфере , Москва: ГЕОС, 2012. (V. G. Petin, G. P. Zhurakovskaya, L. N. Komarova, Radiobiological bases of synergistic interactions in the biosphere, Moscow: GEOS, 2012.)
- Г. П. Жураковская, В. Г. Петин, “Принципы математического моделирования комбинированных воздействий в биологии и медицине (обзор литературы),” Радиация и Риск, т. 24, но. 1, стр. 61-73, 2015. (G. P. Zhurakovskaya, V. G. Petin “Principles of mathematical modeling of combined effects in biology and medicine (literature review),” Radiation and Risk, vol. 24, no. 1, pp. 61-73, 2015.)
- С. В. Белкина, Л. Н. Комарова, Р. О. Крицкий, “Прогнозирование синергических эффектов ионизирующего излучения и других повреждающих факторов на клетки млекопитающих и растения),” Радиация и риск, т. 15, но. 3-4, стр. 120-132, 2006. (S. V. Belkina, L. N. Komarova, R. O. Kritsky, “Prediction of synergistic effects of ionizing radiation and other damaging factors on mammalian and plant cells),” Radiation and Risk, vol. 15, no. 3-4, pp. 120-132, 2006.)
-
Л. Н. Комарова, А. А. Мельникова, Д. А. Балдов, “Исследование
комбинированного действия ионизирующего излучения и доксорубицина на
клетках аденокарциномы молочной железы человека MCF-7,”Научные междисциплинарные исследования. Материалы XIII Международной научно-практической конференции,
“КДУ”, “Добросвет”, стр. 14-22, 2021. (L. N. Komarova, A. A. Melnikova, D.
A. Baldov, “Study of the combined effect of ionizing radiation and
doxorubicin on human breast adenocarcinoma cells MCF-7,” in
Scientific interdisciplinary research. Materials of the XIII
International Scientific and Practical Conference
, "KDU", "Dobrosvet", pp. 14-22, 2021.)
DOI: https://doi.org/10.31453/kdu.ru.978-5-7913-1172-6-2021-14-21 -
А. Melnikova, L. Komarova, “Research on the combined effects of radiation
and chemotherapy on tumor cells,” in
Book of Abstr. 9th Int. Conf. on Radiation in Various Fields
of Research (RAD 2021),
Herceg Novi, Montenegro, 2021, р. 228.
DOI: https://doi.org/10.21175/rad.abstr.book.2021.32.6
DEVELOPMENT OF AN MCNP MODEL OF A BORON-10 ZINC SULFIDE SILVER-ACTIVATED [10B/ZnS(Ag)] DETECTOR AND DIRECTIONAL SHIELDING USING RADIATION COUNTING
Alexander Macris, Kevin McKay, William Charlton, Cheryl Brabec, Sheldon Landsberger
Abstract | References | Cite This | Full Text (PDF)
- Neutron Detector Suitable for Second Line of Defense Program, Bridgeport Instruments LLC, Austin, TX, USA, 2020.
Retrieved from: http://bridgeportinstruments.com/products/neutron/ndet_2x24_r1.pdf
Retrieved on: August 20, 2021. - P. A. Söderström et al., “Characterization of a Plutonium-Beryllium Neutron Source,” Applied Radiation and Isotopes, vol. 167, article no. 109441, Jan. 2021.
DOI: https://doi.org/10.1016/j.apradiso.2020.109441
PMid: 33002762 - S. F. Mughabghab, Thermal Neutron Capture Cross Sections Resonance Integrals and G-Factors , Rep. INDC(NDS)-440, IAEA, Vienna, Austria, 2003.
Retrieved from: https://inis.iaea.org/collection/NCLCollectionStore/_Public/34/020/34020739.pdf?r=1
Retrieved on: Sep. 17, 2021 - K. Guzman-Garcia et al., “10B+ZnS(Ag) as an Alternative to 3He-Based Detectors for Radiation Portal Monitors,” EPJ Web of Conferences, vol. 153, article no. 07008, 2017.
DOI: https://doi.org/10.1051/epjconf/201715307008 - Atlas of Neutron Capture Cross Sections , Evaluated Data Library, IAEA, Vienna, Austria, 2010.
Retrieved from: https://www.iaea.org/resources/databases/atlas-of-neutron-capture-cross-sections
Retrieved on: August 20, 2021 - Compendium of Material Composition Data for Radiation Transport Modeling , Rep. 200-DMAMC-128170 PNNL-15870, Rev. 2, Pacific Northwest National Laboratory, Richland, WA, USA, Apr. 2021.
Retrieved from: https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-15870Rev2.pdf
Retrieved on: August 20, 2021 - W.B. Wilson et al., SOURCES 4A: A Code for Calculating (α, n), Spontaneous Fission, and Delayed Neutron sources and Spectra , Rep. LA-13639-MS, Los Alamos National Laboratory, Los Alamos, New Mexico, USA, 1999.
DOI: https://doi.org/10.2172/15215 - J. K. Shultis., R. E. Faw, An MCNP Primer, Kansas State University, Manhattan, KS, USA, 2011.
Retrieved from: https://www.mne.k-state.edu/~jks/MCNPprmr.pdf
Retrieved on: August 20, 2021 - M.S. Dewey, H.P. Mumm, “Calibrations: Neutron Source Strength,” National Institute of Standards and Technology, U.S. Department of Commerce, Gaithersburg, MD, USA 2010.
Retrieved from: https://www.nist.gov/programs-projects/calibrations-neutron-source-strength
Retrieved on: November 18, 2021 - H.R. Vega-Carrillo et al. “Characterization of a 239PuBe Isotopic Neutron Source,” in Proceedings of the ISSSD, IAEA, Vienna, Austria, 2012.
Retrieved from: https://inis.iaea.org/collection/NCLCollectionStore/_Public/44/026/44026243.pdf
Retrieved on: November 18, 2021
A PRELIMINARY INVESTIGATION FOR THE USE OF DIGITAL GAMMA-GAMMA COINCIDENCE SPECTROMETRY TO DETECT 239Pu
Conny Egozi, Francis Martinez, Brandon De Luna, James Terry, Sheldon Landsberger
Abstract | References | Cite This | Full Text (PDF)
-
R. Gunnink, J. B. Niday, P. D. Siemens,
System for plutonium analysis by gamma ray spectrometry, Part I:
Techniques for analysis of solutions
, Rep. UCRL-51577(Pt.1), LLL, Livermore (CA), USA, 1974.
DOI: https://doi.org/10.2172/4291806 -
Th. E. Sampson, S-T. Hsue, J. L. Parker, S. S. Johnson, D. F. Bowersox,
“The determination of plutonium isotopic composition by gamma-ray
spectroscopy,” Nuc. Inst. Methods in Phys. Research, vol. 193, no.
1–2, pp. 177-183, 1982.
DOI: https://doi.org/10.1016/0029-554X(82)90693-0 -
S. Hurtado, M. García-León, R. García-Tenorio, “Optimized background
reduction in low-level gamma-ray spectrometry at a surface laboratory,” Appl. Rad. Isot., vol. 64, no. 9, pp. 1006-1012, 2006.
DOI: https://doi.org/10.1016/j.apradiso.2006.01.008 -
N. Marković, P. Roos, S. P. Nielsen, “Digital gamma-gamma coincidence HPGe
system for environmental analysis,” Appl. Rad. Isot., vol. 126,
pp. 194-196, 2017.
DOI: https://doi.org/10.1016/j.apradiso.2016.12.017 -
J. A. Cooper, “Radioanalytical applications of gamma-gamma coincidence
techniques with lithium-drifted germanium detectors,” Anal. Chem.,
vol. 43, no. 7, pp. 838-845, 1971.
DOI: https://doi.org/10.1021/ac60302a017 -
L. E. Wangen, E. S. Gladney, J. W. Starner, W. K. Hensley, “Determination of selenium in environmental standard
reference materials by a .gamma.-.gamma. coincidence method using
lithium-drifted germanium detectors,” Anal. Chem., vol. 52, no. 4, pp. 765–767, 1980.
DOI: https://doi.org/10.1021/ac50054a037 -
Truong Van, Minh et al., “Determination of selenium in environmental sample
by gamma-gamma Coincidence method,” in Proc. of
3rd Int. Conf. on Advances in Applied Science and
Environmental Engineering (ASEE 2015),
Kuala Lumpur, Malaysia, 2015, pp. 67-70.
Retrieved from: https://www.researchgate.net/publication/324967842_Determination_of_selenium_in_environmental_sample_by_gammagamma_Coincidence_method
Retrieved on: August 1, 2021 -
J. Konki et al., “Comparison of gamma-ray coincidence and low-background
gamma-ray singles spectrometry,” Appl. Rad. Isot., vol. 70, no. 2,
pp. 392-396, 2012.
DOI: https://doi.org/10.1016/j.apradiso.2011.10.004 -
W. Zhang et al., “A system for low-level the cosmogenic 22Na
radionuclide measurement by gamma–gamma coincidence method using BGO
detectors,” J. Radioanal. Nucl. Chem., vol. 287, pp. 551-555,
2011.
DOI: http://doi.org/10.1007/s10967-010-0758-3 -
W. Zhang et al., “A gamma–gamma coincidence spectrometric method for rapid
characterization of uranium isotopic fingerprints,” J. Radioanal. Nucl. Chem., vol. 288, pp. 43–47, 2011.
DOI: https://doi.org/10.1007/s10967-010-0868-y -
A. Drescher, M. Yoho, S. Landsberger, “Gamma–Gamma Coincidence in Neutron
Activation Analysis,”
J. Radioanal. Nucl. Chem.
, vol. 318, pp. 527–532, 2018.
DOI: https://doi.org/10.1007/s10967-018-6033-8 -
Pixie-16: 16-Channel PXI Digital PULSE Processor for Nuclear
Spectroscopy
, XIA LLC, Oakland, CA, USA.
Retrieved from: https://xia.com/dgf_pixie-16.html
Retrieved on: August 1, 2021 -
NuDat version 2
, NNDC at Brookhaven National Laboratory, Upton, NY, USA.
Retrieved from: https://www.nndc.bnl.gov/nudat2/chartNuc.jsp
Retrieved on: August 1, 2021 -
T. E. Sampson, Plutonium isotopic composition by gamma-ray spectroscopy: a review
, Rep. LA-10750-MS, Los Alamos National Laboratory, Los Alamos, NM, USA,
1986.
DOI: https://doi.org/10.2172/5265462
REDUCTION OF SILVER IONS USING CHITOSAN AND INVESTIGATION OF THEIR REACTIVITY
Irina G. Antropova, Natalia V. Panferova, Eldar P. Magomedbekob
Abstract | References | Cite This | Full Text (PDF)
-
S-H. Lim, S. M. Hudson, “Review of сhitosan and its derivatives as
antimicrobial agents and their uses as textile chemicals,” J. Macromol. Sci. Pt. C, vol. 43, no 2, pp. 223–269, 2003.
DOI: https://doi.org/10.1081/MC-120020161 - M. G. Grigoriev, L. N. Babich, “The use of silver nanoparticles against socially significant diseases,” Young Scientist, vol. 9, pp. 396–401, 2015.
-
K. Zielinska, A. G. Shostenko, S. Truszkowski, “Analysis of chitosan by gel
permeation chromatography,” High Energy Chemistry, vol. 48, pp.
72–75, 2014.
DOI: http://doi.org/10.1134/S0018143914020143 - A. A. Fenin, I. G. Antropova, S. V. Gornostaeva, Laboratory Workshop on Radiation Chemistry, D. Mendeleev University of Chemical Technology of Russia, Moscow, Russia, 2016.
- М. Я. Мельников, Экспериментальные методы химии высоких энергий, Москва, Россия: МСУ, 2009.(M. Y. Melnikov, Experimental Methods of High Energy Chemistry, Moscow, Russia: MSU, 2009.)
- А. К. Пикаев, Современная радиационная химия: Радиолиз газов и жидкостей, Москва, Россия: Наука, 1986. K. Pikaev, Modern radiation chemistry: Radiolysis of gases and liquids. Moscow, Russia: Science, 1986.)
RADIOLOGY DIAGNOSTICS OF THE CONSEQUENCES OF VASELINE OIL INTRODUCTION INTO SOFT TISSUES AT THE STAGES OF SURGICAL TREATMENT
Yulia A. Stepanova, Nora E. Arutyunyan, Naida O. Sultanova, Aleksey A. Kopyltsov, Dmitry V. Kalinin
Abstract | References | Cite This | Full Text (PDF)
-
A.W. Klein, M.L. Elson, “The History of Substances for Soft Tissue
Augmentation”, Dermatologic Surgery, vol. 26, no. 12, pp.
1096-1105, 2000.
DOI: https://doi.org/10.1046/j.1524-4725.2000.00512.x - R. Gersuny, “Ueber eine subcutane prothese”, Zeitschr Heilkunde Wien u Leipzig, vol. 21, sei. 199–201, 1900. (R. Gersuny, “Concerning a subcutaneous prosthesis”, Heilkunde Vienna and Leipzig Journal, vol. 21, pp. 199–201, 1900)
- M. L. Hedingsfeld, “Histopathology of paraffin prosthesis”, J. Cutan. Dis., vol. 24, pp. 513-521, 1906.
-
W. Peters, V. Fornasier, “Complications from injectable materials used for
breast augmentation”, Can. J. Plast. Surg., vol. 17, no. 3, pp.
89-96, 2009.
DOI: https://doi.org/10.1177/229255030901700305 -
J. Steffens et al., “Paraffinoma of the external genitalia after
autoinjection of Vaseline”, Eur. Urol., vol. 38, no. 6, pp.
778-781, 2000.
DOI: https://doi.org/10.1159/000020379 -
Y. Tanaka, I. Morishima, K. Kikuchi, “Invasive micropapillary carcinomas
arising 42 years after augmentation mammoplasty: A case report and
literature review”, World J. Surg. Oncol., vol. 14, no. 6, article
no. 33, 2008.
DOI: https://doi.org/10.1186/1477-7819-6-33 -
H. Bryant, P. Brasher, “Breast implant and breast cancer – reanalysis of a
linkage study”, N. Engl. J. Med., vol. 332, pp. 1535–1539, 1995.
DOI: https://doi.org/10.1056/NEJM199506083322302 -
L.A. Brinton, S.L. Brown, “Breast implants and cancer”, J. Natl. Can. Inst., vol. 89, no. 18, pp. 1341–1349, 1997.
DOI: https://doi.org/10.1093/jnci/89.18.1341 -
K.A. Skinner et al., “Breast cancer after augmentation mammoplasty”, Ann. Surg, Oncol., vol. 8, pp. 138–144, 2001.
DOI: https://doi.org/10.1007/s10434-001-0138-x -
S.A. Mclntosh, K. Horgan, “Breast cancer following augmentation mammoplasty
– a review of its impact on prognosis and management”, J. Plast. Reconstr. Aesthet. Surg., vol. 60, no. 10, pp.
1127–1135, 2007.
DOI: https://doi.org/10.1016/j.bjps.2007.03.017 -
D.M. Deapen, E.M. Hirsch, G.S. Brody, “Cancer risk among Los Angeles women
with cosmetic breast implants”, Plast. Reconstr. Surg., vol. 119,
no. 7, pp. 1987–1992, 2007.
DOI: https://doi.org/10.1097/01.prs.0000260582.23971.02 - H.F. Smetana, W. Bernhard, “Sclerosing lipogranuloma”, Arch. Path., vol. 50, pp. 296–325, 1950.
-
V.D. Newcomer, J.H. Graham, R.R. Schafert, L. Kaplan, “Sclerosing
lipogranuloma resulting from exogenous lipids”, AMA Arch. Derm.,
vol. 73, no. 4, pp. 361–372, 1956.
DOI: https://doi.org/10.1001/archderm.1956.01550040055008 -
G. Foxton, C. Vinciullo, C.P. Tait, R. Sinniah, “Sclerosing lipogranuloma
of the penis”, Australasian J. Dermatol., vol. 52, no. 3, pp.
e12–e14, 2011.
DOI: https://doi.org/10.1111/j.1440-0960.2010.00665.x - Е.П. Фисенко, “Инструментальная диагностика осложнений контурной пластики тела гелевыми имплантатами”, докторская диссертация, Российской Академии медицинских наук, Российский научный центр хирургии им. академика Б.В. Петровского, Москва, Россия, 2009. (E.P. Fisenko, “Instrumental diagnostics of complications of body contouring with gel implants”, Ph.D. dissertation, Russian Academy of Medical Sciences, Russian Scientific Center of Surgery named after A.I. Academician B.V. Petrovsky, Moscow, Russia, 2009.)
-
R.E. Barlow, W.E. Torres, P.J. Sones Jr., A. Someren, “Sonographic
demonstration of migrating silicone”, Am. J. Roentgenol., vol.
135, no. 1, pp. 170–171, 1980.
DOI: https://doi.org/10.2214/ajr.135.1.170 -
N.B. Khedher et al., “Imaging findings of breast augmentation with injected
hydrophilic polyacrylamide gel: patient reports and literature review”. Eur. J. Radiol., vol. 78, no. 1, pp. 104–211, 2011.
DOI: https://doi.org/10.1016/j.ejrad.2009.09.021 -
P. Nyirády et al., “Treatment and outcome of vaseline-induced sclerosing
lipogranuloma of the penis”, Urology, vol. 71, no. 6, pp.
1132–1137, 2008.
DOI: https://doi.org/10.1016/j.urology.2007.12.081 -
Q. Qiao et al., “Management for postoperative complications of breast
augmentation by injected polyacrylamide hydrogel”, Aesth. Plast. Surg., vol. 29, no. 3, pp. 156–161, May-Jun 2005.
DOI: https://doi.org/10.1007/s00266-004-0099-0 -
N.B. Khedher et al., “Imaging findings of breast augmentation with injected
hydrophilic polyacrylamide gel: Patient reports and literature review”, Eur. J. Radiol., vol. 78, no. 1, pp. 104–111, 2011.
DOI: https://doi.org/10.1016/j.ejrad.2009.09.021 - Ю.А. Степанова, В.И. Шаробаро, И.П. Колганова, “Лучевая диагностика и лечение осложнений инъекционной контурной пластики молочных желез”, Хирургия. Журн. им. Н. И. Пирогова, № 4, с. 59-63, 2016. (Yu.A. Stepanova, V.I. Sharobaro, I.P. Kolganova, “Radiation diagnosis of complications of injection breast contouring”, Surgery Journal them. N.I. Pirogov, vol. 4, pp. 59-63, 2016.)
-
T. Wong et al., “Magnetic resonance imaging of breast augmentation: a
pictorial review”, Insights into Imaging, vol. 7, no. 3, pp.
399–410, 2016.
DOI: https://doi.org/10.1007/s13244-016-0482-9 - И.Г. Мариничева, “Контурная пластика нижних конечностей”, докторская диссертация, Российский национальный исследовательский медицинский университет имени Н. И. Пирогова, Москва, Россия, 2019. (I.G. Marinicheva, “Contouring of the lower extremities”, Ph.D. dissertation, Pirogov Russian National Research Medical University, Moscow, Russia, 2019.)
DESIGN AND CHARACTERIZATION OF A COMPACT RADIATION MONITOR FOR SPACE ROCKETS
Abdulrahman Albarodi, M. Bilge Demirköz, Uğur Kılıç, Ahmet Baran Can, Deniz Orhun Boztemur, Egecan Karadöller, Aziz Ulvi Çalışkan, Güntekin Kabuli, Levent Balamir Tavacıoğlu
Abstract | References | Cite This | Full Text (PDF)
-
T. Sato, “Analytical model for estimating terrestrial cosmic ray fluxes
nearly anytime and anywhere in the world: extension of PARMA/EXPACS,” PLoS One, vol. 10, no. 12, article no. e0144679, Dec. 2015.
DOI: https://doi.org/10.1371/journal.pone.0144679 -
R. Engel, D. Heck, T. Pierog, “Extensive air showers and hadronic
interactions at high energy,” Annu. Rev. Nucl. Part. Sci., vol.
61, pp. 467–489, Nov. 2011.
DOI: https://doi.org/10.1146/annurev.nucl.012809.104544 -
T. P. Dachev, “Profile of the ionizing radiation exposure between the Earth
surface and free space,” J. Atmos. Sol.–Terr. Phys., vol. 102, pp.
148–156, Sep. 2013.
DOI: https://doi.org/10.1016/j.jastp.2013.05.015 -
M. Barrantes et al., “Atmospheric corrections of the cosmic ray fluxes
detected by the Solar Neutron Telescope at the Summit of the Sierra Negra
Volcano in Mexico,” Geofis. Int., vol. 57, no. 4, pp. 253–275,
Oct. 2018.
DOI: https://doi.org/10.22201/igeof.00167169p.2018.57.4.2105 -
K. Copeland, “CARI-7A: development and validation,” Radiat. Prot. Dosim., vol. 175, no. 4, pp. 419–431, Aug. 2017.
DOI: https://doi.org/10.1093/rpd/ncw369 -
Y. I. Stozhkov, N. S. Svirzhevsky, V. S. Makhmutov, “Cosmic ray measurement
in the atmosphere,” in Proc. Workshop on Ion-Aerosol-Cloud Interact (IACI), Geneva,
Switzerland, 2001, pp. 41–62.
DOI: https://doi.org/10.5170/CERN-2001-007 -
R. G. Harrison, K. A. Nicol, K. L. Aplin, “Vertical profile measurements of
lower troposphere ionization,” J. Atmos. Sol.–Terr. Phys., vol.
119, pp. 203–210, Nov. 2014.
DOI: https://doi.org/10.1016/j.jastp.2014.08.006 - M. B. Demirköz et al., “Design of a space radiation monitor for a sounding rocket and results from the first Turkish sounding rocket flight,” presented at the Rad. Effects on Components and Systems ( RADECS), Vienna, Austria, Sep. 2021.
-
“Türk roketi ilk kez sıvı yakıt ile uzayda,” ROKETSAN Haber, Kas.
13, 2020. (“Turkish rocket in space for the first time with liquid fuel,” ROKETSAN News, Nov. 13, 2020.)
Retrieved from: https://www.roketsan.com.tr/tr/medya/haberler/turk-roketi-ilk-kez-sivi-yakitla-uzayda
Retrieved on: Nov. 13, 2020 -
A. Albarodi, “Design of a space radiation monitor for a spacecraft in LEO
and results from a prototype on the first Turkish sounding rocket”, M.Sc.
dissertation, Middle East Technical University, Dept. of Physics, Ankara,
Turkey, 2021.
Retrieved from: http://etd.lib.metu.edu.tr/upload/12626153/index.pdf
Retrieved on: May 25, 2021 -
S. Srivastava, R. Henry, A. Topka R., “Characterization of PIN diode
silicon radiation detector,” Int. J. Intell. Electr. Syst., vol. 1, no. 1, pp. 47–51, 2007.
DOI: https://doi.org/10.18000/ijies.30009 -
J. M. Park et al., “Consideration of the Leakage-Current and the
Radiation-Response characteristics of silicon PIN detectors with different
N-Type Substrates and Their Application to a Personal γ-ray dosimeter,” J. Korean Phys. Soc., vol. 51, no. 1, pp. 10–17, 2007.
DOI: https://doi.org/10.3938/jkps.51.10 -
D. K. Schroder, “Carrier and Doping Density,” in Semiconductor Material and Device Characterization, 3rd
ed., New Jersey, USA, J. Wiley and Sons, 2006, ch. 2, sec. 2, pp. 61–78.
DOI: https://doi.org/10.1002/0471749095 - T. L. Floyd, D. Buchla, “Basic Op-amp Circuits” in Fundamentals of Analog Circuits, 2nd ed., USA, Prentice Hall, Pearson, 2002, ch. 8, ch. 1–4, pp. 418–445.
-
R. Gaillard, “Single Event Effects: Mechanisms and Classification,” in Soft Errors in Modern Electronic Systems, 1st ed., Boston, MA, USA, Springer, 2011, ch. 2, pp. 27–54.
DOI: https://doi.org/10.1007/978-1-4419-6993-4_2 -
Geant4 Collaboration, Geant4 User’s Guide for Application Developers, Geant4 version 10.3, CERN, Geneva, Switzerland, 2016.
Retrieved from: https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/BackupVersions/V10.3/html/index.html
Retrieved on: Jul. 15, 2020 -
M. Pinto, P. Gonçalves, “GUIMesh: A tool to import STEP geometries into
Geant4 via GDML,” Comp. Phys. Commun., vol. 239, pp.
150–156, 2019.
DOI: https://doi.org/10.1016/j.cpc.2019.01.024 -
J. F. Ziegler, M. D. Ziegler, J. P. Biersack, “SRIM – The stopping and
range of ions in matter,”
Nucl. Instrum. Methods Phys. Res. Sec. B: Beam Interact. Mater. At.,
vol. 268, no. 11-12, pp. 1818–1823, Jun. 2010.
DOI: https://doi.org/10.1016/j.nimb.2010.02.091 -
Microsemi, DS0128: IGLOO2 and SmartFusion2 Datasheet, 12 th ed., Microchip, California, USA, 2008
Retrieved from: https://www.microsemi.com/document-portal/doc_download/132042-igloo2-fpga-datasheet
Retrieved on: Aug. 15, 2020 -
A. Gencer, M. B. Demirkoz, I. Efthymiopoulos, M. Yiğitoğlu, “Defocusing
beam line design for an irradiation facility at the TAEA SANAEM Proton
Accelerator Facility,”
Nucl. Instrum. Methods Phys. Res. Sec. A: Accel. Spectrom. Detect.
Assoc. Equip., vol. 824, pp. 202–203, Jul. 2016.
DOI: https://doi.org/10.1016/j.nima.2015.11.018 -
M. B. Demirkoz, S. Niğdelioğlu, M. Yiğitoğlu, S. Aydın, I. Efthymiopoulos,
“METU defocusing beam line project for the first SEE tests in Turkey and
the results from the METU-DBL preliminary setup,”
Nucl. Instrum. Methods Phys. Res. Sec. A: Accel. Spectrom. Detect.
Assoc. Equip., vol. 936, pp. 54–56, Aug. 2018.
DOI: https://doi.org/10.1016/j.nima.2018.11.075 -
M. B. Demirkoz et al., “METU-Defocusing beamline: A 15-30 MeV proton
irradiation facility and beam measurement system,” EPJ Web Conf.,
vol. 225, article no. 01008, Jan. 2020.
DOI: https://doi.org/10.1051/epjconf/202022501008 -
Red Pitaya Documentation, Redpitaya, Slovenia, 2020.
Retrieved from: https://redpitaya.readthedocs.io/
Retrieved on: May 25, 2020 -
Z. Bielecki, “Readout electronics for optical detectors”, Opto-Electron. Rev., vol. 12, no. 1, pp. 129–137, 2004.
Retrieved from: https://www.researchgate.net/publication/228798113_Readout_electronics_for_optical_detectors
Retrieved on: Dec. 20, 2020 -
M. Wijtvliet et al., “PR3: A system for radio-interferometry and radiation measurement on sounding rockets,” Microprocessors and Microsystems, vol. 77, article no. 103163, Sep. 2020.
DOI: https://doi.org/10.1016/j.micpro.2020.103163
DETERMINATION OF THE PLASMA CONCENTRATION OF THE PROTEIN PRODUCT OF THE OB GENE AND LIPID PROFILE IN BOSNIAN TYPE 2 DIABETIC INDIVIDUALS
Šaćira Mandal
Abstract | References | Cite This | Full Text (PDF)
-
American Diabetes Association, “Obesity Management for the Treatment of
Type 2 Diabetes”, Diabetes Care, vol. 39, suppl. 1, pp. S47–S51,
Jan. 2016.
DOI: https://doi.org/10.2337/dc16-S009 -
N. Katsiki, D.P. Mikhailidis, M. Banach, “Leptin, cardiovascular diseases
and type 2 diabetes mellitus,” Acta Pharmacol. Sin., vol. 39, pp.
1176–1188, Jun. 2018.
DOI: https://doi.org/10.1038/aps.2018.40 -
A. Sarı, M.B. Sadeq, “The relationship the leptin hormone, obesity and
diabetes,” Physical Sciences, vol. 15, no. 2, pp. 40–48, Apr. 2020.
Retrieved from: https://dergipark.org.tr/en/pub/nwsaphysic/issue/53888/701533
Retrieved on: Sep. 15, 2021 -
T.H. Meek, G.J. Morton, “The role of leptin in diabetes: metabolic
effects,” Diabetologia, vol. 59, no. 5, pp. 928–932, May. 2016.
DOI: https://doi.org/10.1007/s00125-016-3898-3 -
J. Seufert, “Leptin effects on pancreatic beta-cell gene expression and
function,” Diabetes, vol. 53, suppl. 1, pp. S152–S158, Feb. 2004.
DOI: https://doi.org/10.2337/diabetes.53.2007.S152 -
T. Shiuchi et al., “Induction of glucose uptake in skeletal muscle by
central leptin is mediated by muscle β2-adrenergic receptor but not by AMPK,” Sci. Rep., vol. 7, no. 1, article no. 15141, Nov. 2017.
DOI: https://doi.org/10.1038/s41598-017-15548-6 -
A.M. D’souza, U.H. Neuman, M.M. Glavas, T.J. Kieffer, “The glucoregulatory
actions of leptin,” Molecular Metabolism, vol. 6, no. 9, pp.
1052–1065, Sep. 2017.
DOI: https://doi.org/10.1016/j.molmet.2017.04.011 -
T.M. Moonishaa et al., “Evaluation of leptin as a marker of insulin
resistance in type 2 diabetes mellitus,” Int. J. Appl. Basic Med. Res., vol. 7, no. 3, pp. 176–180, 2017.
DOI: https://doi.org/10.4103%2Fijabmr.IJABMR_278_16 -
L. Marroquí et al., “Role of leptin in the pancreatic β-cell: effects and signaling pathways,” J. Mol. Endocrinol., vol.
49, no. 1, pp. R9–R17, 2012.
DOI: https://doi.org/10.1530/jme-12-0025 -
M.A. Buyukbese et al., “Leptin levels in obese women with and without type
2 diabetes mellitus,” Mediators of Inflammation, vol. 13, no. 5/6,
pp. 321–325, Oct./Nov. 2004.
DOI: https://doi.org/10.1080/09629350400008828 -
W.I. Sivitz et al., “Leptin and body fat in type 2 diabetes and monodrug
therapy,” The Journal of Clinical Endocrinology & Metabolism,
vol. 88, no. 4, pp. 1543–1553, Apr. 2003.
DOI: https://doi.org/10.1210/jc.2002-021193 -
Y. Minokoshi, C. Toda, S. Okamoto, “Regulatory role of leptin in glucose
and lipid metabolism in skeletal muscle,” Indian J. Endocrinol. Metab., vol. 16, suppl. 3, pp. S562–S568,
Dec. 2012.
Retrieved from: https://pubmed.ncbi.nlm.nih.gov/23565491/
Retrieved on: Sep. 15, 2021 -
L. O'Rourke, S.J. Yeaman, P.R. Shepherd, “Insulin and leptin acutely
regulate cholesterol ester metabolism in macrophages by novel signaling
pathways,” Diabetes, vol. 50, no. 5, pp. 955–961, May 2001.
DOI: https://doi.org/10.2337/diabetes.50.5.955 -
American Diabetes Association, “Classification and Diagnosis of Diabetes:
Standards of Medical Care in Diabetes—2021,” Diabetes Care 2021,
vol. 44, suppl. 1, pp. S15–S33, 2021.
DOI: https://doi.org/10.2337/dc21-S002 -
D.R. Matthews et al., “Homeostasis model assessment: insulin resistance and
beta-cell function from fasting plasma glucose and insulin concentrations
in man,” Diabetologia, vol. 28, no. 7, pp. 412–419, Jul.
1985.
DOI: https://doi.org/10.1007/bf00280883 -
S. Zhao, C.M. Kusminski, J.K. Elmquist, P.E. Scherer, “Leptin: less is
more,” Diabetes, vol. 69, no. 5, pp. 823–829, May 2020.
DOI: https://doi.org/10.2337/dbi19-0018 -
W. Liu et al., “Serum leptin, resistin, and adiponectin levels in obese and
non-obese patients with newly diagnosed type 2 diabetes mellitus: A
population-based study,” Medicine, vol. 99, no. 6, article no.
e19052, Feb. 2020.
DOI: https://doi.org/10.1097/MD.0000000000019052 -
R. Farooq et al., “Type 2 diabetes and metabolic syndrome – adipokine
levels and effect of drugs,” Gynecol. Endocrinol., vol. 33, no. 1,
pp. 75–78, 2017.
DOI: https://doi.org/10.1080/09513590.2016.1207165 -
O. Gruzdeva, D. Borodkina, E. Uchasova, Y. Dyleva, O. Barbarash, “Leptin resistance: underlying mechanisms and diagnosis,” Diabetes Metab. Syndr. Obes., vol. 12, pp. 191–198, Jan. 2019.
DOI: https://doi.org/10.2147/DMSO.S182406 -
M. Obradovic et al., “Leptin and Obesity: Role and Clinical Implication,” Front. Endocrinol., vol. 12, article no. 585887, May 2021.
DOI: https://doi.org/10.3389/fendo.2021.585887 -
H. Zuo et al., “Association between serum leptin concentrations and insulin
resistance: a population-based study from China,” PLoS ONE, vol.
8, no. 1, article no. e54615, Jan. 2013.
DOI: https://doi.org/10.1371/journal.pone.0054615 -
J. Huang, X. Peng, K. Dong, J. Tao, Y. Yang, “The association between
insulin resistance, leptin, and resistin and diabetic nephropathy in type 2
diabetes mellitus patients with different body mass indexes,” Diabetes Metab. Syndr. Obes. Targ. Ther., vol. 14, pp. 2357–2365, May 2021.
DOI: https://doi.org/10.2147/DMSO.S305054 -
M. Mehrdad et al., “Association of FTO rs9939609 polymorphism with
serum leptin, insulin, adiponectin, and lipid profile in overweight
adults,” Adipocyte, vol. 9, no. 1, pp. 51–56, Dec. 2020.
DOI: https://doi.org/10.1080/21623945.2020.1722550 -
S. Mandal, “New molecular biomarkers in precise diagnosis and therapy of
type 2 diabetes,” Health Technol., vol. 10, pp. 601–608, May 2020.
DOI: https://doi.org/10.1007/s12553-019-00385-6 -
C. Vavruch et al., “Using proximity extension proteomics assay to discover novel biomarkers associated with
circulating leptin levels in patients with type 2 diabetes,” Sci. Rep., vol. 10, no. 1, article no. 13097, Aug. 2020.
DOI: https://doi.org/10.1038/s41598-020-69473-2
HIGH-FREQUENCY ULTRASOUND SCANNING IN EYELIDS ASSESSMENT
T.N. Kiseleva, Yu. A. Stepanova, N.V. Guseva, K.V. Lugovkina, V. V. Makukhina
Abstract | References | Cite This | Full Text (PDF)
-
D. Liu, W. M. Hsu, “Oriental eyelids. Anatomic difference and surgical
consideration,” Ophthal. Plast. Reconstr. Surg., vol. 2, no. 2,
pp. 59–64, 1986.
DOI: http://doi.org/10.1097/00002341-198601050-00001 -
S. Jeong et al., “The Asian upper eyelid: an anatomical study with
comparison to the Caucasian eyelid”, Arch Ophthalmol., vol. 117,
no. 7, pp. 907–912, Jul. 1999.
DOI: http://doi.org/10.1001/archopht.117.7.907 -
M. Deprez, S. Uffer, “Clinicopathological features of eyelid skin tumors. A
retrospective study of 5504 cases and review of literature”, Am. J. Dermatopathol.,
vol. 31, no. 3, pp. 256–262, May 2009.
DOI: https://doi.org/10.1097/dad.0b013e3181961861 -
L. Wang et al., “Clinicopathological analysis of 5146 eyelid tumours and
tumour-like lesions in an eye centre in South China, 2000–2018: a
retrospective cohort study,” BMJ Open, vol. 11, no. 1,
article no. e041854, Jan. 2021.
DOI: http://doi.org/10.1136/bmjopen-2020-041854 - A. D. Singh, B. C. Hayden, “Clinical Methods: Ultrasound Biomicroscopy”, in Ophthalmic Ultrasonography, Philadelphia, USA: Elsevier/Saunders, 2012, ch. 4, pp. 25–29.
-
V. H. Vasanthapuram, P. Saha, A. Mohamed, M. N. Naik, “Ultrasound
biomicroscopic features of the normal lower eyelid,” Orbit, vol.
40, no. 5, pp. 375–380, Sep. 2020.
DOI: https://doi.org/10.1080/01676830.2020.1812094 -
H. Demirci, C.C. Nelson, “Ultrasound biomicroscopy of the upper eyelid
structures in normal eyelids,” Ophthal. Plast. Reconstr. Surg.,
vol. 23, no. 2, pp. 122–125, Apr. 2007.
DOI: http://doi.org/10.1097/iop.0b013e31802f2074 -
M. T. Rajabi et al., “Ultrasonographic visualization of lower eyelid
structures and dynamic motion analysis,” Int. J. Ophthalmol., vol.
6, no. 5, pp. 592–595, 2013.
DOI: http://doi.org/10.3980/j.issn.2222-3959.2013.05.07 -
M. T. Rajabi et al., “Ultrasonographic motion analysis of lower eyelid
compartments in patients with chronic thyroid associated ophthalmopathy,” J. Curr. Ophthalmol., vol. 29, no. 4, pp. 310–317, Dec. 2017.
DOI: http://doi.org/10.1016/j.joco.2017.07.002 -
P. Saonanon, P. Thongtong, T. Wongwuticomjon, “Differences between single and double eyelid anatomy in Asians using Ultrasound biomicroscopy,” Asia Pac. J. Ophthamol., vol. 5, no. 5, pp. 335–338,
Sep-Oct. 2016.
DOI: http://doi.org/10.1097/APO.0000000000000185 -
D. O. Kikkawa, R. Ochabski, R. N. Weinreb, “Ultrasound biomicroscopy of
eyelid lesions,” Ophthalmologica, vol. 217, no. 1, pp. 20–23, Feb.
2003.
DOI: http://doi.org/10.1159/000068253 - S.F. Byrne, R.L. Green, “Color Doppler Imaging of the Eye and Orbit”, in Ultrasound of the eye and orbit , Philadelphia, USA: Mosby Inc., 2002, ch. 14, pp. 374–375.
-
T.A Ferreira et al., “MR and CT Imaging of the Normal Eyelid and its
Application in Eyelid Tumors,” Cancers, vol. 12, no. 3, p. 658,
Mar. 2020.
DOI: http://doi.org/10.3390/cancers12030658 -
M. H. Banu, N. G. Ayer, G. Zilelioglu, A. H. Elhan, “Ultrasound
biomicroscopy of the levator aponeurosis in congenital and aponeurotic
blepharoptosis,” Ophthalmic Plast. Reconstr. Surg., vol. 20, no.
4, pp. 308–311, Jul. 2004.
DOI: https://doi.org/10.1097/01.iop.0000129532.33913.e7
ULTRASOUND DIAGNOSTICS AT THE STAGES OF EXTRACORPOREAL RESECTION OF A SINGLE KIDNEY IN THE TREATMENT OF RENAL CELL CARCINOMA
Yulia A. Stepanova, Vlada Yu. Raguzina, Tatiana P. Baitman, Olesya A. Chekhoeva, Irina V. Miroshkina, Aleksandr A. Gritskevich
Abstract | References | Cite This | Full Text (PDF)
-
Под ред. А.Д. Каприна, В.В. Старинского, Г.В. Петровой,
Злокачественные новообразования в России в 2018 году (заболеваемость и
смертность)
, М.: МНИОИ им. П.А. Герцена - филиал ФГБУ «НМИЦ радиологии» Минздрава
России, 2019. (A.D. Caprin, V.V. Starinskiy, G.V. Petrova, Eds., Malignant neoplasms in Russia in 2018 (morbidity and mortality),
Moscow: Moscow P.A. Gertsen Research Institute of Oncology, 2019.)
Retrieved from: https://glavonco.ru/cancer_register/%D0%97%D0%B0%D0%B1%D0%BE%D0%BB_2018_%D0%AD%D0%BB%D0%B5%D0%BA%D1%82%D1%80.pdf
Retrieved on: Aug. 15, 2021 -
M. Tanaka et al., “Prognostic factors of renal cell carcinoma with
extension into inferior vena cava”, Int. J. Urol., vol. 15, no. 5,
pp. 394-398, May 2008.
DOI: https://doi.org/10.1111/j.1442-2042.2008.02017.x -
T.K. Choueiri et al., “Updated efficacy results from the JAVELIN Renal 101
trial: first-line avelumab plus axitinib versus sunitinib in patients with
advanced renal cell carcinoma”, Ann. Oncol., vol. 31, no. 8, pp.
1030–1039, Aug. 2020.
DOI: https://doi.org/10.1016/j.annonc.2020.04.010 -
E. Shapiro, D.A. Goldfarb, M.L. Ritchey, “The congenital and acquired
solitary kidney”, Rev Urol., vol. 5, no. 1, pp. 2–8, 2003.
PMid: 16985610
PMCid: PMC1472993 -
E. Tantisattamo et al., “Current Management of Patients with Acquired
Solitary Kidney”, Kidney International Reports, vol. 4, no. 9, pp.
1205–1218, 2019.
DOI: https://doi.org/10.1016/j.ekir.2019.07.001 -
P.K.-T. Li et al., “Kidney Health for Everyone Everywhere – From Prevention
to Detection and Equitable Access to Care”, Kidney Diseases, vol. 6, no. 3, pp. 136–143, 2020.
DOI: https://doi.org/10.1159/000506528 -
S. Groen in't Woud, L. van der Zanden, M.F. Schreuder, “Risk stratification
for children with a solitary functioning kidney”, Pediatric Nephrology, vol. 36, pp. 3499–3503, 2021.
DOI: https://doi.org/10.1007/s00467-021-05168-8 -
А.А. Теплов и др., «Метод экстракорпоральной резекции почки в условиях
фармако-холодовой ишемии без пересечения мочеточника с ортотопической
реплантацией сосудов при почечно-клеточном раке», Экспериментальная и клиническая урология, № 2, с. 52–62, 2015.
(A.A. Teplov et al., “The method of extracorporeal resection of the kidney
in conditions of pharmaco-cold ischemia without crossing the ureter with
orthotopic replantation of vessels in renal cell carcinoma”, Experimental and Clinical Urology, vol. 2, pp. 52–62, 2015.)
Retrieved from: https://readera.org/142188379
Retrieved on: Aug. 15, 2021