Vol. 3, 2018

Original research papers

Radon and Thoron


M. Y.A. Mostafa, M.V. Zhukovsky

Pages: 115–118

DOI: 10.21175/RadProc.2018.25

In this paper, SRIM (The Stopping and Range of Ions in Matter) software package is used to simulate the interaction of alpha particles into the material of radiometric analytical filters. The effect of alpha particle self-absorption in alpha radiometric filters measurements is estimated, especially in the range of natural alpha energy (5-9 MeV, Radon and Thoron alpha energy). Software package SRIM allows to calculate the parameters of the ions interaction with target material using a Monte Carlo simulation method based on a quantum mechanical treatment of ion-atom collisions. The effect of the radiometric analytical filter material on the transmitted efficiency of alpha energy is discussed. As the energy increases the self-absorption in analytical filter material is decreased but still has a clear effect. In this case, the filter material and the space distance between the filter and the detector window decrease the number of alpha particles which reach to the detector window.
  1. R. Whitcher, “Calculation of the average solid angle subtended by a detector to source in a parallel plane by a Monte Carlo method,” Radiat. Prot. Dosim., vol. 102, no. 4, pp. 365 – 369, 2002.
    DOI: 10.1093/oxfordjournals.rpd.a006107
    PMid: 12474948
  2. S. Pickering, “The interpretation of alpha energy spectra from particulate sources,” J. Aerosol Sci., vol. 15, no. 5, pp. 533 – 543, 1984.
    DOI: 10.1016/0021-8502(84)90016-8
  3. R. J. Krupa, K. Kurzak, “Simulation and evaluation of aspectra obtained with semiconductor detectors,” Nucl. Instrum. Methods A, vol. 307, no. 2-3, pp. 469 – 483, Oct. 1991.
    DOI: 10.1016/0168-9002(91)90220-K
  4. C. Roldán, J. L. Ferrero, F. Sanchez, E. Navarro, M. J. Rodrıguez, “Monte Carlo simulation of alpha spectra in low geometry measurements,” Nucl. Instrum. Methods A, vol. 338, no. 2-3, pp. 506 – 510, Jan. 1994.
    DOI: 10.1016/0168-9002(94)91334-X
  5. F. A. Seiler, G. J. Newton, R. A. Guilmette, “Continuous monitoring for airborne alpha emitters in a dusty environment,” Health Phys., vol. 54, no. 5, pp. 503 – 515, May 1988.
    DOI: 10.1097/00004032-198805000-00002
    PMid: 2834306
  6. T. Geryes, C. Monsanglant-Louvet, E. Gehin, “Experimental and simulation methods to evaluate the alpha self-absorption factors for radioactive aerosol fiber filters,” Radiat. Meas., vol. 44, no. 9-10, pp. 763 – 765, Oct-Nov. 2009.
    DOI: 10.1016/j.radmeas.2009.10.059
  7. D. P. Higby, Effects of Particle Size and Velocity on Burial Depth of Airborne Particles in Fiber Filters, Rep. PNL-5278, National Technical Information Service., Springfield (VA), USA, 1984.
    Retrieved from: https://www.osti.gov/servlets/purl/6312811;
    Retrieved on: Jun. 25, 2018
  8. J. W. Luetzelschwab, Ch. Storey, K. Zraly, D. Dussinger, “Self-absorption of alpha and beta particles in a fiberglass filter,” Health Phys., vol. 79, no. 4, pp. 425 – 430, Oct. 2000.
    DOI: 10.1097/00004032-200010000-00012
    PMid: 11007466
  9. J. F. Ziegler, M. D. Ziegler, J. P. Biersack, “SRIM The Stopping and Range of Ions in Matter,” Nucl. Instrum. Methods Phys. Res. B, vol. 268, no. 11-12, pp. 1818 – 1823, Jun. 2010.
    DOI: 10.1016/j.nimb.2010.02.091
  10. Y. A. M. Mostafa, M. Vasyanovich, M. Zhukovsky, N. Zaitceva, “Calibration system for radon EEC measurements,” Radiat. Prot. Dosimetry, vol. 164, no. 4, pp. 587 – 590, Jun. 2015.
    DOI: 10.1093/rpd/ncv316
    PMid: 25979737