Vol. 3, 2018

Original research papers

Radiation Measurements


Mariia Pyshkina, Michael Zhukovsky, Alexey Ekidin

Pages: 36–41

DOI: 10.21175/RadProc.2018.08

Albedo thermoluminescent and direct-reading electron personal neutron dosimeters were examined. The ratio introduced by the difference between calibration and operational spectra were studied. The ratio of dosimeter reading and personal dose equivalent to a variety of workplace spectra after calibration is in the range from 0.6 up to 106. A new dosimeter for neutron exposure was presented. It is suggested that the dosimeter should be used inside of the body. The difference between its response function and fluence-to-effective dose conversion function is in the factor of 7 and 9 for anteroposterior (AP) and rotation (ROT) exposure geometries respectively. This dosimeter might be used at emergency situations, when neutron spectrum is similar to one of nuclear fuel radionuclides fission reaction.
  1. The 2007 Recommendations of the International Commission on Radiological Protection, ICRPPublication 103, ICRP, Vienna, Austria, 2007.
    Retrieved from: https://journals.sagepub.com/doi/pdf/10.1177/ANIB_37_2-4;
    Retrieved on: Nov. 20, 2018
  2. F. d’Errico, A. J. Bos, “Passive detectors for personal neutron dosimetry: state of art,” Rad. Prot. Dosim., vol. 110, no. 1-4, pp. 195 – 200, Aug. 2004.
    DOI: 10.1093/rpd/nch129
    PMid: 15353644
  3. B. M. Frietas, M. M. Martins, W. W. Pereira, A. X. da Silva, C. L. P. Mauricio, “MCNP simulation of the Hp(10) energy response of a brazilian TLD albedo neutron individual dosemeter, from thermal to 20 MeV,” Rad. Prot. Dosim., vol. 170, no. 1-4, pp. 350 – 353, Sep. 2016.
    DOI: 10.1093/rpd/ncv379
    PMid: 26276807
  4. T. Haninger, J. Henniger, “Dosimetric properties of the new TLD albedo neutron dosemeter AWST-TL-GD 04,” Rad. Prot. Dosim., vol. 170, no. 1-4, pp. 150 – 153, Sep. 2016.
    DOI: 10.1093/rpd/ncv406
    PMid: 26405220
  5. M. Luszik-Bhadra et al. “An active personal dosemeter / spectrometer for neutrons”, Rad. Prot. Dosim., vol. 84, no. 1-4, pp. 375 – 380, Aug. 1999.
    DOI: 10.1093/oxfordjournals.rpd.a032760
  6. W. G. Alberts et al. “Development of electronic personal neutron dosimeters: A European co-operation,” Rad. Prot. Dosim., vol. 96, no. 1-3, pp. 251 – 254, Jul. 2001.
    DOI: 10.1093/oxfordjournals.rpd.a006594
  7. R. I. Scherpelz, J. R. Cezeaux, “Performance of the EPD-N2 dosemeter for monitoring aircrew doses,” Rad. Prot. Dosim., vol. 163, no. 4, pp. 415 – 423, Mar. 2015.
    DOI: 10.1093/rpd/ncu234
  8. M. Luszik-Bhadra “Electronic personal neutron dosemeters for high energies: measurements, new developments and further needs,” Rad. Prot. Dosim., vol. 126, no. 1-4, pp. 487 – 490, Aug. 2007.
    DOI: 10.1093/rpd/ncm098
  9. M. Luszik-Bhadra et al. “A CR-39 track dosimeter for routine individual neutron monitoring”, Rad. Prot. Dosim., vol. 55, no. 4, pp. 285 – 293, Nov. 1994.
    DOI: 10.1093/oxfordjournals.rpd.a082404
  10. R. Tanner, P. J. Gilvin, J. D. Steele, D. T. Bartlett, S. M. Williams, “The NRPB PADC neutron personal dosimeter: Recent developments,” Rad. Prot. Dosim., vol. 34, no. 1-4, pp. 17-20, Dec. 1990.
    DOI: 10.1093/oxfordjournals.rpd.a080836
  11. M. Hajek, R. Cruz Suárez, “A solution for neutron personal dosimetry in the absence of workplace spectrometry,” Rad. Prot. Dosim., vol. 170, no. 1-4, pp. 265 – 268, Sep. 2016.
    DOI: 10.1093/rpd/ncv392
  12. Compendium of Neutron Spectra and Detector Responses for Radiation Protection Purposes, Technical report series No. 403, IAEA, Vienna, Austria, 2001, p. 337.
    Retrieved from: https://www-pub.iaea.org/MTCD/Publications/PDF/TRS403_scr.pdf;
    Retrieved on: Nov. 20, 2018
  13. Reference neutron radiations, ISO 8529, Feb. 1, 2001.
  14. L. G. Beskrovnaya, E. A. Goroshkova, Yu. V. Mokrov, “An Investigation into the Accuracy of the Albedo Dosimeter DVGN-01 in Measuring Personnel Irradiation Doses in the Fields of Neutron Radiation at Nuclear Power Installations of the Joint Institute for Nuclear Research,” Phys. Part. Nuclei Lett., vol. 7, no. 3, pp. 212 – 221, May 2010.
    DOI: 10.1134/S1547477110030088
  15. M. Luszik-Bhadra et al., “Summary of personal neutron dosimeter results obtained within the EVIDOS project,” Rad. Prot. Dosim., vol. 125, no. 1-4, pp. 293 – 299, Jul. 2007.
    DOI: 10.1093/rpd/ncm190
  16. J. M. Bordy et al. “Performance test of dosimetric services in the EU member states and Switzerland for the routine assessment of individual doses (photon, beta and neutron),” Rad. Prot. Dosim., vol. 89, no. 1-2, pp. 107 – 154, Jun. 2000.
    DOI: 10.1093/oxfordjournals.rpd.a033054
  17. F. Vanhavere, V. Cauwels, “Establishing local workplace field correction factors for neutron personal dosemeters,” Rad. Prot. Dosim., vol. 161, no. 1-4, pp. 307 – 311, Oct. 2014.
    DOI: 10.1093/rpd/ncu194
  18. T. Haninger, P. Kleinau, S. Haninger, “Field calibration of a TLD albedo dosemeter in the high-energy neutron field of CERF,” Rad. Prot. Dosim., vol. 174, no. 3, pp. 315 – 321, Apr. 2017.
    DOI: 10.1093/rpd/ncw166
  19. G. Fehrenbacher, F. Gutermuth, E. Kozlova, T. Radon, R. Schuetz, “Neutron dose measurements with the GSI ball at high-energy accelerators,” Rad. Prot. Dosim., vol. 125, no. 1-4, pp. 209 – 212, Jul. 2007.
    DOI: 10.1093/rpd/ncl127
  20. Occupational Radiation Protection, General Safety Guide No. GSG-7, IAEA, Vienna, Austria, 2018, p. 335
    Retrieved from: https://www-pub.iaea.org/MTCD/Publications/PDF/PUB1785_web.pdf;
    Retrieved on: Nov. 20, 2018
  21. A. Ferrari, P. R. Sala, A. Fasso, J. Ranft, FLUKA: a multi-particle transport code, Rep. SLAC-R-773, CERN, Geneva, Switzerland, 2000.
    Retrieved from: https://www.slac.stanford.edu/pubs/slacreports/reports16/slac-r-773.pdf;
    Retrieved on: Nov. 20, 2018
  22. G. Battistoni et al., “The FLUKA code: Description and benchmarking,” in Proc. Hadronic Shower Simulation Workshop, Fermilab, Chicago, USA, 2006, pp. 31 – 49.