Vol. 2, 2017

Original research papers

Medical Imaging


Luminita Moraru, Lucian Traian Dimitrievici, Antoaneta Ene, Simona Moldovanu

Pages: 207-211

DOI: 10.21175/RadProc.2017.42

Diffusion tensor imaging (DTI) and the degree of diffusion weighting of the sequence, expressed as the b-factor, are used to investigate the effect of the magnetic field gradients on the integrity of white matter in patients with temporal intracerebral hemorrhage. The healthy patients are the gold standard. The present study investigated the changes of mean diffusivity (MD) and fractional anisotropy (FA) in a brain hemisphere approach to understand the effect of magnetic field gradients on the brain hemorrhage investigation. The artifacts induced by diffusion gradients in diffusion tensor imaging affect the accuracy of the investigation, and in order to achieve the optimal image quality, strong magnetic field gradients are recommended. The artifact effect of higher magnetic field gradients is analyzed by means of the root-mean-square FA and MD difference between left and right brain hemispheres.
  1. P. Mukherjee, “Diffusion tensor imaging and fiber tractography in acute stroke,” Neuroimaging Clin. N. Am., vol. 15, no. 3, pp. 655 – 665, Aug. 2005.
    DOI: 10.1016/j.nic.2005.08.010
    PMid: 16360595
  2. F. Buffon et al., “Longitudinal diffusion changes in cerebral hemispheres after MCA infarcts,” J. Cereb. Blood Flow Metab., vol. 25, no. 5, pp. 641 – 650, May 2005.
    DOI: 10.1038/sj.jcbfm.9600054
    PMid: 15689956
  3. Q. Yang et al., “Serial study of apparent diffusion coefficient and anisotropy in patients with acute stroke,” Stroke, vol. 30, no. 11, pp. 2382 – 2390, Nov. 1999.
    DOI: 10.1161/01.STR.30.11.2382
    PMid: 10548675
  4. F. Zelaya et al., “An evaluation of the time dependence of the anisotropy of the water diffusion tensor in acute human ischemia,” Magn. Reson. Imaging, vol. 17, no. 3, pp. 331 – 348, Apr. 1999.
    DOI: 10.1016/S0730-725X(98)00192-1
  5. C. T. Hsieh et al., “Role of diffusion tensor imaging in a patient with spontaneous intracerebral hematoma treated by stereotactic evacuation,” Surg. Neurol., vol. 70, no. 1, pp. 75 – 78, Jul. 2008.
    DOI: 10.1016/j.surneu.2007.04.004
    PMid: 17707485
  6. S. Mori, “Mathematics of diffusion measurement,” in Introduction to Diffusion Tensor Imaging, Amsterdam, The Netherlands: Elsevier Science & Technology, 2007, ch. 3, pp. 19 – 23.
    DOI: 10.1016/B978-044452828-5/50017-X
  7. A. L. Alexander et al., “Characterization of cerebral white matter properties using quantitative magnetic resonance imaging stains,” Brain Connectivity, vol. 1, no. 6, pp. 423 – 446, Apr. 2012.
    DOI: 10.1089/brain.2011.0071
    PMid: 22432902
    PMCid: PMC3360545
  8. S. Moldovanu et al., “Edge-based structural similarity analysis in brain MR Images,” JMIHI, vol. 6, no. 2, pp. 539 – 546, Apr. 2016.
    DOI: 10.1166/jmihi.2016.1691
  9. D. Gallichan et al., “Addressing a systematic vibration artifact in diffusion-weighted MRI,” Hum. Brain Mapp., vol. 31, no. 2, pp. 193 – 202, Feb. 2010.
    DOI: 10.1002/hbm.20856
    PMid: 19603408
  10. S. Mohammadi, H. E. Möller, H. Kugel, D. K. Müller, M. Deppe, “Correcting eddy current and motion effects by affine whole-brain registrations: evaluation of three-dimensional distrortions and comparison with slicewise correction,” Mag. Res. Med., vol. 64, pp. 1047 – 1056, 2010.
    DOI: 10.1002/mrm.22501
    PMid: 20574966
  11. S. Mohammadi, et al., “Correction of Vibration Artifacts in DTI Using Phase-Encoding Reversal,” Magn. Reson. Med., vol. 68, no. 3, pp. 882 – 889, Sep. 2012.
    DOI: 10.1002/mrm.23308
    PMid: 22213396
    PMCid: PMC3569871
  12. L. Moraru, S. Moldovanu, A. Biswas, “Intensity – based classification and related methods in brain MR images,” inClassification and Clustering in Biomedical Signal Processing, N. Dey, A. Ashour, Eds., Hershey (PA), USA: IGI Global, 2016, ch. 4 pp. 78 – 105.
    DOI: 10.4018/978-1-5225-0140-4.ch004
  13. L. Moraru, S. Moldovanu, D. Bibicu, M. Stratulat, “Hemorrhage detection in MRI brain images using images features,” in AIP Conf. Proc., Timisoara, Romania, 2013, pp. 171 – 177.
    DOI: 10.1063/1.4832814
  14. S. Moldovanu et al., “Robust Skull Stripping Segmentation based on Irrational Mask for Magnetic Resonance Brain Images,” J. Digit. Imaging, vol. 28, no. 6, pp. 738 – 747, Mar. 2015.
    DOI: 10.1007/s10278-015-9776-6
    PMid: 25733013
    PMCid: PMC4636724
  15. M. V. Punga et al., “Level set method coupled with Energy Image features for brain MR image segmentation,” Biomed. Tech., vol. 59, no. 3, pp. 219 – 229, Jun. 2014.
    DOI: 10.1515/bmt-2013-0111
    PMid: 24598830
  16. S. Moldovanu et al., “The Hough transform and the FSIM similarity index for the sagittal axis identification,” Annals of “Dunarea de Jos” University of Galati Mathematics, Physics, Theoretical Mechanics, vol. 38, no. 1, pp. 5 – 14, 2015.