Vol. 2, 2017

Original research papers



L.I. Korytova, E.A.Maslyukova, A.V. Bondarenko, O.V.Korytov, E.M.Muravnik

Pages: 181-184

DOI: 10.21175/RadProc.2017.37

Lowest dose detection per ipsilateral lung versus various dosimetric irradiation plans for the left mammary gland is investigated. The study involves dosimetric radiotherapeutic (RT) plans of 20 female patients with left BC (breast cancer). Pre-irradiation preparation included 3 sessions of CT scan: patient in standard dorsal position with tidal respiration (STR), in dorsal position with controlled breathhold on top inspiration (DBH) and in prone position with tidal respiration (PTR). Three CT-sessions were followed by 3D-plan dosimetric calculations. Dose-volumetric measures for organs at risk (OAR) were assessed for every irradiation option. Contoured left lung volume in all studied variants varied within 757.1 cm3 – 2923.8 cm3, mean volume 1751.6 cm3. The best values, such as V25lung (when α/β=3.1) and V28lung (when α/β=9), average doses per ipsilateral lung were received using the PTR method (V25lung (α/β=3.1) – 10.19%, V28lung (α/β=9) – 9.19%; Dmean lung 7.42 Gy) versus the STR method (V25lung (α/β=3.1) – 20.72%, V28lung (α/β=9) – 19.6%; D mean 10.42 Gy) and DBH-position (V25lung (α/β=3.1) – 20.17%, V28lung (α/β=9) – 19.01%; Dmean lung 10.11 Gy) included in MG volume and axillary LN with V25lung (α/β=3.1) - Р=0.00000**, V28lung (α/β=9) – Р=0.00000**; D mean - p=0.00002**. No preferences in dosimetry were detected for the addition of supraclavicular and infraclavicular lymph nodes (LN) in irradiation volume using STR and DBH methods: DBH (V25lung (α/β=3.1) – 21.49%, V28lung (α/β=9) – 20.17%; Dmean lung 10.85 Gy) versus STR method (V25lung (α/β=3.1) – 23.07%, V28lung (α/β=9) – 21.64%; Dmean lung 11.72 Gy). V25lung (α/β=3.1) - р=0.438, V28lung (α/β=9) – р=0.461; Dmean lung р=0.2964. Based on our investigation, the lowest doses per ipsilateral lung were received in prone position with tidal respiration including axillary lymph nodes (LN) in MG volume. These findings were associated with the results of few international studies. No statistically significant difference in left lung radiation exposure was detected during the comparison of STR and DBH methods with the additional irradiation of supraclavicular and infraclavicular LN.

  1. L. Bissoli, V. Di Francesco, F. Valbusa et al., “A case of bronchiolitis obliterans organising pneumoniae (BOOP) after nine months post-operative irradiation for breast cancer,” Age Ageing, vol. 37, no. 2, p. 235, Jan. 2008.
    DOI: 10.1093/ageing/afn010
    PMid: 18349018
  2. G. R. Epler, “Post-breast cancer radiotherapy bronchiolitis obliterans organizing pneumonia,” Expert. Rev. Respir. Med., vol. 7, no. 2, pp.109–112, Apr. 2013.
    DOI: 10.1586/ers.13.1
    PMid: 23547987
  3. D. E. Stover, F. Milite, M. Zakowski, “A newly recognized syndrome – radiation-related bronchiolitis obliterans and organizing pneumonia. A case report and literature review,” Respiration, vol.68, no. 5, pp. 540-544, Oct. 2001. DOI: 10.1159/000050566
    PMid: 11694821
  4. А. В Бондаренко, Л. И. Корытова, Е. А. Маслюкова, О. В. Корытов, Е. М. Муравник, “Результаты сравнения лучевой нагрузки на сердце и левую переднюю нисходящую коронарную артерию при разных вариантах облучения рака молочной железы,” Опухоли женской репродуктивной системы, т. 12, № 3, стр. 10-16, 2016. (A. V. Bondarenko, L. I. Korytova, E. A. Maslyukova, O. V. Korytov, E. M. Muravnik, “The comparison of the radiation load to the heart and the left anterior descending coronary artery for various models of radiation treatment of the breast cancer patients,” Women Reproductive System Tumors, vol. 12, no. 3, pp. 10-16, 2016.)
    DOI: 10.17650/1994-4098-2016-12-3-10-16
  5. D. P. Penney, P. Rubin, “Specific early fine structural changes in the lung irradiation,” Int. J. Radiat. Oncol. Biol. Phys., vol. 2, no. 11-12, pp. 1123-1132, Nov-Dec. 1977.
    DOI: 10.1016/0360-3016(77)90119-5
  6. P. A. Lind, G. Svane, G. Gagliardi C. Svensson, “Abnormalities by pulmonary regions studied with computer tomography following local or local-regional radiotherapy for breast cancer,” Int. J. Radiat. Oncol. Biol. Phys., vol. 43, no. 3, pp. 489-496, Feb. 1999.
    DOI: 10.1016/S0360-3016(98)00414-3
    PMid: 10078627
  7. E. K. Chie, K. H. Shin, D. Y. Kim et al., “Radiation Pneumonitis after Adjuvant Radiotherapy for Breast Cancer: A Volumetric Analysis Using CT Simulator,” J. Breast Cancer, vol. 12, no. 2, pp. 73-78, Jun 2009.
    DOI: 10.4048/jbc.2009.12.2.73
  8. L. Pierce, A. Lewin, M. Abdel-Wahab et al., “Early radiation-induced lung injury in a patient with prior diagnosis of bronchiolitis obliterans organizing pneumonitis,” J. Natl. Med. Assoc., vol. 100, no. 12, pp. 1474 – 1476, Dec. 2008.
    DOI: 10.1016/S0027-9684(15)31551-0
  9. U. B. Goldman, B. Wennberg, G. Svane, “Reduction of radiation pneumonitis by V20-constraints in breast cancer,” Radiation Oncology, vol. 5, no. 99, pp. 1-6, Oct. 2010.
    DOI: 10.1186/1748-717X-5-99
    PMid: 21034456
    PMCid: PMC2987943
  10. J. Vikström, M. H. Hjelstuen, I. Mjaaland et al., “Cardiac and pulmonary dose reduction for tangentially irradiated breast cancer, utilizing deep inspiration breath-hold with audio-visual guidance, without compromising target coverage,” Acta Oncol., vol. 50, no. 1, pp. 42-50, Jan. 2011.
    DOI: 10.3109/0284186X.2010.512923
    PMid: 20843181