Vol. 2, 2017

Original research papers

Radon and Thoron

MERITS AND DEMERITS OF DIFFERENT METHODS FOR RADON EXHALATION MEASUREMENTS FOR BUILDING MATERIALS

A. Awhida, P. Ujić, P. Kolarž, I. Čeliković, M. Milinčić, A. Lončar, B. Lončar

Pages: 132-136

DOI: 10.21175/RadProc.2017.27

With an increase in the awareness of the need to save energy, residents tend to live in dwellings with increasingly tight windows and doors, thus reducing the ventilation rate of indoor air which leads to an increased accumulation of radon indoors. Having in mind that a dose from an exposure to inhaled radon and its progenies can be higher than a dose received from radium in building materials, it is suggested that radon exhalation measurements should receive due attention. In this contribution, the authors compare results gathered using a few methods for radon exhalation measurement and discuss its merits and demerits.
  1. “Sources and effects of ionizing radiation,” UNSCR, New York (NY), USA, Rep. Rep. 46 (A/55/46), 2000.
    Retrieved from: http://www.unscear.org/docs/publications/2000/UNSCEAR_2000_Report_Vol.I.pdf
    Retrieved on: Jan. 9, 2017
  2. S. Darby et al., “Radon in homes and risk of lung cancer: collaborative analysis of individual data from 13 European case-control studies,” BMJ, vol. 330, no. 7485, pp. 223-1 – 223-6, Jan. 2005.
    DOI: 10.1136/bmj.38308.477650.63
  3. D. Krewski et al., “A combined analysis of North American case-control studies of residential radon and lung cancer,” J. Toxicol. Environ. Health A, vol. 69, no. 7-8, pp. 533 – 597, Apr. 2006.
    DOI: 10.1080/15287390500260945
    PMid: 16608828
  4. J. H. Lubin et al., “Risk of lung cancer and residential radon in China: pooled results of two studies,” Int. J. Cancer, vol. 109, no. 1, pp. 132 – 137, Mar. 2004.
    DOI: 10.1002/ijc.11683
    PMid: 14735479
  5. WHO Handbook on Indoor Radon: a Public Health Perspective, World Health Organization, Geneva, Switzerland, 2009.
    Retrieved from: http://apps.who.int/iris/bitstream/10665/44149/1/9789241547673_eng.pdf
    Retrieved on: Jan. 17, 2017
  6. M. M. Janković, D. J. Todorović, J. D. Nikolić, “Analysis of natural radionuclides in coal, slag and ash in coal-fired power plants in Serbia,” J. Min. Metall. Sect. B – Metall. vol. 47, no. 2, pp. 149 – 155, May 2011.
    DOI: 10.2298/JMMB110208008J
  7. “Effects of ionizing radiation Volume II,” United Nations Scientific Committee on Effects of Atomic Radiation, New York (NY), USA, Rep. A/61/46, 2006.
    Retrieved from: http://www.unscear.org/docs/publications/2006/UNSCEAR_2006_Report_Vol.II.pdf
    Retrieved on: Jan. 9, 2017
  8. I. V. Yarmoshenko, A. V. Vasilyev, A. D. Onishchenko, S. M. Kiselev, M. V. Zhukovsky, “Indoor radon problem in energy efficient multi-storey buildings,” Radiat. Prot. Dosim., vol. 160 no. 1-3, pp. 53 – 56, Apr. 2014.
    DOI: 10.1093/rpd/ncu110
    PMid: 24723188
  9. EC Directorate General Environment, Nuclear Safety and Civil Protection. (Jun. 8, 1999). Radiation protection 112 Radiological Protection Principles Concerning the Natural Radioactivity of Building Materials.
    Retrieved from: https://ec.europa.eu/energy/sites/ener/files/documents/112.pdf
    Retrieved on: Jan. 15, 2017
  10. Naturally Occurring Radioactivity in the Nordic Countries – Recommendations, The Radiation Protection Authorities in Denmark, Finland, Iceland, Norway and Sweden, Stockholm, Sweden, 2000.
    Retrieved from: https://www.sst.dk/~/media/593F6353688A4B3BB8C8F88691248AB7.ashx
    Retrieved on: Jan. 9, 2017
  11. P. Ujić, I. Čeliković, A. Kandić, I. Vukanac, M. Đurašević, D. Dragosavac, Z. S. Žunić, “Internal exposure from building materials exhaling 222 Rn and 220 Rn as compared to external exposure due to their natural radioactivity content,” Appl. Radiat. Isot., vol. 68, no. 1, pp. 201 – 206, Jan. 2010.
    DOI: 10.1016/j.apradiso.2009.10.003
    PMid: 19880324
  12. N. P. Petropoulos, M. J Anagnostakis, S. E. Simopoulos, “Building materials radon exhalation rate: ERRICCA intercomparison exercise results,” Science of The Total Environment, vol. 272, no. 1-3, pp. 109 – 118, May 2001.
    DOI: 10.1016/S0048-9697(01)00674-X
  13. F. A. Abu-Jarad, “Application of nuclear track detectors for radon related measurements,” Nucl. Tracks Radiat. Meas.,vol. 15, no. 1-4, pp. 525-534, 1988.
    DOI: 10.1016/1359-0189(88)90195-1
  14. A. Awhida, P. Ujić, I. Vukanac, M. Đurašević, A. Kandić, I. Čeliković, B. Lončar, P. Kolarž, “Novel method of measurement of radon exhalation from building materials,” Journal of Environmental Radioactivity, vol. 164, pp. 337 – 343, Nov. 2016.
    DOI: 10.1016/j.jenvrad.2016.08.009
    PMid: 27552657
  15. P. Ujić, I. Čeliković, A. Kandić, Z. Žunić, “Standardization and difficulties of the thoron exhalation rate measurements using an accumulation chamber,” Radiat. Meas., vol. 43 no. 8, pp. 1396 – 1401, Sep. 2008.
    DOI: 10.1016/j.radmeas.2008.03.003
  16. P. Tuccimei, M. Moroni, D. Norcia, “Simultaneous determination of 222Rn and 220Rn exhalation rates from building materials used in Central Italy with accumulation chambers and a continuous solid state alpha detector: influence of particle size, humidity and precursors concentration,” Appl. Radiat. Isot., vol. 64, no. 2, pp. 254 – 263, Feb. 2006.
    DOI: 10.1016/j.apradiso.2005.07.016
    PMid: 16154752
  17. T. Vidmar, “EFFTRAN - a Monte Carlo efficiency transfer code for gamma-ray spectrometry,” Nucl. Instrum. Methods A, vol. 550, no. 3, pp. 603 – 608, Sep. 2005.
    DOI: 10.1016/j.nima.2005.05.055