Vol. 2, 2017

Original research papers

Radiation Measurements


Nevenka M. Antović, Sergey K. Andrukhovich, Nikola Svrkota

Pages: 48-54

DOI: 10.21175/RadProc.2017.11

Double background coincidences at two multidetector spectrometers, which have 6 and 32 NaI(Tl) detectors and registration geometry close to 4π (PRIPYAT-2M and ARGUS), are considered as a sum of true and random ones. They have been analyzed together with the energy resolution and efficiency of 137Cs, 65Zn and 40K (photons with energy of 662 keV, 1116 keV and 1461 keV, respectively) detection in the full absorption peak (individual detectors and the whole spectrometers). The number of detector-duplet combinations registering double coincidences was 15 and 496, respectively (an angle from the spectrometer centers to the detecor centers ranged from 37.38° to ~180°). Double background coincidences in the whole energy range in dependence on the detector arrangement, as well as double coincidences caused by monoenergetic sources in the whole energy range, showed that main contributors to the background double coincidences at the spectrometers PRIPYAT and ARGUS are coinciding photons, which were scattered from detector to detector. In the 32-detector system, the minimum, maximum, arithmetic mean and standard deviation of the background double coincidences counting rates in the whole energy range were found to be 0.034 (detector pairs at 79.19°), 0.142 (37.38°), 0.066, 0.033 cps, respectively. The same values for the background double coincidences counting rates coming from monoenergetic sources were 0.974 (63.43°), 4.646 (41.81°), 3.0724, 1.167 cps, respectively (137Cs), and 0.389 (63.43°), 18.706 (~180°), 2.794, 5.294 cps, respectively (65Zn), while for the background double coincidences counting rates in the photo-peak regions – 0.003 (63.43°), 0.0114 (41.81°), 0.0074, 0.0029 cps, respectively (region 662 keV), and 0.0056 (63.43°), 0.0241 (37.38°), 0.0148, 0.006 cps, respectively (region 1116 keV). In the 6-detector system, average counting rates of the background double coincidences in the whole energy range were 0.539 cps (90°) and 0.544 cps (180°), those of the double coincidences from monoenergetic sources – 0.867 cps (90°) and 0.862 cps (180°) – 137Cs, 1.993 cps (90°) and 1.986 cps (180°) – 40K, and those of the background double coincidences in the photo-peak regions – 0.0825 cps (90°) and 0.0749 cps (180°) – region 662 keV, 0.0426 cps (90°) and 0.0428 cps (180°) – region 1461 keV.
  1. В. И. Калашникова, М. С. Козодаев, Детекторы элементарных частиц, Москва, Россия: Наука, 1966. (V. I. Kalasnikova, M. S. Kozodaev, “Detectors of elementary particles,” Moscow, Russia: Science, 1966.)
    Retrieved from: http://www.studmed.ru/kalashnikova-vi-kozodaev-ms-detektory-elementarnyh-chastic_301256b8e2b.html#
    Retrieved on: Dec. 17, 2016
  2. S. K. Andrukhovich, A. V. Berestov et al., “Investigation of orthopositronium 3g-decay using a multidetector spectrometer,” Nucl. Instrum. Methd. Phys. Res. B, vol. 207, no. 2, pp. 219 – 226, Jun. 2003.
    DOI: 10.1016/S0168-583X (03)00458-0
  3. S. Y. F. Chu, L. P. Ekström, R. B. Firestone, Dept. Phys. Univ. Lund, Lund, Sweden, 1999, The Lund/LBNL Nuclear Data Search ver. 2.0.
    Retrieved from: http://nucleardata.nuclear.lu.se/toi/index.asp
    Retrieved on: Dec. 17, 2016
  4. С. К. Андрухович, А. В. Берестов, Ф. Е. Зязюля, Б. А. Марцынкевич, Э. A. Рудак, А. М. Хильманович, Автоматизированная регистрирующая гамма-установка совпадений (АРГУС), Минск, Беларусь: АН БССР, 1986. (S. K. Andrukhovich, A. V. Berestov, F. E. Zyazyulya, B. A. Marcinkevich, E. A. Rudak, A. M. Hil’manovich, Automated registration gamma coincidence system (ARGCS), Minsk, Belarus: AN BSSR, 1986.)
  5. N. M. Antović, S. K. Andrukhovich, A. V. Berestov, “A contribution of the Compton scattered radiation from Mn-54 to double gamma coincidences spectra at the 32-detector system,” in Proc. Conf. RAD 2014, Niš, Serbia, 2014, pp. 127 – 130.
    Retrieved from: http://www.rad-conference.org/helper/download.php?file=../pdf/Proceedings%20RAD%202014.pdf
    Retrieved on: Jan. 14, 2017
  6. N. M. Antović, S. K. Andrukhovich, A. V. Berestov, “Background in a test of detecting “cooperative” parapositronium annihilation by the 32-crystal spectrometer ARGUS,” in Proc. Conf. RAD 2015, Budva, Montenegro, 2015, pp. 123 – 127.
    Retrieved from: http://www.rad-conference.org/helper/download.php?file=../pdf/Proceedings%20RAD%202015.pdf
    Retrieved on: Jan. 14, 2017
  7. С. К. Андрухович, А. В. Берестов, В. И. Гутко, А. М. Хильманович, Высокочувствительные многодетекторные гамма спектрометры ПРИПЯТЬ, Минск, Беларусь: АН БССР, 1995. (S. K. Andrukhovich, A. V. Berestov, V. I. Gutko, A. M. Hil’manovich, High sensitive multidetector gamma spectrometers PRIPYAT, Minsk, Belarus: AN BSSR, 1995.)
  8. Н. М. Антовић, С. К. Андрухович, А. В. Берестов, “Ефикасност детекције фотона 662 keV 32-детекторским системом типа Crystal Ball – са и без колиматора,” у Зборнику 27. Симпозијума Друштва за заштиту од зрачења Србије и Црне Горе, Врњачка Бања, Србија, 2013, стр. 435 – 438. (N. M. Antovic, S. K. Andrukhovich, A. V. Berestov, “Detection efficiency of the 662 keV photons by the 32-Crystal Ball detector system – with and without collimators,” in Proc. 27th Symp. of the Radiation Protection Society of Serbia and Montenegro, Vrnjačka Banja, Serbia, 2013, pp. 435 – 438.)
    Retrieved from: http://dzz.org.rs/wp-content/uploads/2013/06/2013-Vrnjacka-Banja.pdf
    Retrieved on: Jan. 14, 2017
  9. N. Antovic, N. Svrkota, “Measuring the radium-226 activity using a multidetector g-ray coincidence spectrometer,” J. Environ. Radioactiv., vol. 100, no. 10, pp. 823 – 830, Oct. 2009.
    DOI: 10.1016/j.jenvrad.2009.06.003
    PMid: 19577345