Volume 5, 2021

Radiation Physics

RADIATION DEFECTS IN GaP, GaAsP, InGaN LEDs

R. Vernydub, O. Kyrylenko, O. Konoreva, O. Radkevych, D. Stratilat, V. Tartachnyk

Pages: 84–89

DOI: 10.21175/RadProc.2021.16

The results of the effect of irradiation by electrons with E = 2 MeV, F = 2.6 · 1016 cm-2 on LEDs grown on the basis of GaP and GaAsP homojunctions, as well as on InGaN/GaN heterojunction structures with quantum wells are presented. The consequences of irradiation with γ-quanta from Со60 from an absorbed dose of 1.5 Mrad are analyzed. It is revealed that the introduction of radiation defects is accompanied by a decrease in the glow intensity due to the capture of charge carriers by deep levels of defects, an increase in the differential resistance, and a decrease in the reverse currents of p-n junctions. Isochronism annealing of irradiated samples is multistage and proceeds within the range (20 ÷ 300 °С, for GaP LEDs) and (20 ÷ 450 °С, for GaAsP LEDs). The maximum quantum output of InGaN LEDs has been 32 %, irradiated with γ-Со60 with an absorbed dose of 1.5 Mrad – 17 %.
  1. В. И. Светцов, И. В. Холодков, Физическая электроника и электронные приборы, Иваново, Россия: Ивановский государственный химико-технологический университет, 2008. (V. I. Svetsov, I. V. Holodkov, Physical electronics and electronic devices, Ivanovo, Russia: Ivanovo State University of Chemistry and Technology, 2008.)
    Retrieved from: https://www.isuct.ru/dept/nochem/tpmet/images/stories/met/fizel.pdf
    Retrieved on: July 15, 2021
  2. А.С. Васюра, Елементи та пристрої систем управління автоматики, Вінниця, Україна: ВДТУ, 1999. (А.S. Vasyura, Elements and devices of automation control systems, Vinnitsa, Ukraine: VDTU, 1999.)
    Retrieved from: http://pdf.lib.vntu.edu.ua/books/Vasyura_P3_2001_134.pdf
    Retrieved on: July 15, 2021
  3. С.С. Вильчинская, В.М. Лисицын, Оптические материалы и технологии, Томск, Россия: ТПУ, 2011. (S.S. Vilchinskaya, V.M. Lisitsyn, Optical materials and technologies, Tomsk, Russia: TPU, 2011.)
    Retrieved from: https://docplayer.ru/34552133-Opticheskie-materialy-i-tehnologii.html
    Retrieved on: July 15, 2021
  4. В.С. Осадчук, О.В. Осадчук, “Напівпровідникові прилади з від’ємним опором”, Вінниця, Україна: ВДТУ, 2006. (V.S. Оsаdchyk, О.V. Osаdchyk, “Negative resistance semiconductors”, Vinnitsa, Ukraine: VDTU, 2006.)
    Retrieved from: http://ir.lib.vntu.edu.ua/bitstream/handle/123456789/7957/%D0%9D%D0%9F_%D0%92%D0%9E_1.pdf?sequence=1&isAllowed=y
    Retrieved on: July 15, 2021
  5. Ф.П. Коршунов, Ю.В. Богатырев, В.А. Вавилов, Воздействие радиации на интегральные микросхемы, Минск, Беларусь: Наука и техника, 1986. (F.P. Korshunov, Yu.V. Bogatyrev, V.А. Vavilov, Impact of radiation on integrated microcircuits, Minsk, Belarus: Science and Technology, 1986.)
  6. І.А. Большакова, Я.Я. Кость, О.Ю. Макідо, А.П. Штабалюк, Ф.М. Шуригін, “Радіаційна модифікація як спосіб стабілізації параметрів Іn-вмісних напівпровідникових матеріалів, Вісник Національного університету “Львівська політехніка”, Електроніка, № 734, с. 28-33, 2012. (I.A. Bolchakova, Ya.Ya. Kost, O.Yu. Makido, A.P. Stabalyuk, F.M. Shyrygin, “Radiation mоdification as a method of paraments stabilization for in-containing semiconductor materials”,Visnyk Natsionalnoho Universytetu «Lvivska Politekhnika», Elektronika, vol. 734, pp. 28-33, 2012.)
    Retrieved from: http://ena.lp.edu.ua:8080/bitstream/ntb/16051/1/6-Bolshakova-28-33.pdf
    Retrieved on: July 15, 2021
  7. С.В. Луньов, Ю.А. Удовицька, М.В. Хвищун, С.А. Мороз, В.Т. Маслюк, “Технологія одержання чутливого елемента для датчика інфрачервоного випромінювання”, Перспективні технології та прилади, №14, с. 77-81, 2019. (S.V. Luniov, Yu.A. Udovytska, M.V. Khvyshchun, S.A. Moroz, V.Т. Maslyuk, “Technology for obtaining a sensitive element for an infrared radiation sensor”. Perspective Technologies and Devices, no. 14, pp. 77-81, 2019.)
    DOI: https://doi.org/10.36910/6775-2313-5352-2019-14-13
  8. I.F. Chang et al., “Effects of proton irradiations on GaN-based materials”. Physica Status Solidi (c), vol. 1, no. 10, p. 2466-2469, 2004.
    DOI: https://doi.org/10.1002/pssc.200405017
  9. Б.П. Коман, “Вплив альфа-опромінення на кремнієві мон-транзистори”, Сенсорна електроніка і мікросхемні технології, том 9, № 1, с. 88-96, 2012. (B.P. Koman, “The influence of alpha-irradiation on the silicon MOS–transistors”, Sensor Electronics and Microsystem Technologies, vol. 9, no. 1, pp. 88-96, 2012.)
    DOI: https://doi.org/10.18524/1815-7459.2012.1.112938
  10. D. Iida et al., “633-nm InGaN-based red LEDs grown on thick underlying GaN layers with reduced in-plane residual stress”, Applied Physics Letters, vol. 116, article no. 162101, 2020.
    DOI: https://doi.org/10.1063/1.5142538
  11. D. Iida, Z. Zhuang, P. Kirilenko, M. Velazgues–Riso, K. Ohkava, “Demonstration of low forward voltage InGaN-based red LEDs”, Applied Physics Express, vol. 13, no. 3, article no. 031001, 2020.
    DOI: https://doi.org/10.35848/1882-0786/ab7168
  12. S.H. Back, H.J. Lee, S.N. Lee, “High-performance flat-type InGaN-based light-emitting diodes with local breakdown conductive channel”, Scientific Reports, vol. 9, article no. 13654, 2019.
    DOI: https://doi.org/10.1038/s41598-019-49727-4
  13. S.H. Han, S.H. Back, H.J. Lee, H.S. Kim, S.N. Lee, “Breakdown-induced conductive channel for III-nitride light-emitting devices”, Scientific Reports, vol. 8, article no. 16547, 2018.
    DOI: https://doi.org/10.1038/s41598-018-34869-8
  14. S. Zhou, X. Liu, “Effects of V-pits embedded InGaN/GaN superlattices on optical and electrical properties of GaN-based green light-emitting diodes”, Physica Status Solidi (a), vol. 214, no. 5, 2017.
    DOI: https://doi.org/10.1002/pssa.201600782
  15. M. Liu et al., “An InGaN/GaN Superlattice to Enhance the Performance of Green LED’s: Exploring the Role of V-pits”, Nanomaterials, vol. 8, no. 7, article no. 450, 2018.
    DOI: https://doi.org/10.3390/nano8070450
  16. F. Olives et al., “Influence of size-reduction on the performances of GaN-based micro-LEDs for display application”, Journal of Luminescence, vol. 191, part B, pp. 112-116, 2017.
    DOI: https://doi.org/10.1016/j.jlumin.2016.09.052
  17. K.M. Song, S.W. Lee, K.B. Kim, S.N. Lee, “Observation of applied bias-dependent dot-like luminescence in GaInN-based light-emitting diodes”, Journal of Alloys and Compounds, vol. 660, pp. 392-397, 2016.
    DOI: https://doi.org/10.1016/j.jallcom.2015.11.130
  18. S. Zhou et al., “High efficient and reliable high power LED’s with patterned sapphire subtract and strip-shaped distributed current blocking layer”, Applied Surface Science, vol. 355, pp. 1013-1019, 2015.
    DOI: https://doi.org/10.1016/j.apsusc.2015.07.194
  19. П.Г. Літовченко та ін., “Випромінювальна рекомбінація в опроміненному фосфіді галію”, Фізика і хімія твердого тіла, том 6, №. 1, с. 50-56, 2005. (P.H. Lytovchenko et al., “Radiation recombination on irradiation Gallium Phosphide”, Physics and Chemistry of Solid State, vol. 6, no. 1, pp. 50-56, 2005).
    Retrieved from: http://page.if.ua/uploads/pcss/vol6/0601-06.pdf
    Retrieved on: July 15, 2021
  20. G. Gaydar et al., “About bond model of S-type negative differential resistance in GaP LEDs”, Superlattices and Microstructures, vol. 104, pp. 316-320, 2017.
    DOI: https://doi.org/10.1016/j.spmi.2017.02.042
  21. E.Yu. Brailovskii, I.D. Konozenko, V.G. Makarenko, V.S. Manzhara, V.P. Tartachnik, Introduction and annealing of defects in GaP upon electron irradiation, Rep. AED-Conf--74-328-021, 1974.
    Retrieved from: https://inis.iaea.org/search/searchsinglerecord.aspx?recordsFor=SingleRecord&RN=6163679
    Retrieved on: July 15, 2021
  22. Ф. Шуберт, Светодиоды, пер. с англ. под ред. А.Э. Юновича, 2-е изд., Москва, Россия: ФИЗМАТЛИТ, 2008. (F. Schubert, LEDs, Translated from English by A.E. Yunovich, 2nd ed., Moscow: Fizmatlit, 2008.)
    Retrieved from: https://www.elec.ru/files/2019/10/02/Svetodiody_2008.pdf
    Retrieved on: July 15, 2021
R. Vernydub, O. Kyrylenko, O. Konoreva, O. Radkevych, D. Stratilat, V. Tartachnyk, "Radiation defects in GaP, GaAsP, InGaN LEDs", RAD Conf. Proc, vol. 5, 2021, pp. 84–89, http://doi.org/10.21175/RadProc.2021.16