Volume 4, 2020

Radiochemistry

SULFONAMIDE LIGAND FRAMEWORKS FOR Sm(III) EXTRACTION FROM ALKALINE HIGH-LEVEL WASTE

Xinrui Zhang, Oluwaseun W. Adedoyin, Maria L. Masferrer Bertoli, Evgen V. Govor, Konstantinos Kavallieratos

Pages: 173-178

DOI: 10.21175/RadProc.2020.35

As part of our efforts to develop efficient extractants for highly alkaline high-level waste at the Savannah River Site, extraction studies of Sm(III) by three types of sulfonamide ligands have been carried out. Aqueous phases of various alkalinity (pH 10 - 14) were used, while dichloromethane was the organic phase. Analysis of the aqueous phases by the Arsenazo-III UV-Vis spectrophotometric method was carried out following stripping of the organic phases with 0.1 M HNO3. The results indicate that all three types of sulfonamides exhibit strong Sm(III) extraction and recovery at pH range of 10-11.5 in the presence of an organic base (triethylamine). A UV-Vis titration study of disulfonamide (DSA-7) with Sm(III) is indicative of 1:1 M/L complexation in solution in accordance with our previously published work with analogous disulfonamides.
  1. P. V. Bonnesen, L. H. Delmau, B. A. Moyer, R. A. Leonard, “A Robust Alkaline-Side CSEX Solvent Suitable for Removing Cesium from Savannah River High Level Waste ,” Solvent Extr. Ion Exch.,vol. 18, pp. 1079-1107, May 2000.
    DOI: 10.1080/07366290008934723
  2. B. D. Roach et al., “Radiolytic Treatment of the Next- Generation Caustic-Side Solvent Extraction (NGS) Solvent and its Effect on the NGS Process ,” Solvent Extraction and Ion Exchange, vol. 33, no.2, pp. 134–151, Dec. 2014.
    DOI: 10.1080/07366299.2014.952531
  3. D. T. Hobbs, T. B. Peters, K. M. L. Taylor-Pashow, S. D. Fink, “Development of an Improved Titanate-Based Sorbent for Strontium and Actinide Separations under Strongly Alkaline Conditions ,” Seperation Science and Technology , vol. 46, No. 1, pp. 119-129, Feb. 2010
    DOI: 10.1080/01496395.2010.492772
  4. G. R. Choppin, “Lanthanide complexation in aqueous solutions,” Journal of Less Common Metals, vol. 100, pp. 141-151, Jul. 1984.
    DOI: 10.1016/0022-5088(84)90060-2
  5. Z. K. Karalova, T. I. Bukina, E. A. Devirts, B. F. Agaev, B. F. Myasoedov, “Solvent extraction of americium and europium from alkaline and carbonate solutions by 2-hydroxy-5-alkylbenzyl dilthanolamine,” Radiokhimiya, vol. 29, no. 6, pp. 767–772, Aug. 1988.
    https://www.osti.gov/etdeweb/biblio/6960906
  6. I. V. Smirnov, E. S. Stepanova, A. B. Drapailo, V. I. Kalchenko, “Extraction of Americium and Europium with Functionalized Calixarenes from Alkaline Solutions ,” Radiochemistry, vol. 58, pp. 42-51, Feb. 2016.
    DOI: 10.1134/S1066362216010070
  7. J. R. Dozol et al., “A solution, for cesium removal from high-salinity acidic or alkaline liquid waste: the crown calix [4] arenes,” Separation Science and Technology, vol. 34, pp. 877-909, May 2007
    DOI: 10.1080/01496399908951072
  8. E. V. Kuzovkina, E. A. Lavrinovich, A. P. Novikov, E. S. Stepanova, M. D. Karavan, I. V. Smirnov, “Kinetics of americium and europium extraction by tert-butylthiacalix [4] arene from alkaline media,” Journal of Radioanalytical and Nuclear Chemistry, vol. 311, pp. 1983-1989, Jan. 2017
    DOI: 10.1007/s10967-017-5165-6
  9. Z. K. Karalova, L. M. Rodionova, B. F. Myasoedov, “Americium and europium extraction by aliquate 336xOH and alkylpyrocatechol from alkaline solutions in the presence of alkylphosphonic complexones ,” Radiokhimiya, vol. 24, no. 2, pp. 210-213, Jan. 1982
    https://www.osti.gov/etdeweb/biblio/6348014
  10. Z. K. Karalova, L. M. Rodionova, B. F. Myasoedov, V. S. Kuznetsova, “ Possibility of element extraction separation in alkaline media. [Extraction separation of Am, Cm, Cf, Bk from La, Ce, Sm, Eu, Gd, Th, Pa, U, Pu, Zr, Nb, Cs, Ru, Fe] ,” Radiokhimiya, vol. 23, no. 1, pp. 52-57, Jan. 1981
    https://www.osti.gov/etdeweb/biblio/6038242
  11. A. N. Morozov, E. V. Govor, V. A. Anagnostopoulos,K. Kavallieratos, A. M. Mebel, “1,3,5-Tris-(4-(iso-propyl)- phenylsulfamoylmethyl)benzene as a potential Am(III) extractant: experimental and theoretical study of Sm(III) complexation and extraction and theoretical correlation with Am(III),” Molecular Physics, vol. 116, no. 19-20, pp. 2719-2727, May 2018.
    DOI: 10.1080/00268976.2018.1471228
  12. E. V. Govor, A. N. Morozov, A. A. Rains, A. M. Mebel, K. Kavallieratos, “Spectroscopic and Theoretical Insights into Surprisingly Effective Sm (III) Extraction from Alkaline Aqueous Media by o-Phenylenediamine-Derived Sulfonamides ,” Inorg. Chem ., vol. 59, no. 10, pp. 6884-6894, Apr. 2020.
    DOI: 10.1021/acs.inorgchem.0c00309
  13. L. H. Amudsen, “The Benzenesulfonyl Derivatives of o-Nitroaniline and o-Phenylenediamine,” J. Am. Chem. Soc., vol. 59, no.8, pp.1466-1467, Aug. 1937
    https://pubs.acs.org/doi/pdf/10.1021/ja01287a016
  14. R. J. Alvarado et al., “Structural Insights into the Coordination and Extraction of Pb(II) by Disulfonamide Ligands Derived from o-Phenylenediamine,” Inorg. Chem., vol. 44, no. 22, pp. 7951-7959, Sep. 2005
    DOI: 10.1021/ic051103r
  15. S. B. Savvin, “Analytical use of arsenazo III: Determination of thorium, zirconium, uranium and rare earth elements,” Talanta, vol. 8, no. 9, pp. 673-685, Sep. 1961.
    DOI: 10.1016/0039-9140(61)80164-1
Xinrui Zhang, Oluwaseun W. Adedoyin, Maria L. Masferrer Bertoli, Evgen V. Govor, Konstantinos Kavallieratos, "Sulfonamide ligand frameworks for Sm(III) extraction from alkaline high-level waste" RAD Conf. Proc, vol. 4, 2020, pp. 173–178, http://doi.org/10.21175/RadProc.2020.35