Volume 4, 2020

Cancer Research


Serhii Hryshchuk, Alla Harlinska, Nataliya Korneichuk

Pages: 155-160

DOI: 10.21175/RadProc.2020.32

Infection with human papillomavirus (HPV) presents a serious problem for modern healthcare. The most common manifestations of the papillomavirus infection include anogenital warts, cervical intraepithelial neoplasia, cervical cancer. The purpose of the work is to determine the economic feasibility of preventing cervical cancer in Ukraine by introducing a continuous vaccination against a papilloma virus infection. Markov simulation was used to determine the incremental cost-effectiveness ratio (ICER) based on epidemiological data on morbidity and mortality from cervical cancer in Ukraine. Taking into account the accepted assumptions and limitations of the introduction of HPV vaccination in Ukraine, it will prevent 1380 cervical cancer cases, preserve 2058 quality-adjusted life years and the reduce the cost of medical care for cervical cancer in the amount of $1,479,972. The amount of additional costs for the vaccine and its introduction is $12,009,684 (all results per 100,000 vaccinated persons). The ICER index is $4,729, which is 1.4 times higher the gross domestic product in Ukraine per 1 person in 2019 ($3,464). Taking into account the actual cost of the vaccine, vaccination against HPV infection with a view of preventing cervical cancer in Ukraine is currently economically feasible.
  1. World Health Organization, Human papillomavirus (HPV).
    Retrieved from: http://www.who.int/immunization/diseases/hpv/en/
    Retrieved on: June 10, 2019
  2. A. B. Berenson, J. M. Hirth, M. Chang, “Change in Human Papillomavirus Prevalence Among U.S. Women Aged 18-59 Years, 2009-2014,” Obstetrics and Gynecology, vol. 130, no. 4, pp. 693–701, Oct. 2017.
    DOI: 10.1097/AOG.0000000000002193
  3. T. Malagón, C. Laurie, E. L. Franco, “Human papillomavirus vaccination and the role of herd effects in future cancer control planning: a review”, Expert Review of Vaccines, vol. 17, no. 5, pp. 395–409, May 2018.
    DOI: 10.1080/14760584.2018.1471986
  4. R. Luckett, S. Feldman “Impact of 2-, 4- and 9-valent HPV vaccines on morbidity and mortality from cervical cancer”, Human Vaccines & Immunotherapeutics, vol. 12, no. 6, pp. 1332–1342, Mar. 2016.
    DOI: 10.1080/21645515.2015.1108500
  5. C. Spinner et al., “Human papillomavirus vaccine effectiveness and herd protection in young women”, Pediatrics, vol. 143, no. 2, article no. e20181902, Feb. 2019.
    DOI: 10.1542/peds.2018-1902
  6. J. A. Kahn et al., “Substantial decline in vaccine-type human papillomavirus (HPV) among vaccinated young women during the first 8 years after HPV vaccine introduction in a community”, Clinical Infectious Diseases, vol. 63, no. 10, pp. 1281–1287, Nov. 2016.
    DOI: 10.1093/cid/ciw533
  7. K. Kavanagh et al., “Introduction and sustained high coverage of the HPV bivalent vaccine leads to a reduction in prevalence of HPV 16/18 and closely related HPV types”, Br. J. Cancer, vol. 110, pp. 2804–2811, May 2014.
    DOI: 10.1038/bjc.2014.198
  8. L. Ding, L. E. Widdice, J. A. Kahn, “Differences between vaccinated and unvaccinated women explain increase in non-vaccine-type human papillomavirus in unvaccinated women after vaccine introduction”, Vaccine, vol. 35, no. 52, pp. 7217–7221, Dec. 2017.
    DOI: 10.1016/j.vaccine.2017.11.005
  9. M. Brisson et al., “Population-level impact, herd immunity, and elimination after human papillomavirus vaccination: a systematic review and meta-analysis of predictions from transmission-dynamic models ”, The Lancet Public Health , vol. 1, no. 1, pp. e8–e17, Nov. 2016.
    DOI: 10.1016/S2468-2667(16)30001-9
    PMid: 29253379
  10. M. Drolet, É. Bénard, M. Boily, H. Ali, L. Baandrup, H. Bauer et al., “Population-level impact and herd effects following human papillomavirus vaccination programmes: a systematic review and meta-analysis”, The Lancet Infectious Diseases, vol. 15, no. 5, pp. 565–580, May 2015.
    DOI: 10.1016/s1473-3099(14)71073-4
    PMid: 25744474
    PMCid: PMC5144106
  11. A. Hammer, A. Rositch, F. Qeadan, P. E. Gravitt, J. Blaakaer, “Age‐specific prevalence of HPV16/18 genotypes in cervical cancer: A systematic review and meta‐analysis”, International Journal of Cancer, vol. 138, no. 12, pp. 2795–2803, Dec. 2015.
    DOI: 10.1002/ijc.29959
  12. Global Market Study HPV, World Health Organization, 2019, pp. 1–4.
    Retrieved from: https://www.who.int/immunization/programmes_systems/procurement/mi4a/platform/module2/WHO_HPV_market_study_public_summary.pdf
    Retrieved on: Mar. 10, 2019
  13. D. A Machalek et al., “Very low prevalence of vaccine human papillomavirus types among 18- to 35-year old Australian women 9 years following implementation of vaccination”, The Journal of Infectious Diseases, vol. 217, no. 10, pp. 1590–1600, May 2018.
    DOI: 10.1093/infdis/jiy075
  14. D. Mesher, K. Panwar, S. L. Thomas, S. Beddows, K. Soldan, “Continuing reductions in HPV 16/18 in a population with high coverage of bivalent HPV vaccination in England: an ongoing cross-sectional study”, BMJ Open, vol. 6, no. 2, article no. e009915, Feb. 2016.
    DOI: 10.1136/bmjopen-2015-009915
  15. S. E. Oliver, E. R. Unger, R. Lewis, D. McDaniel, J. W. Gargano, M. Steinau et al., “Prevalence of human papillomavirus among females after vaccine introduction-national health and nutrition examination survey, United States, 2003-2014”, The Journal of Infectious Diseases, vol. 216, no. 5, pp. 594–603, Sept. 2017.
    DOI: 10.1093/infdis/jix244
  16. Q. Zhang, Y. Liu, S. Hu and F. Zhao, “Estimating long-term clinical effectiveness and cost-effectiveness of HPV 16/18 vaccine in China”, BMC Cancer, vol. 16, no. 1, article no. 848, Dec. 2016.
    DOI: 10.1186/s12885-016-2893-x
  17. J. Brotherton et al., “Age-specific HPV prevalence among 116,052 women in Australia’s renewed cervical screening program: A new tool for monitoring vaccine impact”, Vaccine, vol. 37, no. 3, pp. 412–416, Jan. 2019.
    DOI: 10.1016/j.vaccine.2018.11.075
  18. R. L. Cameron et al., “Human papillomavirus prevalence and herd immunity after introduction of vaccination program, Scotland, 2009-2013”, Emerging Infectious Diseases, vol. 22, no. 1, pp. 56–64, Jan. 2016.
    DOI: 10.3201/eid2201.150736
  19. Z. Kaló, K. Landa, T. Doležal, Z. Vokó, “Transferability of National Institute for Health and Clinical Excellence recommendations for pharmaceutical therapies in oncology to Central-Eastern European countries”, Eur. J. Cancer Care, vol. 21, no. 4, pp. 442–449, Jul. 2012.
    DOI: 10.1111/j.1365-2354.2012.01351.x
    PMid: 22510226
  20. “Cancer in Ukraine, 2018-2019,” Bulletin of National Cancer Registry of Ukraine, vol. 21, 2020.
    Retrieved from: http://www.ncru.inf.ua/publications/BULL_21/index_e.htm
    Retrieved on: June 27, 2020
  21. P. Menn, R. Holle, “Comparing three software tools for implementing Markov models for health economic evaluations”, PharmacoEconomics, vol. 27, no. 9, pp. 745–753, Mar. 2009.
    DOI: 10.2165/11313760-000000000-00000
  22. Population statistics of Ukraine.
    Retrieved from: http://database.ukrcensus.gov.ua
    Retrieved on: June 05, 2020
  23. The cost of medical services in private clinics in Ukraine.
    Retrieved from: https://feofaniya.org/wp-content/uploads/2020/05/price.pdf , https://oberig.ua/media/files/Price_05.05.20.pdf , https://www.lissod.com.ua/prices/consultation
    Retrieved on: May 05, 2020
  24. Міністерство охорони здоров’я України. (квітень 02, 2014). N 236 Про затвердження та впровадження медико-технологічних документів зі стандартизації медичної допомоги при дисплазії та раку шийки матки. (Ministry of Health of Ukraine. (April 02, 2014). N 236 Unified clinical protocol of primary, secondary (specialized), tertiary (highly specialized) medical care. Dysplasia of the cervix. Cervical cancer.)
    Retrieved from: https://zakon.rada.gov.ua/rada/show/va236282-14
    Retrieved on: May 10, 2019
  25. M. Csanádi et al. “Health technology assessment implementation in Ukraine: current status and future perspectives”, International Journal of Technology Assessment in Health Care, vol. 35, no. 5, pp. 393-400, Oct. 2019.
    DOI: 10.1017/S0266462319000679
  26. A. T. Newall, M. Jit, R. Hutubessy, “Are current cost-effectiveness thresholds for low- and middle-income countries useful? Examples from the world of vaccines”, PharmacoEconomics, vol. 32, no. 6, pp. 525–531, Jun. 2014.
    DOI: 10.1007/s40273-014-0162-x
  27. M. Fesenfeld, R. Hutubessy, M. Jit, “Cost-effectiveness of human papillomavirus vaccination in low and middle income countries: a systematic review”, Vaccine, vol. 31, no. 37, pp. 3786–3804, Aug. 2013.
    DOI: 10.1016/j.vaccine.2013.06.060
  28. Data Bank World Development Indicators.
    Retrieved from: https://databank.worldbank.org/reports.aspx?source=2&country=UKR
    Retrieved on: June 10, 2020
Serhii Hryshchuk, Alla Harlinska, Nataliya Korneichuk, "The evaluation of economic feasibility of cancer prevention by vaccination from papillomavirus infection in Ukraine," RAD Conf. Proc, vol. 4, 2020, pp. 155–160, http://doi.org/10.21175/RadProc.2020.32