Volume 4, 2020

Radioecology

RADIOLOGICAL ASSESSMENT OF THE BELARUSIAN NUCLEAR POWER PLANT SITE IN THE PRE-OPERATIONAL PERIOD

E.I. Nazarov, A.A. Ekidin, A.V. Vasiljev, M.E. Vasyanovich, A.O. Nichiporchuk, V.A. Kozhemyakin, I.A. Kapustin, I.A. Privalov, E.V. Parkhomchuk, S.A. Rastigeev, V.V. Parkhomchuk

Pages: 142-148

DOI: 10.21175/RadProc.2020.30

Field studies on the pre-operational period of a Belarusian NPP have allowed us to determine the “background” level of gamma-emitting radionuclides in individual components of the environment. The results of measuring the dose rate at the NPP construction site are from 0.048 to 0.089 μSv/h. External radiation in the surveyed area is at 96% due to 40K, 226Ra and 232Th. The radionuclides in the surface soil layer are: 40K – from 530 to 700 Bq/kg; 226Ra – from 30 to 55 Bq/kg; and 232Th – from 17 to 35 Bq/kg; 137Cs from 2 to 13 Bq/kg. The dose rate in the floodplain of the Viliya River from 0.033 to 0.082 μSv/h. The activity concentrations of the radionuclides in the surface soil layer of the floodplain of the Viliya River are: 40K – from 390 to 690 Bq/kg; 226Ra – from 33 to 50 Bq/kg; 232Th – from 15 to 50 Bq/kg; 137Cs – from 3 to 12 Bq/kg. The activity concentration of carbon-14 and tritium in the dominant vegetation species were determined to be: from 74.4 to 111.5 pMC and less than lower range limit, respectively.
  1. Environmental and Source Monitoring for Purposes of Radiation Protection , IAEA Safety Guide № RS-G-1.8., IAEA, Vienna, Austria, 2016.
    Retrieved from: https://www.pub.iaea.org/MTCD/Publications/PDF/Pub1216_web.pdf
    Retrieved on: 1 March, 2020
  2. М. М. Кадацкая, “Требования к организации радиационного мониторинга в зоне наблюдения Белорусской АЭС для целей оценки дозы репрезентативного человека”, Здоровье и окружающая среда, т.1, стр. 71 – 73, 2017.(M. M. Kadackaya, “Requirements for the organization of radiation monitoring in the monitoring area of the Belarusian NPP for the purpose of assessing the dose of a representative person”, Health and Environment, vol. 1, pp. 71-73, 2017.)
  3. D. Marčiulionienė et al., “137Cs and plutonium isotopes accumulation/retention in bottom sediments and soil in Lithuania: A case study of the activity concentration of anthropogenic radionuclides and their provenance before the start of operation of the Belarusian Nuclear Power Plant (NPP),” J. Environ. Radioact., vol. 178–179, pp. 253-264, 2017.
    DOI: 10.1016/j.jenvrad.2017.07.024
  4. Su. F. Ozmen, “Ecological assessment of Akkuyu nuclear power plant site marine sediments in terms of radionuclide and metal accumulation,” Journal of Radioanalytical and Nuclear Chemistry, vol. 325, pp. 133–145, 2020.
    DOI: 10.1007/s10967-020-07201-w
  5. R. A. Mikailova, A. V. Panov, D. N. Kurbakov, “The programme and results of the radioecological monitoring of freshwater ecosystems in the vicinity of Rooppur NPP (People’s Republic of Bangladesh),” in RAP Conf. Proc., Belgrade, Serbia, 2019, pp. 108–112.
    DOI: 10.37392/RapProc.2019.21.5
  6. F. F. Bryukhan, “Atmospheric boundary layer monitoring with the SODAR/RASS system on the Belarusian NPP site,” Atomic Energy, vol. 122, no. 1, pp. 69-74, 2017.
    DOI: 10.1007/s10512-017-0237-9
  7. Е. В. Николаенко, “Анализ основных аспектов организации радиационно-гигиенического мониторинга на этапе строительства Белорусской АЭС,” Здоровье и окружающая среда, т. 1, no. 25, стр. 71-73, 2015.(E. V. Nikolaenko, “Analysis of the main aspects for organization of the radiation-hygiene monitoring on the construction phase of the Belarusian NPP,” Health and Environment, vol. 1, no. 25, pp. 75-78, 2015.)
  8. В. Николаенко, В. В. Кляус, “Радиационно-гигиенический мониторинг для оценки "нулевого" фона вокруг Белорусской АЭС,” Здоровье и окружающая среда, ном. 26, стр. 49-53, 2016. (E. V. Nikolaenko, V. V. Klyaus, “Radiation hygienic monitoring for assessment of the background level around the Belarusian NPP,” Health and Environment, no. 26, pp. 49-53, 2016.)
  9. M. Vasyanovich, A. Ekidin, I. Yarmoshenko, “Radionuclide ratio in TENORM studies,” RAD Conf. Proc., Niš, Serbia, 2014, pp. 163-166.
    Retrieved from: https://www.rad-conference.org/Proceedings-RAD_2014.pdf
    Retrieved on: 1 March, 2020
  10. A. A. Ekidin, M. E. Vasyanovich, A. V. Nalivajko, “Gamma-Ray Spectrometry Application for Detection of Anthropogenically Uranium-Polluted Soil,” Principles of the Ecology, vol. 6, no. 2, pp. 29-35, 2013.
    DOI: 10.15393/j1.art.2013.2682
  11. A. A. Ekidin, M. V. Zhukovskii, M. E. Vasyanovich, “Identification of the main dose-forming radionuclides in NPP emissions,” Atomic Energy, vol. 120, pp. 134-137, 2016.
    DOI: 10.1007/s10512-016-0107-x
  12. М. Д. Пышкина, “Определение основных дозообразующих нуклидов в выбросах АЭС PWR и ВВЭР,” Биосферная совместимость: человек, регион, технологии, № 2(18), стр. 98-107, 2017. (M. D. Pyshkina, “The determination of main dose-forming nuclides in NPP PWR and VVER releases,” Biospheric Compatibility: Human, Region, Technologies, no. 2(18), pp. 98-107, 2017.)
  13. M. Vasyanovich, A. Vasilyev, A.Ekidin, I. Kapustin, A. Kryshev, “Special monitoring results for determination of radionuclide composition of Russian NPP atmospheric releases,” Nuclear Engineering and Technology, vol. 51, no. 4, pp. 1176-1179, 2019.
    DOI: 10.1016/j.net.2019.02.010 .
  14. M. E. Vasyanovich et al., “Determination of radionuclide composition of the Russian NPPs atmospheric releases and dose assessment to population,” J. Environ. Radioact., vol. 208-209, article no. 106006, 2019.
    DOI: 10.1016/j.jenvrad.2019.106006
  15. A. A. Ekidin et al., “Evaluation of the contribution of technogenic radionuclides to the total activity of NPP emissions on the basis of a simulation model,” Atomic energy, vol. 119, pp. 271-274, 2016.
    DOI: 10.1007/s10512-016-0059-1
  16. А. В. Васильев, А. А. Екидин, Р. И. Юсупов, А. В. Пудовкин, “Нормативно­методическое обеспечение для подтверждения критериев приемлемости радиоактивных отходов АЭС для захоронения,” АНРИ, №4(91), стр. 23-30, 2017. (A. V. Vasil`ev, A. A. Ekidin, R. I. Yusupov, A. V. Pudovkin, “Procedures for confirmation of acceptance criteria for geological disposal of NPPs radioactive waste,” ANRI, vol. 4(91) pp. 23-30, 2017.)
  17. A. А. Пыркова, А. А. Екидин, К. Л. Антонов, “Поступление инертных радиоактивных газов в атмосферу при нормальной эксплуатации АЭС,” В сборнике: Физика. Технологии. Инновации, УрФУ, Екатеринбург, Россия, 2019, стр. 279-287. (A. A. Pyrkova, A. A. Ekidin, K. L. Antonov, “Discharge of radioactive noble gases to the atmosphere during the normal NPP operation,” In proceedings: Physics. Technologies. Innovation, UrFU, Ekaterinburg, Russia, 2019, pp. 279-287.)
    Retrieved from: http://hdl.handle.net/10995/78826
    Retrieved on: March 1, 2020
  18. A. A. Ekidin, K. L. Antonov, M. E. Vasyanovich, I. A. Kapustin, I. Yu. Filatov, “Radioiodine release into the atmosphere during normal operation of nuclear power plants,” Radiochemistry, vol. 61, pp. 352-364, 2019.
    DOI: 10.1134/S1066362219030111
  19. Е. Л. Мурашова, А. С. Антушевский, М. Е. Васянович, А. А. Екидин, “Метод жидкой сцинтилляции для определения объемной активности стронция-90 в источниках выброса,” АНРИ, №1(96), стр. 17‑26, 2019. (E. L. Murashova, A. S. Antushevskij, M. E. Vasyanovich, A. A. Ekidin, “Liquid scintillation method for determination of strontium-90 concentration in airborne discharge,” ANRI, no. 1 (96), pp. 17-26, 2019.)
  20. Д. Д. Десятов, А. А. Екидин, “Оценка поступления трития в окружающую среду от выбросов АЭС,” Биосферная совместимость: человек, регион, технологии, № 1(21), стр. 88-96, 2018. (D. D. Desyatov, A. A. Ekidin, “Evaluation of tritium`s entry into the environment from nuclear power plants` emissions,” Biospheric Compatibility: Human, Region, Technologies, vol. 1 (21), pp. 88-96, 2018.)
    Retrieved from: https://www.elibrary.ru/download/elibrary_34959688_45026833.pdf
    Retrieved on: March 1, 2020
  21. Е. И. Назаров, А. А. Екидин, А. В. Васильев, “Оценка поступления углерода-14 в атмосферу, обусловленного выбросами АЭС,” Известия высших учебных заведений. Физика, Т. 61, № 12-2 (732), стр. 67-73, 2018. (Nazarov E.I., Ekidin A.A., Vasilyev A.V., “Assessment of the atmospheric carbon-14 caused by NPP emissions.” Proceedings of Higher Educational Institutions. Physics, vol. 61, no. 12-2 (732), pp. 67-73, 2018.)
  22. A. I. Kryshev et al., “Population irradiation dose assessment for14C emissions from NPP with RBMK-1000 and EGP-2 reactors,” Atomic Energy, vol. 128, pp. 53-59, 2020.
    DOI: 10.1007/s10512-020-00650-2
  23. X. Hou, “Tritium and 14C in the Environment and Nuclear Facilities: Sources and Analytical Methods,” Journal of Nuclear Fuel Cycle and Waste Technology, vol. 16, no. 1, pp. 11-39, 2018.
    DOI: 10.7733/jnfcwt.2018.16.1.11
  24. A. I. Lysikov et al., “Novel Simplified Absorption-Catalytic Method of Sample Preparation for AMS analysis designed at the Laboratory of Radiocarbon Methods of Analysis (LRMA) in Novosibirsk Akademgorodok,” International Journal of Mass-spectrometry, vol. 433, pp. 11-18, 2018.
    DOI: 10.1016/j.ijms.2018.08.003
  25. V. V. Parkhomchuk, S. A. Rastigeev, “Accelerator mass spectrometer of the center for collective use of the Siberian Branch of the Russian Academy of Sciences,” Journal of Surface Investigation, vol. 5(6), pp. 1068-1072, 2011.
    DOI: 10.1134/S1027451011110140
  26. А.О. Грубич, “Загрязнение почвы атмосферными выпадениями. Статистические свойства” Минск: ИВЦ Минфина, 230 с., 2017. (A. O. Grubich, “Soil contamination by atmospheric fallout. Statistical properties,” 230 pages, 2017.)
  27. А. Г. Подоляк, Г. В. Седукова, С. А. Исаченко, “Мониторинг содержания радионуклидов в компонентах агроэкосистем в зоне воздействия строящейся Белорусской АЭС,” В сборнике: Экологическая и радиационная безопасность объектов атомной энергетики. Материалы IV научно-практической конференции, 2017, стр. 56-60. (A. G. Podolyak, G. V. Sedukova, S. A. Isachenko, “Monitoring of radionuclide concentrations in agro-ecosystems within the impact area of under-construction Belarusian NPP,” Proceedings from Environmental and Radiation Safety of Nuclear Power Facilities , 2017, pp. 56-60.)
  28. Р. В Лукашевич, В. Д. Гузов, В. А. Кожемякин, А. В. Оборин, “Сцинтилляционные блоки-компараторы для измерений мощности кермы в воздухе в диапазоне от 0,03 нГр/с до 50 нГр/с,” Метрология и приборостроение, №1, стр. 33-37. (R. V Lukashevich, V. D. Guzov, V. A. Kozhemyakin, A. V. Oborin, “Scintillational blocks-comparators to measure kerma power in air withing the range from 0.03 nGr/s to 50 nGr/s,” Metrology and Instrumentation, vol. 1, pp. 33-37, 2017.)
  29. R. Lukashevich, Yu. Verhusha, V. Guzov, V. Kozemyakin, “Application scintillation comparators for calibration low intense gamma radiation fields by dose rate in the range of 0.03–0.1 µSv/h,” Engineering of Scintillation Materials and Radiation Technologies, pp. 221-235, 2019.
    DOI: 10.1007/978-3-030-21970-3_16
  30. Р. В Лукашевич, В. Д. Гузов, В. А. Кожемякин, “Дозиметрия полей гамма-излучения околофонового уровня с использованием высокочувствительного сцинтилляционного блока-компаратора,” АНРИ, №3(98), стр. 29-41, 2019. (R. V Lukashevich, V. D. Guzov, V. A. Kozhemyakin, “Dosimetry of photon radiation fields of near-background level using highly sensitive scintillation comparator,” ANRI, no. 3(98), pp. 29-41, 2019.)
  31. Radiation protection instrumentation – Transportable, mobile or installed equipment to measure photon radiation for environmental monitoring , IEC 61017:2016, Geneva, Intern. Electrotechnical Commiss., 86 pages, 2016.
  32. Radiation protection instrumentation – Ambient and/or directional dose equivalent (rate) meters and/ or monitors for beta, X and gamma radiation. Part 1: Portable workplace and environmental meters and monitors: IEC 60846-1:2009, Geneva: Intern. Electrotechnical Commiss., 116 pages, 2019.
E.I. Nazarov, A.A. Ekidin, A.V. Vasiljev, M.E. Vasyanovich, A.O. Nichiporchuk, V.A. Kozhemyakin, I.A. Kapustin, I.A. Privalov, E.V. Parkhomchuk, S.A. Rastigeev, V.V. Parkhomchuk, "Radiological assessment of the Belarusian nuclear power plant site in the pre-operational period," RAD Conf. Proc, vol. 4, 2020, pp. 142–148, http://doi.org/10.21175/RadProc.2020.30