Volume 4, 2020



S.S. Danilov, A.V. Frolova, S. E. Vinokurov, S.V. Yudintsev, B.F. Myasoedov

Pages: 138-141

DOI: 10.21175/RadProc.2020.29

The effective isolation of radioactive waste (RW) from the environment is the main problem for the further development of nuclear power. The main phases in titanate-based ceramics are perovskite, rutile, zirconolite and murataite. Murataite grains have a zonal structure with high content of rare earth elements at the center of structure and low content of these at edges, that precludes their leaching in contact with a solution. Murataite-based ceramics containing simulated rare earth elements of high level waste (HLW) were produced via melting of oxide mixtures in a resistance furnace at 1500°C. All samples were composed of mainly murataite and minor perovskite, crichtonite, zirconolite, and pyrophanite/ilmenite phases. Thus, murataite is the dominant host phase for a sample containing zirconium oxide. All samples were analyzed by scanning electron microscopy with an energy dispersive X-ray spectroscopy. Elemental leaching rates from the ceramic with low perovskite content were lower by one order of magnitude then leaching rates for high perovskite content.
  1. N.N. Ponomarev-Stepnoi, “Two-Component Nuclear Power System with a Closed Nuclear Fuel Cycle Based on BN and VVER Reactors,” Atomic Energy, vol. 120, no. 4, pp. 233-239, Aug. 2016.
    DOI: 10.1007/s10512-016-0123-x
  2. Yu.M. Kulyako, D.A. Malikov, T.I. Trofimov, S.A. Perevalov, K.S. Pilyushenko, S.E. Vinokurov, B.F. Myasoedov, “Separation of Americium and Curium in Nitric Acid Solutions via Oxidation of Am(III) by Bismuthate and Perxenate Ions,” Radiochemistry, vol. 62, no. 5, pp. 581-586, Jul. 2020.
    DOI: 10.1134/S1066362220050033
  3. I.W. Donald, “Immobilization of radioactive materials as a ceramic wasteform” in Waste immobilization in glass and ceramic based hosts: radioactive, toxic and hazardous wastes . John Wiley & Sons, 2010, pp. 185-212.
  4. S. V. Stefanovsky, S. V. Yudintsev “Titanates, zirconates, aluminates and ferrites as waste forms for actinide immobilization,” Russian Chemical Reviews, vol. 85, no. 9, pp. 962-994, 2016.
    DOI: 10.1070/RCR4606
  5. G.R. Lumpkin, “Ceramic host phases for nuclear waste remediation,” in Experimental and Theoretical Approaches to Actinide Chemistry, CA, USA, John Wiley & Sons Ltd, 2018, pp. 333-377.
  6. A.A. Lizin, S.V. Tomilin, S.S. Poglyad, E.A. Pryzhevskaya, S.V. Yudintsev, S.V. Stefanovsky, “Murataite: a matrix for immobilizing waste generated in radiochemical reprocessing of spent nuclear fuel” Journal of Radioanalytical and Nuclear Chemistry, vol. 318, pp. 2363, 2018.
    DOI: 10.1007/s10967-018-6236-z
  7. P.E.D. Morgan, F.J. Ryerson, “A new “cubic” crystal compound,” J. Mater. Sci. Lett., vol. 1, pp. 351-352, 1982.
  8. N.P. Laverov, S.V. Yudintsev, S.V. Stefanovsky, B.I. Omel’yanenko, B.S. Nikonov, “Murataite as a universal matrix for immobilization of actinides,” Geology of Ore Deposits, vol.48, no. 5, pp. 335-356, 2006.
    DOI: 10.1134/S1075701506050011
  9. S.V. Stefanovsky, S.V Yudintsev, B.S. Nikonov, B.I. Omel’yanenko, O.I. Stefanovsky, Patent of RF 2315381 from 22.05.2006 (2008).
    Retrieved from: https://patents.google.com/patent/RU2643362C1/ru
  10. N.P. Laverov, S.V. Yudintsev, S.V. Stefanovsky, B.S. Nikonov, B.I. Omel’yanenko, “Murataite matrices for actinide wastes,” Radiochemistry, vol. 53, no.3, pp. 229-243, 2011.
    DOI: 10.1134/S1066362211030027
  11. ГОСТ Р 52126-2003. Отходы радиоактивные. Определение химической устойчивости отвержденных высокоактивных отходов методом длительного выщелачивания. М.: Госстандарт России. Т. 3, 2003. (Radioactive waste. Determination of the chemical stability of solidified high-level waste by the long-term leaching method , Moscow: Gosstandart of Russia, GOST R. 52126, Jul. 1, 2004.)
  12. W.E. Lee, M.I. Ojovan, M.C. Stennett, N.C. Hyatt, “Immobilisation of radioactive waste in glasses, glass composite materials and ceramics,” Advances in Applied Ceramics, vol. 105, no. 1, pp. 3-12, 2006.
    DOI: 10.1179/174367606X81669
  13. G.J. de Groot, H.A. van der Sloot, “Determination of leaching characteristics of waste materials leading to environmental product certification” in Stabilization and Solidification of Hazardous, Radioactive, and Mixed Wastes : 2nd volume, ASTM International, 1992, pp. 149-170.
  14. S.V. Stefanovsky, O.I. Stefanovsky, S.S. Danilov, M.I. Kadyko “Phosphate-based glasses and glass ceramics for immobilization of lanthanides and actinides,” Ceramics International, vol. 45, no. 7, pp. 9331-9338, 2019.
    DOI: 10.1016/j.ceramint.2018.06.208
  15. A. E. Ringwood, S. E. Kesson, K. D. Reeve, D. M. Levins E. J. Ramm, “Crystalline Waste Forms. Synroc,” in Radioactive Waste Forms for the Future, Elsevier, Netherlands, 1988, ch. 2, pp. 233–334.
  16. S.A. Kulikova, S.S Danilov, K.Y. Belova, A.A. Rodionova, S.E. Vinokurov, “Optimization of the Solidification Method of High-Level Waste for Increasing the Thermal Stability of the Magnesium Potassium Phosphate Compound,” Energies, vol. 13, no. 15, article no. 3789, 2020.
    DOI: 10.3390/en13153789
  17. D.H. Moon, D. Dermatas, “An evaluation of lead leachability from stabilized/solidified soils under modified semi-dynamic leaching conditions,” Engineering Geology, vol.85, no. 1-2, pp. 67-74, 2006.
    DOI: 10.1016/j.enggeo.2005.09.028
  18. J. Torras, I. Buj, M. Rovira, J. de Pablo, “Semi-dynamic leaching tests of nickel containing wastes stabilized/solidified with magnesium potassium phosphate cements,” Journal of Hazardous Materials, vol. 186, no. 2-3, pp. 1954-1960, 2011.
    DOI: 10.1016/j.jhazmat.2010.12.093
  19. Q. Xue, P. Wang, J.-S. Li, T.-T. Zhang, S.-Y. Wang, “Investigation of the leaching behavior of lead in stabilized/solidified waste using a two-year semi-dynamic leaching test,” Chemosphere, vol. 166, pp. 1-7, 2017.
    DOI: 10.1016/j.chemosphere.2016.09.059
S.S. Danilov, A.V. Frolova, S.E. Vinokurov, S.V. Yudintsev, B.F. Myasoedov, "Titanate-based ceramic as a matrix for curium and rare earth elements fraction of radioactive waste immobilization," RAD Conf. Proc, vol. 4, 2020, pp. 138–141, http://doi.org/10.21175/RadProc.2020.29