Vol. 2, 2017



Dora Krezhova, Kalinka Velichkova, Nikolai Petrov, Svetla Maneva

Pages: 269-275

DOI: 10.21175/RadProc.2017.55

Contemporary remote sensing techniques have acquired new and more advanced applications in environmental and ecological researches. Hyperspectral remote sensing data provide significant advancement in understanding the subtle changes in biophysical and biochemical parameters of the plants and their responses to adverse environmental conditions. In this study, a remote sensing method based on hyperspectral measurements of leaf reflectance was used to extract information on the effect of biotic stress (two viral infections) on young potato plants. The reflectance data were collected by means of a portable fiber-optics spectrometer in the visible and near-infrared spectral ranges (400 –1100 nm). To translate the hyperspectral data into information about plant biophysical and biochemical variables, an empirical-statistical approach was applied based on Student’s t-test, first derivative, and serological analyses. The changes in some important biophysical parameters such as color and spectral signature of plants, chlorophyll absorption characteristics, moisture content, etc., were analyzed. The results showed that the variations in the chlorophyll content, leaf structure, and water content dominate in the reflectance variance in the green, red, and near-infrared spectral ranges. Comparative analysis was performed between the results from the leaf spectral reflectance and serological test (DAS-ELISA) for the presence and degree of the viral infections.
  1. J. Qi, F. Cabot, M. S. Moran, G. Dedieu, “Biophysical Parameter Estimations Using Multidirectional Spectral Measurements,” Remote Sens. Environ., vol. 54, no. 1, pp. 71-83, Oct. 1995.
    DOI: 10.1016/0034-4257(95)00102-7
  2. P. Jordano, “Chasing Ecological Interactions,” PLoS Biol., vol. 14, no. 9, pp. e1002559-1 – e1002559-4, Sep. 2016.
    DOI: 10.1371/journal.pbio.1002559
    PMid: 27631692
    PMCid: PMC5025190
  3. J. P. T. Valkonen, “Viruses: Economical losses and biotechnological potential,” in Potato Biology and Biotechnology, D. Vreugdenhil, J. Bradshaw, C. Gebhardt, F. Govers, D. K. L. Mackerron, M. A. Taylor, H. A. Ross, Eds., San Diego (CA), USA: Elsevier Academic Press, 2007, ch. 28, pp. 619-641.
    DOI: 10.1016/B978-044451018-1/50070-1
  4. K. Usha, B. Singh, “Potential applications of remote sensing in horticulture - A review,” Sci. Horticul., vol. 153, pp. 71–83, Apr. 2013.
    DOI: 10.1016/j.scienta.2013.01.008
  5. M. Meroni, M. Rossini, R. Colombo, “Characterization of leaf physiology using reflectance and fluorescence hyperspectral measurements,” in Remote Sensing Optical observation of vegetation properties, F. Maselli, M. Menenti, P. A. Brivio Eds., Trivandrum, India: Research Signpost, 2010, pp. 165-187.
  6. S. Sankaran, A. Mishra, R. Ehsani, C. Davis, “A review of advanced techniques for detecting plant diseases,” Comput. Electron. Agric., vol. 72, no. 1, pp. 1–13, Jun. 2010.
    DOI: 10.1016/j.compag.2010.02.007
  7. D. D. Krezhova, N. M. Petrov, S. N. Maneva, “Hyperspectral remote sensing applications for monitoring and stress detection in cultural plants: viral infections in tobacco plants,” in Proc. of Remote Sensing for Agriculture, Ecosystems, and Hydrology Conf., Edinburgh, UK, 2012, pp. 24-27.
    DOI: 10.1117/12.974722
  8. Z. Ni, Z. Liu, H. Huo, Z. H. Li, F. Nerry, Q. Wang, X. Li, “Early Water Stress Detection Using Leaf-Level Measurements of Chlorophyll Fluorescence and Temperature Data,” Remote Sens., vol. 7, no. 3, pp. 3232-3249, Mar. 2015.
    DOI: 10.3390/rs70303232
  9. G. R. Mahajan, R. N. Sahoo, R. N. Pandey, V. K. Gupta, D. Kumar, “Using hyperspectral remote sensing techniques to monitor nitrogen, phosphorus, sulphur and potassium in wheat (Triticum aestivum L.),” Precision Agric., vol. 15, no. 2, pp. 499 – 522, Oct. 2014.
    DOI: 10.1007/s11119-014-9348-7
  10. C. M. Champagne, K. Staenz, A. Bannari, H. Mcnairn, J. C. Deguise, “Validation of a hyperspectral curve-fitting model for the estimation of plant water content of agricultural canopies,” Remote Sensing Environ., vol. 87, no. 2-3, pp. 148–160, Oct. 2003.
    DOI: 10.1016/S0034-4257(03)00137-8
  11. M. Prabhakar, Y. G. Prasad, M. Thirupathi, G. Sreedevi, B. Dharajothi, B. Venkateswarlu, “Use of ground based hyperspectral remote sensing for detection of stress in cotton caused by leafhopper (Hemiptera: Cicadellidae),” Comput. Electron. Agric., vol. 79, no. 2, pp. 189–198, Nov. 2011.
    DOI: 10.1016/j.compag.2011.09.012
  12. A. A. Gitelson, U. Gritz, M. N. Merzlyak, “Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves,” J. Plant Physiol., vol. 160, no. 3, pp. 271-282, Mar. 2003.
    DOI: 10.1078/0176-1617-00887
    PMid: 12749084
  13. G. A. Carter, B. A. Spiering, “Optical properties of intact leaves for estimating chlorophyll content,” J. Environ. Quality, vol. 31, no. 5, Sep-Oct. pp. 1424–1432, 2002.
    DOI: 10.2134/jeq2002.1424
    PMid: 12371158
  14. I. B. Strachan, E. Pattey, J. B. Boisvert, “Impact of nitrogen and environmental conditions on corn as detected by hyperspectral reflectance,” Remote Sensing Environ., vol. 80, no. 2, pp. 213–224, May 2002.
    DOI: 10.1016/S0034-4257(01)00299-1
  15. D. Krezhova, “Spectral remote sensing of the responses of soybean plants to environmental stresses,” in Soybean - Genetics and Novel Techniques for Yield Enhancement, D. Krezhova, Ed., Rijeka, Croatia: InTech, 2011, ch. 11, pp. 215-256.
    DOI: 10.5772/24741
  16. S. Pradhan, K. K. Bandyopadhyay et al., “Predicting wheat grain and biomass yield using canopy reflectance of booting stage,” J. Indian Soc. Remote Sensing, vol. 42, no. 4, pp. 711 – 718, Dec. 2014.
    DOI: 10.1007/s12524-0140372-x
  17. C. S. T. Daughtry, C. L. Walthall, M. S. Kim, E. B. Colstoun, J. E. McMurtrey, “Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance,” Remote Sens. Environ., vol. 74, no. 2, pp. 229–239, Nov. 2000.
    DOI: 10.1016/S0034-4257(00)00113-9
  18. D. Krezhova, S. Maneva, N. Petrov, “Application of remote sensing technique for preservation of plant ecosystems,” in Proc. RAD 2015 Conference, Budva, Montenegro, 2015, pp. 285-290.
    Retrieved from: http://www.rad-conference.org/helper/download.php?file=../pdf/Proceedings%20RAD%202015.pdf
    Retrieved on: Jan. 15, 2017
  19. S. J. Goetz, “Recent advances in remote sensing of biophysical variables. An overview of the special issue,” Remote Sensing of Environment, vol. 79, no. 2-3, pp. 145–146, Feb. 2002.
    DOI: 10.1016/S0034-4257(01)00268-1
  20. D. Krezhova, E. Kirova, “Hyperspectral remote sensing of the impact of environmental stresses on nitrogen fixing soybean plants (Glycine max L.),” in IEEE proceedings of 5th International Conference of RAST, Istanbul, Turkey, 2011, pp. 172-177.
    DOI: 10.1109/rast.2011.5966816
  21. S. B. Johnson, “Potato Diseases Caused by PVY and PLRV,” Bulletin, University of Maine, Orono (ME), USA, 1999.
    Retrieved from: https://extension.umaine.edu/publications/2492e/
    Retrieved on: Dec. 23, 2016
  22. Н. Петров, Д. Христова, К. Хайнце, П. Вилингман, Г. Адам, “Идентифициране на вируса, причинител на некротични пръстеновидни петна по клубените на картофите в България,” Растениевъдни науки, т. 45, стр. 407 – 411, 2008. (N. Petrov, D. Hristova, C. Heinze, P. Willingman, G. Adam, “Identification of the virus, causing necrotic ring spots on potato tubers in Bulgaria,” Plant Science, vol. 45, pp. 407–411, 2008.)
    Retrieved from: https://www.researchgate.net/publication/260244501_Identification_of_the_virus_causing_necrotic

    Retrieved on: Dec. 23, 2016
  23. N. Petrov, V. Lyubenova, “Variability in P1 gene region of Potato virus Y isolates and its effect on potato crops,” in Proc. Conf. The Man and the Universe, Smolyan, Bulgaria, 2011, pp. 671–677.
    Retrieved from: https://www.researchgate.net/publication/260244852_VARIABILITY_IN_P1_GENE_REGION_OF_

    Retrieved on: Jan. 13, 2017
  24. Н. Петров, “Картофен вирус Y (Potato Virus - PVY) по културни видове от сем. Solenaceae,” докторска дисертация, ИПАЗР “Н. Пушкаров”, София, България, 2012. (N. Petrov, “Potato virus Y (PVY) in crop species from the family Solanaceae,” ISSAPP “N. Pushkarov”, Sofia, Bulgaria, 2012.)
    Retrieved from: http://www.iss-poushkarov.org/N%20Petrov/Avtoreferat_N%20Petrov.pdf
    Retrieved on: Jan. 23, 2017
  25. B. Dikova, “Tobacco rattle virus (TRV) transmission by sugarbeet seeds,” Biotechnology & Biotechnological Equipment, vol. 19, no. 2, pp. 87–90, 2005.
    DOI: 10.1080/13102818.2005.10817196
  26. D. Noordam, Identification of plant viruses: methods and experiments, Wageningen, The Netherlands: Centre for Agricultural Publishing and Documentation, 1973.
  27. USB2000+ Data Sheet, Ocean Optics, Dunedin (FL), USA.
    Retrieved from: https://oceanoptics.com/wp-content/uploads/OEM-Data-Sheet-USB2000-.pdf
    Retrieved on: Jan. 23, 2017.
  28. D. Krezhova, T. Yanev et al., “Method for detecting stress induced changes in leaf spectral reflectance,” Compt. Rend. Acad. Bulg. Sci., vol. 58, no. 5, pp. 517 – 522, 2005.
  29. M. Clark, A. Adams, “Characteristics of the microplate method of enzyme linked immunosorbent assay for the detection of plant viruses,” J. Gen. Virol., vol. 34, no. 3, pp. 475-483, Mar. 1977.
    DOI: 10.1099/0022-1317-34-3-475
    PMid: 323416
  30. C. L. Bădărău, S. C. Chiru, F. Damşa, A. Mărculescu, “Behavior of several potato varieties with different starch content to potato tuber necrotic ringspot disease,” Forest. Wood Ind. Agric. Food Eng., vol. 8, no. 57, 2015.
    Retrieved from: http://webbut.unitbv.ro/BU2015/Series%20II/BULETIN%20I%20PDF/06_BADARAU.pdf
    Retrieved on: Jan. 24, 2017