|
RELATIONSHIP BETWEEN BEHAVIORS AND CATECHOLAMINE CONTENT IN
PREFRONTAL CORTEX AND HIPPOCAMPUS OF CHRONICALLY STRESSED RATS
Nataša Popović, Snežana B. Pajović, Vesna Stojiljković,
Ana Todorović, Snežana Pejić, Ivan Pavlović, Ljubica Gavrilović
Pages: 255-259
DOI: 10.21175/RadProc.2017.52
Abstract |
References | Full Text (PDF)
Chronic stress induces over-activation and dysfunction of stress-activated systems, resulting in further brain damage and depressive-like behavior. Depression is a potentially life-threatening disorder that affects people and, therefore, it is one of the most important public health problems. This study examined the effects of chronic restraint stress (CRS: 2 hours × 14 days) on the anxiety-like and depression-like behaviors in rats, as well as on the possible changes in the concentrations of dopamine (DA) and noradrenaline (NA) in the prefrontal cortex and hippocampus. We observed a decrease in the number of entries into open arms and time spent in open arms during the elevated plus-maze test (anxiety-like behavior), as well as the increased immobility during the forced swimming test (depression-like behavior). In addition, we found that CRS increases concentration of NA and decreases concentration of DA in the prefrontal cortex and hippocampus. Also, we recorded a significant correlation between the animal behavior and levels of neurotransmitters in the prefrontal cortex and hippocampus in stress conditions provoked by CRS. The results presented here suggest that there is a relationship between the animal behavior and levels of neurotransmitters in the prefrontal cortex and hippocampus in stress conditions provoked by CRS, which may be important in the research of numerous psychiatric diseases caused by chronic stress.
- D. Ongür, J. L. Price, “The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans,” Cereb. Cortex, vol. 10, no. 3, pp. 206-219, Mar. 2000.
DOI: 10.1093/cercor/10.3.206 PMid: 10731217
- H. Eichenbaum, “Hippocampus: cognitive processes and neural representations that underlie declarative memory,” Neuron, vol.44, no. 1,pp.109-120, Sep. 2004.
DOI: 10.1016/j.neuron.2004.08.028 PMid: 15450164
- Y. C. Tse, I. Montoya, A. S. Wong, A. Mathieu, J. Lissemore, D. C. Lagace, T. P. Wong, “A longitudinal study of stress-induced hippocampal volume changes in mice that are susceptible or resilient to chronic social defeat,” Hippocampus, vol.24, no.9, pp.1120-1128, Sep. 2014.
DOI: 10.1002/hipo.22296 PMid: 24753271
- R. Jankord, J. P. Herman, “Limbic regulation of hypothalamo–pituitary–adrenocortical function during acute and chronic stress,” Ann. N. Y. Acad. Sci., vol. 1148, pp. 64–73, Dec. 2008.
DOI: 10.1196/annals.1410.012 PMid: 19120092 PMCid: PMC2637449
- M. R. Levinstein, B. A. Samuels, “Mechanisms underlying the antidepressant response and treatment resistance,” Front. Behav. Neurosci. vol. 8, p.208, Jun. 2014.
DOI: 10.3389/fnbeh.2014.00208 PMid: 25018708 PMCid: PMC4073308
- Y. Liu, X. Zhuang, L. Gou, X. Ling, X. Tian, L. Liu, Y. Zheng, L. Zhang, X. Yin, “Protective effects of nizofenone administration on the cognitive impairments induced by chronic restraint stress in mice,” Pharmacol. Biochem. Behav. vol. 103, no. 3, pp. 474–480, Jan. 2013.
DOI: 10.1016/j.pbb.2012.09.009 PMid: 23026061
- A. C. Ferraz, A. M. Delattre, R. G. Almendra, M. Sonagli, C. Borges, P. Araujo, M. L. Andersen, S. Tufik, M. M. Lima, “Chronic omega-3 fatty acids supplementation promotes beneficial effects on anxiety, cognitive and depressive-like behaviors in rats subjected to a restraint stress protocol,” Behav. Brain Res., vol. 219, no. 1, pp. 116–122, May 2011.
DOI: 10.1016/j.bbr.2010.12.028 PMid: 21192985
- Y. Wang, H. Kan, Y. Yin, W. Wu, W. Hu, M. Wang, W. Li, W. Li, “Protective effects of ginsenoside Rg1 on chronic restraint stress induced learning and memory impairments in male mice,” Pharmacol. Biochem. Behav., vol. 120, pp. 73–81, May, 2014.
DOI: 10.1016/j.pbb.2014.02.012 PMid: 24560910
- G. D. Gamaro, M. B. Michalowski, D. H. Catelli, M. H. Xavier, C. Dalmaz, “Effect of repeated restraint stress on memory in different tasks,” Braz. J. Med. Biol. Res., vol. 32, no. 3, pp. 341-347, Mar. 1999.
DOI: 10.1590/S0100-879X1999000300015 PMid: 10347794
- K. S. Kim, P. L. Han, “Optimization of chronic stress paradigms using anxiety- and depression-like behavioral parameters,” J. Neurosci. Res., vol. 83, no. 3, pp. 497-507, Feb. 2006.
DOI: 10.1002/jnr.20754 PMid: 16416425
- S. Pellow, P. Chopin, S. E. File, M. Briley, “Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat,” J. Neurosci. Methods., vol. 14, no.3,pp.149-167, Aug. 1985.
DOI: 10.1016/0165-0270(85)90031-7
- H. Cohen, A. B. Geva, M. A. Matar, J. Zohar, Z. Kaplan, “Post-traumatic stress behavioural responses in inbred mouse strains: can genetic predisposition explain phenotypic vulnerability?” Int. J. Neuropsychopharmacol., vol.11, no. 3, pp.331-349, May 2008.
DOI: 10.1017/S1461145707007912 PMid: 17655807
- H. Cohen, M. A. Matar, D. Buskila, Z. Kaplan, J. Zohar, “Early post-stressor intervention with high-dose corticosterone attenuates posttraumatic stress response in an animal model of posttraumatic stress disorder,” Biol. Psychiatry., vol.64, no. 8, pp. 708-717, Oct. 2008.
DOI: 10.1016/j.biopsych.2008.05.025 PMid: 18635156
- A. Mazor, M. A. Matar, Z. Kaplan, N. Kozlovsky, J. Zohar, H. Cohen, “Gender-related qualitative differences in baseline and post-stress anxiety responses are not reflected in the incidence of criterion-based PTSD-like behaviour patterns,” World J. Biol. Psychiatry., vol.10, no. 4-3, pp.856-869, Dec. 2009.
DOI: 10.1080/15622970701561383 PMid: 17886167
- J. F. Cryan, A. Markou, I. Lucki, “Assessing antidepressant activity in rodents: recent developments and future needs,” Trends Pharmacol. Sci., vol. 23, no. 5, pp. 238-245, May 2002.
DOI: 10.1016/S0165-6147(02)02017-5
- R. D. Porsolt, G. Anton, N. Blavet, M. Jalfre, “Behavioural despair in rats: a new model sensitive to antidepressant treatments,” Eur. J. Pharmacol., vol. 47, no. 4, pp.379-391, Feb. 1978.
DOI: 10.1016/0014-2999(78)90118-8
- M. J. Detke, M. Rickels, I. Lucki, “Active behaviors in the rat forced swimming test differentially produced by serotonergic and noradrenergic antidepressants,” Psychopharmacology, vol.121, no. 1, pp.66-72, Sep. 1995.
DOI: 10.1007/BF02245592
- G. Piras, O. Giorgi, M. G. Corda, “Effects of antidepressants on the performance in the forced swim test of two psychogenetically selected lines of rats that differ in coping strategies to aversive conditions,” Psychopharmacology, vol. 211, no. 4, pp.403-414, Sep. 2010.
DOI: 10.1007/s00213-010-1904-x PMid: 20589496
- S. Chiba, T. Numakawa, M. Ninomiya, M. C. Richards, C. Wakabayashi, H. Kunugi, “Chronic restraint stress causes anxiety- and depression-like behaviors, downregulates glucocorticoid receptor expression, and attenuates glutamate release induced by brain-derived neurotrophic factor in the prefrontal cortex,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 39, no. 1, pp. 112-119, Oct. 2012.
DOI: 10.1016/j.pnpbp.2012.05.018 PMid: 22664354
- B. Haenisch, A. Bilkei-Gorzo, M. G. Caron, H. Bönisch, “Knockout of the norepinephrine transporter and pharmacologically diverse antidepressants prevent behavioral and brain neurotrophin alterations in two chronic stress models of depression,” J. Neurochem., vol. 111, no. 2, pp. 403-416, Oct. 2009.
DOI: 10.1111/j.1471-4159.2009.06345.x PMid: 19694905 PMCid: PMC2764285
- G. Patki, F. Atrooz, I. Alkadhi, N. Solanki, S. Salim, “High aggression in rats is associated with elevated stress, anxiety-like behavior, and altered catecholamine content in the brain,” Neurosci. Lett., vol. 584, no. 1, pp. 308-313, Jan. 2015.
DOI: 10.1016/j.neulet.2014.10.051 PMid: 25450144 PMCid: PMC4322760
- G. Tanda, E. Carboni, R. Frau, G. Di Chiara, “Increase of extracellular dopamine in the prefrontal cortex: a trait of drugs with antidepressant potential?” Psychopharmacology, vol. 115, no. 1, pp. 285–288, Jun. 1994.
DOI: 10.1007/BF02244785
- K. W. Lange, T. W. Robbins, C. D. Marsden, M. James, A. M. Owen, G. Paul, “L-dopa withdrawal in Parkinson`s disease selectively impairs cognitive performance in tests sensitive to frontal lobe dysfunction,” Psychopharmacology, vol. 107, no. 2, pp. 394–404, Jun. 1992.
DOI: 10.1007/BF02245167
- M. Rusnák, R. Kvetnanský, J. Jeloková, M. Palkovits, “Effect of novel stressors on gene expression of tyrosine hydroxylase and monoamine transporters in brainstem noradrenergic neurons of long-term repeatedly immobilized rats,” Brain Res., vol. 899, no. 1-2, pp 20-35, Apr. 2001.
DOI: 10.1016/S0006-8993(01)02126-6
- B. E. Leonard, “Stress, norepinephrine and depression,” J. Psychiatry Neurosci., vol. 26, pp.11-16, 2001.
PMCid: PMC2553257
- H. Eichenbaum, “Hippocampus: cognitive processes and neural representations that underlie declarative memory,” Neuron, vol. 44, no. 1, pp.109-120, Sep. 2004.
DOI: 10.1016/j.neuron.2004.08.028 PMid: 15450164
- Y. C. Tse, I. Montoya, A. S. Wong, A. Mathieu, J. Lissemore, D. C. Lagace, T. P. Wong, “A longitudinal study of stress-induced hippocampal volume changes in mice that are susceptible or resilient to chronic social defeat,” Hippocampus, vol. 24, no. 9, pp.1120-1128, Sep. 2014.
DOI: 10.1002/hipo.22296 PMid: 24753271
|