Vol. 2, 2017

Radiation Effects


Mariia Shilina, Zoya Kovaleva, Nikolay Nikolsky, Tatiana Grinchuk

Pages: 155-158

DOI: 10.21175/RadProc.2017.31

The aim of this study was the cytogenetic assay of endometrial mesenchymal stem cells (eMSC) in vitro after exposure to sublethal dose of X-rays and sublethal heat shock (HS). For the analysis of chromosomes we used the G-banding technique. We showed that both types of stress caused similar changes in eMSC karyotype structure. In both cases 80% of the cell population had karyotype abnormalities. The main types of rearrangements were aneuploidy and chromosomal breaks. Chromosomes 1 and 4 were involved in breaks more often than other chromosomes. The number of chromosomes involved in the restructuring as a result of HS was more than after X-rays. eMSC survived stress entered the replicative senescence in different time: at the 4th passage after X-rays and 20th passage after heat shock.
  1. B. V. Harmon, A. M. Corder et al., “Cell death induced in a murine mastocytoma by 42-47 degrees C˚ heating in vitro: evidence that the form of death changes from apoptosis to necrosis above a critical heat load,” Int. J. Radiat. Biol., vol. 58, no. 5, pp. 845 – 858, May 1990.
    DOI: 10.1080/09553009014552221
    PMid: 1977828
  2. R. K. Gupta, U. K. Srinivas, “Heat shock induces chromosomal instability in near-tetraploid embryonal carcinoma cells,” Cancer Biol. Ther., vol. 7 no. 9, pp. 1471 – 1480, Sep. 2008.
    DOI: 10.4161/cbt.7.9.6428
    PMid: 18769133
  3. L. L. Alekseenko, V. I. Zemelko et al., “Heat shock induces apoptosis in human embryonic stem cells but a premature senescence phenotype in their differentiated progeny,” Cell Cycle, vol. 11, no. 17, pp. 3260 – 3269, Aug. 2012.
    DOI: 10.4161/cc.21595
    PMid: 22895173
    PMCid: PMC3466525
  4. T. M. Grinchuk, M. A. Shilina, L. L. Alekseenko, “Long-term cultivation of Chinese hamster fibroblasts V-79 RJK under elevated temperature results in karyotype destabilization,” Cell and Tissue Biology, vol. 9, no. 2, pp. 119 – 126, Mar. 2015.
    DOI: 10.1134/S1990519X15020078
  5. L. Stoilov, M. Georgieva, V. Manova, L. Liu, K. Gecheff, “Karyotype reconstruction modulates the sensitivity of barley genome to radiation-induced DNA and chromosomal damage,” Mutagenesis, vol. 28, no. 2, pp. 153 – 160, Mar. 2013.
    DOI: 10.1093/mutage/ges065
    PMid: 23221036
  6. M. Nakano, Y. Kodama et al., “Detection of stable chromosome aberrations by FISH in A-bomb survivors: Comparison with previous solid Giemsa staining data on the same 230 individuals,” International Journal of Radiation Biology, vol. 77, no. 9, pp. 971 – 977, Sep. 2001.
    DOI: 10.1080/09553000110050065
    PMid: 11576457
  7. Y. Kodama, D. Pawel, et al., “Stable chromosome aberrations in atomic bomb survivors: Results from 25 years of investigation,” Radiation Research, vol. 156, no. 4, pp. 337 – 346, Jun. 2001.
    DOI: 10.1667/0033-7587(2001)156[0337:SCAIAB]2.0.CO;2
  8. K. Ohtaki, Y. Kodama et al., “Human fetuses do not register chromosome damage inflicted by radiation exposure in lymphoid precursor cells except for a small but significant effect at low doses,” Radiat. Res., vol. 161, no. 4, pp. 373 – 379, Oct. 2004.
    DOI: 10.1667/3147
    PMid: 15038761
  9. P. Bhatti, M. M. Doody, “Increased frequency of chromosome translocations associated with diagnostic X-ray examinations,” Radiat. Res., vol. 170, no. 2, pp. 149 – 155, Aug. 2008.
    DOI: 10.1667/RR1422.1
    PMid: 18666821
    PMCid: PMC2766815
  10. C. Plamadeala, A. Wojcik, C. Dorina, “Micronuclei versus chromosomal aberrations induced by X-ray in radiosensitive mammalian cells,” Iran J. Public Health, vol. 44, no. 3, pp. 325 – 331, 2015.
    PMid: 25905075
    PMCid: PMC4402410
  11. В. И. Земелько, Т. М. Гринчук и другие, “Мультипотентные мезенхимные стволовые клетки десквамированного эндометрия. Выделение, характеристика и использование в качестве фидерного слоя для культивирования эмбриональных стволовых линий человека,” Цитология, т. 53, но. 12, стр. 919 – 929, 2011. (V. I. Zemel’ko, T. M. Grinchuk et al., “Multipotent mesenchymal stem cells of desquamated endometrium: isolation, characterization and use as feeder layer for maintenance of human embryonic stem cell lines,” Tsitologiya, vol. 53, no. 12, pp. 919 – 929, 2011.)
    PMid: 22359950
  12. С. Е. Мамаева, Атлас хромосом постоянных клеточных линий человека и животных, Москва, Россия: Научный Мир, 2002. (S. E. Mamaeva, Atlas chromosomes permanent cell lines of human and animals, Moscow, Russia: Sci. World, 2002.) ISCN 1995: an International system for human cytogenetic nomenclature, F. Mitelman, Ed., Basel, Switzerland: Karger, 1995.
  13. G. J. Todaro, H. Green, “Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines,” J. Cell Biol., vol. 17, no. 2, pp. 299 – 313, May, 1963.
    DOI: 10.1083/jcb.17.2.299
    PMid: 13985244
    PMCid: PMC2106200
  14. S. R. Romanov, B. K. Kozakiewicz, “Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes,” Nature, vol. 409, no. 6820, pp. 633 – 637, Feb. 2001.
    DOI: 10.1038/35054579
    PMid: 11214324
  15. F. Miura, N. Kawaguchi, “A large-scale full-length cDNA analysis to explore the budding yeast transcriptome,” Proc. Natl. Acad. Sci. USA, vol. 103, no. 47, pp. 17846 – 17851, Nov. 2006.
    DOI: 10.1073/pnas.0605645103
    PMid: 17101987
    PMCid: PMC1693835
  16. N. I. Enukashvily, R. Donev, I. S. R. Waisertreiger, O. I. Podgornaya, “Human chromosome 1 satellite 3 DNA is decondensed, demethylated and transcribed in senescentcells and in A431 epithelial carcinoma cells,” Cytogenetic and Genome Research, vol. 118, no. 1, pp. 42 – 54, Sep. 2007.
    DOI: 10.1159/000106440
    PMid: 17901699
  17. A. Eymery, M. Callanan, C. Vourc’h, “The secret message of heterochromatin: New insights into the mechanisms and function of centromeric and pericentric repeat sequence transcription,” Int. J. Dev. Biol., vol. 53, no. 2-3, pp. 259 – 268, 2009.
    DOI: 10.1387/ijdb.082673ae
    PMid: 19412885
  18. S. Knehr, H. Zitzelsberger, H. Braselmann, U. Nahrstedt, M. Bauchinger, “Chromosome analysis by fluorescence in situ hybridisation: further indications for a non-DNA-proportional involvement of single chromosomes in radiation-induced structural aberrations,” Int. J. Radiat. Biol.,no. 70, no. 4, pp. 385 – 392, Oct. 1996.
    DOI: 10.1080/095530096144851
    PMid: 8862449
  19. J. J. W. A. Boei, S. Vermeulen, A. T. Natarajan, “Different involvement of chromosomes 1 and 4 in the formation of chromosomal aberrations in human lymphocytes after X-irradiation,” Int. J. Radiat. Biol., vol.72, no. 2, pp. 139 – 145, Aug. 1997.
    DOI: 10.1080/095530097143356
    PMid: 9269306
  20. G. Stephan, S. Pressl, “Chromosome aberrations in human lymphocytes analysed by fluorescence in situ hybridisation after in vivo irradiation, and in radiation workers, 11 years after an accidental radiation exposure,” Int. J. Radiat. Biol., vol. 71, no. 3, pp. 293 – 299, Mar. 1997.
    DOI: 10.1080/095530097144175
    PMid: 9134019
  21. А. Н. Богомазова, “Изучение стабильных и нестабильных хромосомных аберраций у лиц, пострадавших в результате аварии на ЧАЭС, в отдаленный пострадиационный период,” Канд. наук диссертация, МЗ РФ Центр рентгенорадиологии, Санкт-Петербург, Россия, 2000. (A. N. Bogomazova, “The study of stable and unstable chromosomal aberrations in persons affected by the Chernobyl accident in the remote post-radiation period,” Sci. Can. Dissirtation, MH RF Center for X-Ray Radiography, St-Petersburg, Russia, 2000.)