www.rad-proceedings.org

OXIDATIVE DISSOLUTION OF TRIURANIUM OCTAOXIDE IN HYDROXIDE-PEROXIDE MEDIA

N.M. Chervyakov^{1,2}, A.V. Boyarintsev^{1,2*}, I.A. Teplov^{1,2}, N.D. Chalysheva^{1,2}, S.I. Stepanov^{1,2}

¹Ozersk Institute of Technology, Ozersk, Russia ²Mendeleev University of Chemical Technology, Moscow, Russia

Abstract. The article presents the results of a kinetic study of oxidative dissolution of powdered triuranium octoxide samples in the aqueous mixture NaOH – H_2O_2 . It was found that the concentration of the oxidant/complexing reagent (H_2O_2) in 1.0 mol/L NaOH solution determines the chemistry of the process and influence on the kinetic of U_3O_8 oxidative dissolution. The rate and completeness of U_3O_8 dissolution have also been shown to depend on the physical properties of the initial oxide powder and alkaline solution temperature. Process rate constant values for all studied conditions are calculated. The calculated value of the apparent activation energy was 47 kJ/mol (U_3O_8 powder sample obtained at 480°C) and 33.8 kJ/mol (U_3O_8 powder sample obtained at 600°C), which corresponds to the limitation of the process by a chemical reaction. Based on the results obtained, the conditions for the quantitative dissolution of U_3O_8 in NaOH – H_2O_2 solutions were determined.

Keywords: triuranium octoxide, uranium dioxide, oxidative dissolution, hydrogen peroxide, sodium hydroxide

1. Introduction

The direction of spent nuclear fuel (SNF) reprocessing in carbonate or alkaline media is related to oxidative dissolution step and further partitioning of carbonate/bicarbonate or carbonate-alkaline multicomponent radioactive solutions and considered as an alternative to nitric acid-based hydro-chemical reprocessing in various options of the PUREX process [1]-[7].

Hydrogen peroxide (H_2O_2) is considered as the most suitable oxidizer of U(IV) when UO₂-based or voloxidized SNF (in the U₃O₈ form) is dissolving. The applying of H_2O_2 in the oxidative dissolution process makes it possible to quickly and quantitatively dissolve uranium dioxide (UO₂) or triuranium octoxide (U₃O₈) in carbonate media due to effective oxidation and the formation of highly soluble mixed uranyl(VI) peroxocarbonate species [8]–[10].

The potential for application of H_2O_2 to dissolve metallic uranium [11]–[14], UO_2 and uranium mononitride (UN) [15,16] in solutions of alkali-metal hydroxides (LiOH, NaOH, KOH) was confirmed.

In the presence of CO₃²⁻ or OH⁻ ions, stable soluble mixed peroxo-carbonate(hydroxide) species and anionic uranyl(VI) peroxide cage clusters are formed. The high solubility of these species makes it possible to develop alternative non-acidic approaches to SNF reprocessing and also has a significant effect on the migration of uranium in groundwater during the storage of high-level nuclear waste.

In the ternary $U(VI) - OH^- - O_2{}^{2-}$ system monomeric species $[UO_2(OH)(O_2)]^-$ (predominant in the region from 9.5 to 11.5), $[(UO_2)_2(OH)(O_2)_2]^-$ (found in significant amounts at pH < 10.5) [17,18], $[UO_2(OH)_2(O_2)]^{2-}$, $[UO_2(OH)_2(O_2)_2]^{4-}$ (pH = 12) [19],

 $\begin{array}{lll} [(UO_2)(H_2O)_2(O_2)_2]^{2-}, & [(UO_2)(H_2O)(OOH)(O_2)_2]^{3-}, \text{ and} \\ [(UO_2)(OOH)(O_2)_2]^{3-} & (pH=11.62) & [20] & \text{were} \\ \text{identified. In solutions with high concentrations of} \\ MOH (where M is Li^+, Na^+, K^+) & \text{and } H_2O_2, \text{ negatively} \\ \text{charged} & U(VI) & \text{peroxide} & \text{aqueous} & \text{macroanions} \\ [(UO_2)(O_2)_{1.5}]_{20}^{20-}, & [(UO_2)_{28}(O_2)_{42}]^{28-}, \\ [(UO_2)(O_2)(OH)]_{24}^{24-}, & [(UO_2)_{32}(O_2)_{40}(OH)_{16}]^{32-} & \text{are} \\ \text{formed} & [15,16,21]. \end{array}$

The concentration of H_2O_2 directly affects the formation and decomposition of highly soluble uranyl(VI) peroxide cage clusters existing in the solutions as aqueous macroanions. Uranyl(VI) peroxide cluster formation cannot proceed without an excess of H_2O_2 .

Lower concentrations (less than 0.1 mol/dm³) of H_2O_2 and hydroxide reduce the effectiveness dissolution of UO_2 and UN and tend to form less soluble simple uranyl(VI) peroxide species ([$UO_2(O_2)_3$]⁴⁻, [$(UO_2(O_2)_2)_4$]⁸⁻, or [$(UO_2(O_2)_2)_5$]¹⁰⁻) rather than highly soluble peroxide clusters [15].

In the absence of a sufficient concentration of alkali cations, the interaction of peroxide with UO $_2$ can lead to the formation of insoluble secondary phases such as studtite ([(UO $_2$)(O $_2$)(H $_2$ O) $_2$]·2(H $_2$ O)) or metastudtite ([(UO $_2$)(O $_2$)]·2(H $_2$ O)) [22]–[25]. The interaction of studtite with H $_2$ O $_2$ may be accompanied by the formation of uranyl(VI)–peroxide complexes [UO $_2$ O $_2$] $_2$, [UO $_2$ (O $_2$) $_2$] $_2$ - and [UO $_2$ (O $_2$) $_3$] $_4$ - [26].

Thus, H₂O₂ affects the release of uranium from SNF by forming solid phases and/or soluble uranyl(VI) peroxide species. In this case, the fundamental importance for the development of oxidative dissolution processes of uranium oxides (UO₂, U₃O₈) in hydroxide systems is redox reactions, complexation, and polymerization processes involving peroxide ion.

_

^{*} aboyarincev@muctr.ru

The study of the kinetic characteristics of U_3O_8 oxidative dissolution processes in hydroxide-peroxide solutions is an important current task and particular importance for the development of safer and simple systems for the extraction of uranium from SNF and radioactive waste.

The purpose of this research was to study the features of powdered U_3O_8 oxidative dissolution process and determine the conditions for its complete dissolution in sodium hydroxide solution in the presence of hydrogen peroxide.

2. Materials and methods

Solid NaOH and 30 % (9.8 mol/L) aqueous solution of $\rm H_2O_2$ of the chemically pure grade were used.

Uranium dioxide powder as a starting material was used. The composition of the initial UO₂ powder, according to the X-ray diffraction (XRD) analysis corresponded to UO₂.25 (PDF-2/2010 № 20-1344). The specific surface area (SSA) value, calculated using the Brunauer, Emmett, and Teller (BET) method for the UO₂.25 powder sample was 3.3 m²/g. Powdered

samples of $\rm U_3O_8$, were obtained by heat treatment of the powdered $\rm UO_{2.25}$ in the air atmosphere for 120 min in the calcinations temperature (t) range from 480 to 1200°C. The heat treatment mode was as follows: 120 min of heating – 120 min of isothermal exposure – slow cooling together with the furnace. The heat treatment products were fine crystalline powders, whose colour, depending on the treatment temperature, ranged from olive green to black. In all cases, the final heat-treated product for $\rm UO_{2.25}$ from 480 to 1200°C was $\rm U_3O_8$ (PDF-2/2010 Nº 76-1850). Table 1 shows the SSA values for $\rm U_3O_8$ powder samples.

Table 1. Data on the specific surface area of U_3O_8 powder samples.

t, °C	480	600	800	1000	1200
SSA_{BET} , m^2/g	3.8	3.7	1.8	0.8	0.1

Figure 1 shows the micrographs for the UO_2 (1,2) and U_3O_8 (3–12) powder samples obtained with a scanning electron microscope (SEM).

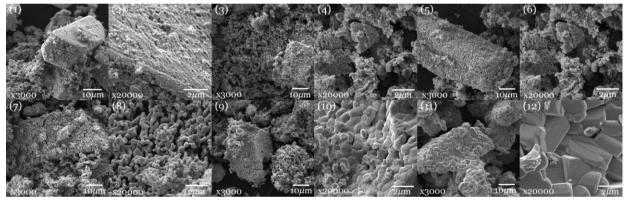


Figure 1. SEM micrographs of the initial UO_2 powder sample (1,2) and U_3O_8 powder samples, were obtained at 480° C (3,4), 600° C (5,6), 800° C (7,8), 1000° C (9,10), and 1200° C (11,12)

Table 2. Particle-size distribution of UC	O _{2.25} and U ₃ O ₈ p	owder samples.
---	---	----------------

Table 2.1 article-size distribution of $OO_{2.25}$ and $O_{3}O_{8}$ powder samples.						
Size range,	Fraction (% by mass)					
μm	$UO_{2.25}$	U ₃ O ₈ (480°C)	U ₃ O ₈ (600°C)	U ₃ O ₈ (800°C)	U ₃ O ₈ (1000°C)	U ₃ O ₈ (1200°C)
1-2	35.31	22.78	24.93	19.68	14.27	8.91
2-3	20.67	10.59	10.40	9.15	9.04	5.79
3-4	11.22	6.53	5.78	5.19	6.16	4.83
4-5	6.77	5.38	4.25	3.89	4.80	3.93
5-6	6.76	5.62	5.28	4.54	3.63	2.14
6-7	2.90	4.06	4.17	3.28	3.04	2.41
7-8	1.87	3.55	3.02	2.53	3.57	4.24
8-9	4.48	4.17	3.12	3.04	3.85	4.27
9-10	5.63	4.56	3.83	3.42	3.35	4.27
10-20	4.40	25.83	27.21	18.04	19.09	21.20
20-30	0.00	6.92	8.02	27.19	29.03	32.90
30-40	0.00	0.00	0.00	0.05	0.16	5.11
Total	100.00	100.00	100.00	100.00	100.00	100.00

An increase in the calcination temperature of the UO_{2.25} initial powder leads to increasing the quantity of particle size fraction 10–40 μ m and reducing the quantity of particle size fraction 1–6 μ m for the U₃O₈ samples (see Table 2). Particle size distribution (*D*50) for UO_{2.25} and U₃O₈ samples, obtained at 480, 600, 800, 1000, 1200°C was 2.6, 5.8, 5.9, 8.6, 9.5, and 11.3 μ m, respectively.

The process of U_3O_8 oxidative dissolution was carried out in a 100 mL jacketed stirred stainless steel cell. The temperature was maintained with an accuracy of $\pm 0.1^{\circ}C$. The mixing of the suspension was carried out with a magnetic stirrer. All experiments were performed at the solid-to-liquid ratio (S/L) equal 1/50.

The content of U(VI) in the aqueous solutions with concentration over 1.0 g/L was established by titration, using 8.4 mmol/L solution of ammonium vanadate as the titrant and diphenylamine-4-sulfonic acid sodium salt as the indicator [27]. The content of U(VI) in the solutions with a concentration lower than 1.0 g/L was established by the spectrophotometric method with Arsenazo III, per the absorbance spectra of the greenblue complex compound arsenazo-uranyl ($\lambda_{max} = 651$ nm, detection limit ~0.025-0.05 μ gU/L) [28]. Before analysis, all liquid samples were centrifuged for 10 min at 1500 rpm.

The value of $\rm U_3O_8$ dissolution yield ($\alpha(\rm U_3O_8)$) was calculated by the following equation: $\alpha(\rm U_3O_8)=(M_\tau/M_i)\cdot 100$ where M_i is the initial quantity of the $\rm U_3O_8$. The M_τ value was calculated based on the experimentally determined concentration of U(VI) in the aqueous phase. The relative error in the determination of U(VI) concentration in alkaline solutions was 0.5–5.0 %. When the $\rm U_3O_8$ powder sample was completely dissolved in NaOH solution (S/L = 1/50), the U(VI) concentration was equal to 17 g/L.

Concentrations of H_2O_2 from were measured spectrophotometrically using UV-vis HP Diode Array Spectrophotometer 8452A with a one to 10 mm quartz cuvette at 350 nm [29] or titrimetrically [30].

The phase composition of UO_{2.25} and U₃O₈ powders was determined by XRD. Diffraction patterns were recorded by D2 PHASER (Bruker, Germany).

Microscopic study of samples was performed with the Vega3 scanning (raster) electron microscope (Tescan, Czech Republic).

The specific surface area was calculated by the BET method using QuadraWin software (version 5.02) based on an argon gas adsorption isotherm on test powder samples, obtained on a Quadrasorb Kr/SI device (Quantachrome Instruments, USA).

3. RESULTS AND DISCUSSION

To remove volatile and gaseous fission products (FPs) before the SNF oxidative dissolution step, it is proposed to carry out volume oxidation (voloxidation) [31]. The voloxidation temperature, depending on the task, can vary from 480 to 1200 $^{\circ}$ C. As a result, UO₂, the main component of the spent fuel composition, transforms into U₃O₈.

To maintain the required redox potential value in the alkaline solutions and concentration of complexing peroxide ligand, is necessary, excessive and/or fractional feeding of $\rm H_2O_2$ shall be used [32]. At fractional feeding, a fresh portion of the initial 30% $\rm H_2O_2$ aqueous solution should be added every 10 min in 1.0 mol/L NaOH solution.

It was found, that in the case of a single addition of the stoichiometric amount of H₂O₂ (in terms of U(IV) oxidation and the formation of mixed peroxidehydroxide complex anion $[UO_2(OH)_2(O_2)_2]^{4-}$ [19]), the completeness of oxidation of U(IV) to U(VI) and, accordingly, the completeness of dissolution of the U₃O₈ powder samples is not achieved. This is due to decomposition and a decrease in the concentration of the oxidizer/ligand in an alkaline solution. As is known [33], H₂O₂ is an unstable compound whose decomposition is promoted by increasing pH, temperature and by the presence of catalytic metal ions (Mn, Fe, Cu, Pb, Ag, Pt, and others). The rate of H₂O₂ decomposition in aqueous solutions of NaOH is one order of magnitude lower compared to solutions of NaHCO₃ and Na₂CO₃ [33,34]. Increasing the concentration of NaOH, pH and temperature accelerates the decomposition of H2O2 in alkaline solutions. Maintaining the required concentration of H₂O₂ in an alkaline solution during oxidative dissolution of uranium oxides is a key condition for achieving high process rate, completeness of dissolution of the oxide and stabilization of U(VI) in an alkaline solution.

In the case of oxidative dissolution of powdered U₃O₈ samples, obtained at different temperatures (480, 600, 800, 1000, and 1200°C) in aqueous solutions of 1.0 mol/L NaOH - 0.1 mol/L H₂O₂ in the temperature range of 25-75°C and fractional supply of H₂O₂, the completeness of dissolution was achieved at 75°C only for U₃O₈(480°C) powder sample (Fig. 2). When the dissolution of U₃O₈(1200°C) powder sample under comparable conditions, the $\alpha(\bar{U_3}O_8)$ value did not exceed 75±3 %, and in the case of U₃O₈(800°C) or $U_3O_8(1000^{\circ}C)$ powder samples about $85-85\pm2-3\%$. For $U_3O_8(480^{\circ}C)$ and $U_3O_8(600^{\circ}C)$ samples, the constancy of U(VI) concentration in alkaline-peroxide solutions after 30-60 min of agitation (Fig. 2) was observed. At the same time, for U₃O₈(1200°C) sample, the maximum concentration and dissolution yield was achieved after 60 min of agitation (Fig. 2), when the last portion (aliquot) of 30 % H₂O₂ was added into the 1.0 mol/L NaOH solution. In this system, the constancy of U(VI) concentration in the mixture NaOH-H₂O₂ after 60 min of agitation was not achieved. For the U₃O₈(600°C) powder sample, the maximum value $\alpha(U_3O_8)$ at 50°C after 60 min of agitation was 97±2 % (Fig. 2). Based on the obtained results (Fig. 2-4), it was found that the temperature of the alkaline solution and the conditions of hightemperature treatment of U₃O₈ are important factors affecting on the rate of U₃O₈ powdered samples oxidative dissolution process. An increase in the temperature of alkaline solution from 25 to 50°C leads to a significant increase of the powdered U₃O₈(480°C) U₃O₈(600°C) sample dissolution rate in 1.0 mol/L NaOH - 0.1 mol/L H₂O₂ solution (Fig. 3,4).

An increase in the temperature of the alkaline solution to 75°C slightly affects on the increase of the $\text{U}_3\text{O}_8(480^{\circ}\text{C})$ oxidative dissolution process rate (Fig. 3). In the case of $\text{U}_3\text{O}_8(600^{\circ}\text{C})$ sample dissolution, an increase in the temperature of the alkaline solution from 50 to 75°C led to a decrease in the $a(\text{U}_3\text{O}_8)$ achieved in 60 min of agitation from 97 ± 3 to 88 ± 3 % (Fig. 4). This may be caused by an increase in the rate of H_2O_2 decomposition in alkaline solution at elevated temperature, which makes it necessary to increase the consumption of H_2O_2 under these conditions.

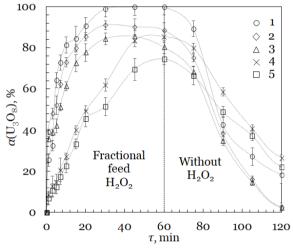


Figure 2. Kinetic curves of powdered U_3O_8 samples dissolution in aqueous 1.0 mol/L NaOH - 0.1 mol/L H_2O_2 solutions at 75°C. Fractional feed H_2O_2 (every 10 min within 60 min). 1, (O) - $U_3O_8(480^{\circ}C)$; 2, (\diamondsuit) - $U_3O_8(600^{\circ}C)$; 3, (\triangle) - $U_3O_8(800^{\circ}C)$; 4, (X) - $U_3O_8(1000^{\circ}C)$; 5, (\square) - $U_3O_8(1200^{\circ}C)$.

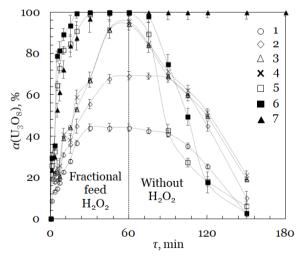


Figure 3. Kinetic curves of powdered $U_3O_8(480^{\circ}C)$ dissolution in aqueous 1.0 mol/L NaOH - 0.1 mol/L H_2O_2 solution. Fractional feed H_2O_2 (every 10 min within 60 min). 1, (O) $-25^{\circ}C$; 2, (�) $-40^{\circ}C$; 3, (\triangle) $-50^{\circ}C$; 4, (X) $-60^{\circ}C$; 5, (\square) $-75^{\circ}C$; 6, (\square) -0.2 mol/L H_2O_2 (fractional feed H_2O_2 every 10 min within 60 min, $75^{\circ}C$; 7, (\triangle) - fractional feed H_2O_2 every 10 min within 150 min, $75^{\circ}C$.

When the concentration of $\rm H_2O_2$ in 1.0 mol/L NaOH solution, it was increased by two times (from 0.1 to 0.2 mol/L), the $\rm U_3O_8(480^{\circ}C)$ powder oxidative 106

dissolution rate increased (Fig. 3, curve 6). Complete dissolution of the powder oxide sample in such conditions was achieved in 15 min (in contrast to 20-30 min in the case of 0.1 mol/L $\rm H_2O_2$). A similar effect is observed when the time interval of 30 % $\rm H_2O_2$ feeding into the solution has been reduced from 10 to 5 min.

It is also obvious that the U_3O_8 dissolution rate in NaOH solutions significantly decreases with a decrease in the SSA of the well crystallized U_3O_8 powder, which was obtained at high temperatures.

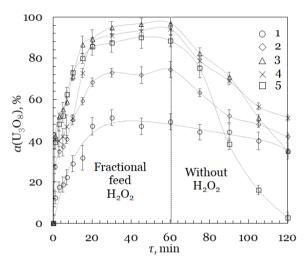


Figure 4. Kinetic curves of powdered U₃O₈(600°C) dissolution in aqueous 1.0 mol/L NaOH − 0.1 mol/L H₂O₂ solution.
Fractional feed H₂O₂ (every 10 min within 60 min). 1, (O) − 25°C; 2, (♦) − 40°C; 3, (△) − 50°C; 4, (X) − 60°C; 5, (□) − 75°C.

After stopping the feed of H₂O₂ into the liquid phase, there is a significant decrease in the U(VI) concentration associated with the decomposition of uranyl(VI) peroxo-hydroxide $[(UO_2)_2(OH)(O_2)_2]^{-},$ [UO2(OH)(O2)]-, $[UO_2(OH)_2(O_2)]^{2-}$, $[UO_2(OH)_2(O_2)_2]^{4-}$ [17]-[19], which are preliminarily formed during U₃O₈ dissolution. These species are stable in alkaline solution only in the presence of excess amount of H2O2. Without an additional supply of H₂O₂ in alkaline U(VI)-containing solution, excess of free H₂O₂ rapidly decomposes as a result of alkaline and temperature exposure. This leads to a shift in the chemical equilibrium in the alkaline system and the decomposition of soluble uranyl(VI) peroxo-hydroxide species with the formation of poorly soluble amorphous deposits (secondary precipitates) presumably polyuranates with a complex structure. The rate of secondary precipitate formation and completeness of U(VI) deposition rise up with increasing alkaline solution temperature. This explains the presence of the right (descending) branch of the kinetic curve, the slope of which depends on the temperature of the alkaline solution (Fig. 2-4).

The pH value of the initial 1.0 mol/L NaOH solution was 13.5. No change in the pH of the liquid phase when the $\rm U_3O_8$ samples were dissolved in the presence of 0.1–0.2 mol/L $\rm H_2O_2$ was observed. After the formation of uranyl(VI) secondary precipitates, the pH of the alkaline solution decreased to 13.2–13.4.

One of the possible products of U(VI) soluble species decomposition in alkaline solutions according to the literature [35] can be polyuranate with clarkeite structure $Na_2U_2O_x(OH)_{14-2x}(H_2O)_q$ or U(VI) peroxides.

Alkaline-peroxide U(VI)-containing solutions after oxidative dissolution were colored in a bright orange color. The absorption spectrum of these solutions is characterized by a continuous absorption region in the wavelength range from 300–450 nm. Characteristic bands of uranyl(VI) (424, 436, 448, 464 nm) are not observed in this region, as in the case of carbonate solutions containing uranyl(VI) tricarbonate complex $[UO_2(CO_3)_3]^{4-}$ (Fig. 5). The structure of the absorption spectrum is similar to the spectra of carbonate solutions containing mixed anionic complexes U(VI) formed by dissolving UO_2 or U_3O_8 in $Na_2CO_3 - H_2O_2$ mixtures [36]–[38].

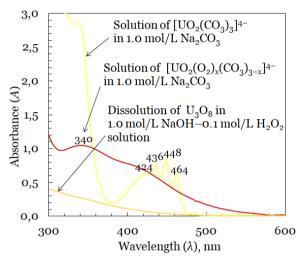


Figure 5. Absorption spectra of carbonate, peroxo-carbonate, and peroxo-hydroxide uranyl(VI) species.

To determine the dissolution rate constants and the rate-limiting stage of process, mathematical modeling of the experimental dependences $\alpha(U_3O_8) = f(\tau)$ with applying of 14 kinetic models (Kolmogorov-Erofeev

 $(-\ln(1-\alpha))^{1/3}=k(\tau-\tau_0);$ **Prout-Tompkins** $\ln(\alpha/(1-\alpha))=k\tau$; first order $\ln(1/1-\alpha)=k\tau$; Yander $(1-(1-\alpha)^{1/3})^2 = k\tau$; Ginstling-Brownstein $1-(2/3)\alpha-(1-(1-\alpha)^{1/3})^2 = k\tau$; α)^{2/3}= $k\tau$; anti-Yander $((1+\alpha)^{1/3}-1)^2=k\tau$; anti-Ginstling $1-(2/3)\alpha-(1+\alpha)^{2/3}=k\tau$; shrinking core $1-(1-\alpha)^{1/3}=k\tau$; exponential law model $\ln(\alpha)=k\tau$; Kroger-Ziegler $(1-(1-\alpha)^{-1/3})^2=k\tau$; Zhuravlev $((1-\alpha)^{-1/3}-1)^2=k\tau$; shrinking cvlinder model $1-(1-\alpha)^{1/2}=k\tau$; shrinking cube model $1-(1-\alpha)^{1/3}=k\tau$; and Valenci $(1-\alpha)\ln(1-\alpha)+\alpha=k\tau$) was carried out [32].

The results of the mathematical modeling showed that the Yander equation satisfactorily describes experimental kinetic curves and can be used for calculation of the oxidative dissolution rate constants (*k*) for studying hydroxide-peroxide system under various conditions. The calculated *k* values determined the initial (ascending) branch (0–30 min of agitation) of the kinetic curve (Fig. 2–4) on the slope values of the anamorphoses in the Yander equation coordinates are shown in Table 3.

It was found that the k value increases from $9 \cdot 10^{-4}$ to $1.8 \cdot 10^{-2}$ min⁻¹ (for $U_3O_8(480^{\circ}C)$) and from $1.5 \cdot 10^{-3}$ to $9.8 \cdot 10^{-3}$ min⁻¹ (for $U_3O_8(600^{\circ}C)$) by increasing the medium temperature from 25 to 75°C. The k value decreased by an order of magnitude when compared dissolution of $U_3O_8(480^{\circ}C)$ ($SSA = 3.8 \text{ m}^2/\text{g}$) and $U_3O_8(1200^{\circ}C)$ ($SSA = 0.1 \text{ m}^2/\text{g}$) powder samples. With an increase in the H_2O_2 concentration from 0.1 to 0.2 mol/L (for $U_3O_8(480^{\circ}C)$ powder dissolution), the k value increases from $1.8 \cdot 10^{-2}$ to $2.8 \cdot 10^{-2}$ min⁻¹.

Based on the slope value of the line dependence in the coordinates $\ln k - 1/T$, the value of the apparent activation energy ($E_{\rm app}$) of the $\rm U_3O_8$ powder samples oxidative dissolution process in 1.0 mol/L NaOH - 0.1 mol/L H₂O₂ solutions with fractional feeding of H₂O₂ was calculated. The $E_{\rm app}$ value at U₃O₈(480°C) powder dissolution was 47 kJ/mol and 33.8 kJ/mol in the case of U₃O₈(600°C) powder dissolution. Estimated $E_{\rm app}$ values indicate that the process occurs in the outer kinetic region.

Table 3. The k values for the oxidative dissolution of powdered U_3O_8 samples in 1.0 mol/L NaOH - 0.1 mol/L H_2O_2 solutions, calculated in the coordinates of the Yander equation. R - correlation coefficient, $t(U_3O_8)$ - calcination temperature

Medium temperature – 75°C						
t(U ₃ O ₈), °C	480	600	800	1000	1200	
$k_{\scriptscriptstyle I}, { m min^{\scriptscriptstyle -1}}$	0.0179	0.0108	0.0074	0.0021	0.0014	
R	0.9809	0.9939	0.9940	0.9515	0.9544	
U ₃ O ₈ (480°C) powder sample						
t, °C	25	40	50	60	75	
k, min⁻¹	0.0009	0.0017	0.0027	0.0029	0.0179	
R	0.9770	0.9705	0.9558	0.9509	0.9787	
$U_3O_8(600$ °C) powder sample						
k, min⁻¹	0.0015	0.0044	0.0136	0.0100	0.0098	
R	0.9646	0.9897	0.9895	0.9895	0.9647	

In the case of dissolution of the $U_3O_8(480^{\circ}\text{C})$ sample with a high SSA value, the process rate depends on the temperature of the medium. A gradual decrease of SSA, an increase in the average particle size and crystallinity of the U_3O_8 powder contribute to the transition of the dissolution process to the external kinetic region, when on the process rate, in addition to temperature, is influenced by the external surface of the solid phase.

It should be noted that the oxidative dissolution rate is significantly affected by the H_2O_2 excess concentration in the NaOH solution. The participation of H_2O_2 in the processes of oxidation and complexation determines the chemistry of U_3O_8 oxidative dissolution in alkali solutions. At the same time, the formation, composition, and stability of soluble uranyl(VI) species in alkaline solutions depends on the concentration of H_2O_2 and alkali (alkali/peroxide molar ratio), nature(type) of the alkali metal (countercation), and temperature of the medium [17]–[21].

4. CONCLUSION

The kinetic study of the oxidative dissolution of U_3O_8 powder samples in aqueous 1.0 mol/L NaOH solutions at the fractional feeding mode of the hydrogen peroxide at various temperatures was carried out. The influence of the U_3O_8 calcination temperature on the oxidative dissolution rate is established. Reducing the specific surface area from 3.8 m²/g ($U_3O_8(480^{\circ}\text{C})$ powder sample) to 0.1–0.2 m²/g ($U_3O_8(1200^{\circ}\text{C})$ powder sample) results in a decrease of the oxidative dissolution rate by one order. For $U_3O_8(480^{\circ}\text{C})$ sample, the complete dissolution in 1.0 mol/L NaOH – 0.1 mol/L H_2O_2 solution at 75°C is achieved for 45 min. At the same time U(VI) concentration in NaOH solution (S/L = 1/50) was 17 g/L.

The formation of soluble uranyl(VI) species, including highly soluble U(VI) peroxide clusters [15,16,21] cannot proceed without an excess of $\rm H_2O_2$. The fundamental importance for the development of processes of oxidative dissolution of uranium oxides in hydroxide systems is redox reactions, complexation, and polymerization processes (formation of highly soluble clusters) involving peroxide ion. In the absence of excess not associated $\rm H_2O_2$, the hydroxide solutions of U(VI) are unstable due to the decomposition of soluble uranyl(VI) species with the formation of poorly soluble amorphous products.

Determination of kinetic parameters of U_3O_8 powders oxidative dissolution in $NaOH-H_2O_2$ solution allowed establishing that the process takes place in the kinetic region (limiting rate stage – chemical reaction). This is confirmed by the influence of temperature on the dissolution rate.

Due to the possibility of achieving high U(VI) concentrations in alkaline solutions, hydroxide-peroxide systems, as well as carbonate-peroxide systems (CARBEX process [4,31,36]), can be considered as basic systems for developing approaches to the SNF dissolution, which, in the future, can be an alternative to existing processing schemes using hot

nitric acid. In particular obtained data makes it possible to develop approaches to the processes of selective leaching of uranium from voloxidized SNF and its hydrolytic reagent-free precipitation from alkaline solutions in the form of a preliminary concentrate purified from the bulk of highly radioactive FPs. Such an approach may be one alternative to replacing the first exhaustive solvent extraction cycle of U(VI) from carbonate solutions after the oxidative dissolution of SNF in the CARBEX process.

Further development of this approach requires optimization of conditions and modes of U_3O_8 oxidative dissolution to achieve complete dissolution of highly calcined U_3O_8 samples and obtain more concentrated U(VI)-containing solutions. It is also necessary to study in more detail the chemistry of peroxide-hydroxide solutions and secondary precipitates, as well as determine the structure and properties of uranyl(VI) peroxide and mixed peroxohydroxide species.

Acknowledgements: The work was carried out with the financial support of the Russian Science Foundation. Grant number 20-63-46006.

REFERENCES

- H. Tomiyasu, Y. Asano, "Environmentally acceptable nuclear fuel cycle development of a new reprocessing system," *Prog. Nucl. Energ.*, vol. 32, no. 3–4, pp. 421–427, 1998. https://doi.org/10.1016/S0149-1970(97)00037-1
- G. S. Goff et al., "Development of a novel alkaline based process for spent nuclear fuel recycling," AIChE Annual Meeting, Nuclear Engineering Division, Salt Lake City (UT), USA, 2007.
 K. W. Kim et al., "A study on a process for recovery of
- K. W. Kim et al., "A study on a process for recovery of uranium alone from spent nuclear fuel in a high alkaline carbonate media", NRC 7, Budapest, Hungary, 2008.
- carbonate media", NRC 7, Budapest, Hungary, 2008.
 4. S. I. Stepanov, A. M. Chekmarev, "Concept of spent nuclear fuel reprocessing," Dokl. Chem., vol. 423, pp. 276–278, 2008. https://doi.org/10.1134/S0012500808110037
- C. Z. Soderquist et al., "Dissolution of irradiated commercial UO₂ fuels in ammonium carbonate and hydrogen peroxide," *Ind. Eng. Chem. Res.*, vol. 50, no. 4, pp. 1813–1818, 2011. https://doi.org/10.1021/ie101386n
- https://doi.org/10.1021/ie101386n

 6. N. Asanuma, M. Harada, Y. Ikeda, H. Tomiyasu, "New approach to the nuclear fuel reprocessing in non–acidic aqueous solutions," *J. Nucl. Sci. Technol.*, vol. 38, no. 10, pp. 866–871, 2001.
- https://doi.org/10.1080/18811248.2001.9715107

 7. K. W. Kim et al., "A conceptual process study for recovery of uranium alone from spent nuclear fuel by using high-alkaline carbonate media," *Nucl. Technol.*, vol. 166, no. 2, pp. 170–179, 2009. https://doi.org/10.13182/NT09-A7403
- 8. G.S. Goff et al., "First identification and thermodynamic characterization of the ternary U(VI) species, UO₂(O₂)(CO₃)₂4-, in UO₂-H₂O₂-K₂CO₃ solutions," *Inorg. Chem.*, vol. 47, no. 6, pp. 1984–1990, 2008. https://doi.org/10.1021/ic701775g
- 9. T. Watanabe, Y. Ikeda, "A study on identification of uranyl complexes in aqueous solutions containing carbonate ion and hydrogen peroxide," *Energy Proc.*, vol. 39, pp. 81–95, 2013. https://doi.org/10.1016/j.egypro.2013.07.194

- 10. P. L. Zanonato, P. D. Bernardo, Z. Szabo, I. Grenthe, "Chemical equilibria in the uranyl(VI)-peroxide-carbonate system; identification of precursors for the formation of poly-peroxometallates," *Dalton Transactions*, vol. 41, pp. 11635–11641, 2012. https://doi.org/10.1039/C2DT31282D
- https://doi.org/10.1039/C2DT31282D

 11. R. P. Larsen, "Dissolution of uranium metal and its alloys," *Anal. Chem.*, vol. 31, no. 4, pp. 545–549, 1959. https://doi.org/10.1021/ac50164a026
- D. Dong, G. F. Vandegrift, "Kinetics of dissolution of uranium metal foil by alkaline hydrogen peroxide," Nucl. Sci. Eng., vol. 124, no. 3, pp. 473–481, 1996. https://doi.org/10.13182/NSE96-A17925
- A. V. Mondino, M. V. Wilkinson, A. C. Manzini, "A new method for alkaline dissolution of uranium metal foil", J. Radioanal. Nucl. Chem., vol. 247, pp. 111–114, 2001. https://doi.org/10.1023/A:1006771232672
- C. A. Laue, D. Gates-Anderson, T. E. Fitch, "Dissolution of metallic uranium and its alloys Part I. Review of analytical and process-scale metallic uranium dissolution," *J. Radioanal. Nucl. Chem.*, vol. 261, no. 3, pp. 709–717, 2004.
- 15. S. Hickam et al., "Complexity of uranyl peroxide cluster speciation from alkali-directed oxidative dissolution of uranium dioxide," *Inorg. Chem.*, vol. 57, no. 15, pp. 9296–9305, 2018.
- https://doi.org/10.1021/acs.inorgchem.8b01299

 16. S. Hickam, J. Breier, Y. Cripe, E. Cole, P. C. Burns, "Effects of H₂O₂ concentration on formation of uranyl peroxide species probed by dissolution of uranium nitride and uranium dioxide," *Inorg. Chem.*, vol. 58, no. 9, pp. 5858–5864, 2019.

 https://doi.org/10.1021/acs.inorgchem.9b00231
- 17. P. L. Zanonato, P. D. Bernardo, I. Grenthe, "Chemical equilibria in the binary and ternary uranyl(vi)-hydroxide-peroxide systems," *Dalton Transactions*, vol. 41, pp. 3380–3386, 2012. https://doi.org/10.1039/c1dt11276g
- P. L. Zanonato, P. D. Bernardo, I. Grenthe, "A calorimetric study of the hydrolysis and peroxide complex formation of the uranyl(VI) ion," *Dalton Transactions*, vol. 43, pp. 2378–2383, 2014. https://doi.org/10.1039/c3dt52922c
- 19. S. Meca et al., "Determination of the equilibrium formation constants of two U(VI)-peroxide complexes at alkaline pH", *Dalton Transactions*, vol. 40, pp. 7976–7982, 2011. https://doi.org/10.1039/codt01672a
- P. Miró et al., "Self-assembly of uranyl-peroxide nanocapsules in basic peroxidic environments," *Chemistry*, vol. 22, no. 25, pp. 8571–8478, 2016. https://doi.org/10.1002/chem.201600390
- 21. E. M. Wylie et al., "Processing used nuclear fuel with nanoscale control of uranium and ultrafiltration," *J. Nucl. Mater.*, vol. 473, pp. 125–130, 2016. https://doi.org/10.1016/j.jnucmat.2016.02.013
- 22. W. Walenta, "On studtite and its composition," *Am. Mineral.*, vol. 59, pp. 166–171, 1974.
- M. Deliens, P. Piret, "Metastudtite, UO₄·2H₂O, a new mineral from Shinkolobwe, Shaba, Zaire," Am. Mineral., vol. 68, pp. 456–458, 1983.
- 24. R. J. Finch, R. C. Ewing, "The corrosion of uraninite under oxidizing conditions," *J. Nucl. Mater.*, vol. 190, pp. 133–156, 1992. https://doi.org/10.1016/0022-3115(92)90083-W

- 25. P. C. Burns, K. A. Hughes, "Studtite, [(UO₂)(O₂)(H₂O)₂](H₂O)₂: The first structure of a peroxide mineral," *Am. Mineral.*, vol. 88, no. 7, pp. 1165–1168, 2003. https://doi.org/10.2138/am-2003-0725
- A. I. Moskvin, "The question of the complex formation of U(VI) and Np(IV) with hydrogen peroxide and of Np(IV) in oxalate solutions," *Radiokhimiya*, vol. 10, pp. 13–21, 1968.
- В. К. Марков, А. В. Виноградов, С. В. Елинсон, Уран, методы его определения, Москва, Россия: Атомиздат, 1960.
 (V. K. Markov, E. A. Vernyi, A. V. Vinogradov, Uranium, methods of its definition, Moscow, Russia: Atomizdat, 1960.)
- 28. Analytical Spectroscopy Library Volume 10: Separation, preconcentration, and spectrophotometry in inorganic analysis, Z. Marczenko, M. Balcerzak, Eds., 1st ed., New York (NY), USA: Elsevier Science, 2000.
- 29. J. A. Ghormley, A. C. Stewart, "Effects of γ-radiation on ice," *J. Am. Chem. Soc.*, vol. 78, no. 13, pp. 2934–2939, 1956. https://doi.org/10.1021/ja01594a004
- 30. A. I. Vogel, A textbook of quantitative inorganic analysis, London, UK: Lowe & Brydone Ltd., 1960.
- 31. S. I. Stepanov, A. V. Boyarintsev, "Reprocessing of spent nuclear fuel in carbonate media: Problems, achievements, and prospects," *Nucl. Eng. Technol.*, vol. 54, no. 7, pp. 2339–2358, 2022. https://doi.org/10.1016/j.net.2022.01.009
- N. M. Chervyakov, A. V. Boyarintsev, A. V. Andreev, S. I. Stepanov, "Oxidative dissolution of triuranium octoxide in carbonate solutions," in *Proc. 9th Int. Conf.* on Radiation in Various Fields of Research (RAD 2021), Herceg Novi, Montenegro, 2021, pp. 68–74. https://doi.org/10.21175/RadProc.2021.13
- 33. H. P. B. Lee, A-H. A. Park, C. W. Oloman, "Stability of hydrogen peroxide in sodium carbonate solutions," *Tappi Journal*, vol. 83, no. 8, 2000.
- 34. H. U. Suess, J. D. Kronis, "Impact of carbonate ions on H₂O₂ performance in pulp bleaching," *Intn. Pulp Bleaching Conf.*, Portland (OR), United States, 2002.
- 35. K. W. Kim et al., "Precipitation characteristics of uranyl ions at different pHs depending on the presence of carbonate ions and hydrogen peroxide," Env. Sci. Technol., vol. 43, no. 7, pp. 2355–2361, 2009. https://doi.org/10.1021/es802951b
- 36. S. M. Peper et al., "Kinetic study of the oxidative dissolution of UO₂ in aqueous carbonate media," *Ind. Eng. Chem. Res.*, vol. 43, no. 26, pp. 8188–8193, 2004. https://doi.org/10.1021/ie049457y
- 37. D. Y. Chung et al., "Oxidative leaching of uranium from SIMFUEL using Na₂CO₃-H₂O₂ solution," *J. Radioanal. Nucl. Chem.*, vol. 284, pp. 123–129, 2010. https://doi.org/10.1007/s10967-009-0443-6
- 38. S. I. Stepanov, A. V. Boyarintsev, A. M. Chekmarev, "Physicochemical foundations of spent nuclear fuel leaching in carbonate solutions," *Dokl. Chem.*, vol. 427, pp. 202–206, 2009. https://doi.org/10.1134/S0012500809080060