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Abstract. In this study, the material was formed by adding 5 wt% boron into high density polyethylene material to be 
used in applications containing neutrons. This paper discusses the neutron and gamma rays shielding characteristics 
of HDPE-based composite materials containing 5% HDPE/colemanite (HDPE/C), 5% HDPE/ulexite (HDPE/U), and 5% 
HDPE/B2O3 (HDPE/B) by weight additives were fabricated. The characterizations of these shielding materials were 
determined using scanning electron microscopy (SEM), x-ray diffraction (XRD). The Total macroscopic cross-section 
of each composite was determined using a 239Pu-Be (α, n) neutron source. 
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1. INTRODUCTION 

Neutron radiation can be used in various 
applications like; neutron radiography studies, 
activation analysis, medical radiotherapy, 3D imaging 
technology and more [1-2]. Although neutrons are 
ionizing type of radiation, their interaction with cells 
and tissues in the human body can often cause 
radiological activation and permanent damage [3]. The 
radiation weighting factor of neutrons of about 1 MeV is 
higher than that of photons, charged particles such as 
electrons and protons, and is almost equal to the 
weighting factor of alpha radiation [4]. Subsequently, 
radiation protection safety measures are a priority for 
facilities working with neutrons.  

A good neutron radiation shielding material is 
composed of light elements such as hydrogen (H) and 
carbon (C) to lower neutron energy, and combination of 
elements that have high neutron absorption cross 
section (σabs) such as boron (B), lithium (Li) and 
cadmium (Cd) for neutron capture. Therefore, 
hydrogen-rich polymers can be used to thermalize 
neutrons (at kinetic energy of 0.025 eV 20 0C), neutrons 
whose energy drops to the thermal neutron energy level 
are then captured and absorbed by compounds that 
contains boron. The higher the number of suspended 
neutrons, the better the shield's neutron attenuation 
efficiency [5]. 

The most used polymers for shielding neutrons are 
hydrogen rich polymer materials like polyethylene, 
paraffin, epoxy, polyamide, etc. The most effective one 
among these is HDPE ([C2H4]n) which has a high 
hydrogen content (14% hydrogen by weight), relatively 
high density (0.96 g/cm3), exceptional strength to 
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density ratio, and ability to withstand high 
temperatures (120 0C) [6]. Polyethylene is the most 
popular material for neutron shielding; however, it is 
not preferred to be used in reactors because the heat-
resistant temperature is low. It is mostly used in 
accelerators, research laboratories, hospitals (linac, 
oncology, etc.). Highly efficient thermal neutron 
capturing additives like boron carbide (B4C), boron 
nitride (BN) and boron oxide (B2O3) are mixed into the 
HDPE base. Among the commercially available 
shielding materials, there are; B2O3/paraffin [7-8], 
B2O3/natural rubber (NR) [9], and nano-B4C /high 
density polyethylene (HDPE) [10] composites. 
Nevertheless, B4C and BN are expensive. Therefore, 
focus of current research is on cost-effective, natural 
B2O3 containing minerals such as colemanite, ulexite, 
and borax.  

Colemanite (Ca2B6O11.5H2O) and ulexite 
(NaCaB5O9.8H2O) are among the most important of the 
200 known borate minerals [11-13]. They are used in a 
variety of applications [14], including radiation 
protection, for which there is an extensive literature [15-
21]. Colemanite has a structure that is monoclinic, its 
specific weight is 2.52 g/cm2, and it contains up to 
50.8% B2O3 (15.78% boron) by weight [22-23]. It is 
generally used in glass production, high-tech ceramics 
[24] and as a neutron absorbing material in radiation 
shields [24-32]. Ulexite has a specific weight of 1.96 
g/cm2, contains up to 43% B2O3 (13.34% boron) by 
weight, and is a common sodium-calcium borate 
hydrate mineral which Turkey has a lot of, used to 
produce raw boric acid, boron oxides and sodium 
perborate materials [33].  

In the simulation study, it was observed that the 
neutron absorption rate of HDPE with 5% boron 
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mineral added was better than HDPE, and this rate did 
not change significantly as the additive increased [34].  
In this study, composite materials that are based on 
HPDE, containing 5% colemanite, 5% ulexite and 5% 
B2O3 by weight additives were produced.  These 
shielding materials were studied by using scanning 
electron microscopy (SEM), x-ray diffraction (XRD) 
techniques. The subtraction section of each composite 
was determined using a 239Pu-Be (α,n) neutron source. 

2. MATERIALS AND METHODS  

2.1. Materials 

In this study HDPE was chosen as the matrix 
materials and colemanite, ulexite, glassy boron oxide 
particles were used as filler materials. The commercial 
HDPE polymer with a trade name Petilen YY 1860(O) 
used in this study was in the form of pellets and 
obtained by PETKIM, Petrochemical Holding Inc. 
(Turkey). Its melt index is 7.5 g/10 min at 190 oC, 
density at room temperature is 0.96 gr/cm3 and and 
Vicat softening temperature is 126 oC.  

Colemanite (Ca2B6O11·5H2O), ulexite 
(NaCaB5O9·8H2O) minerals and glassy boron oxide 
(B2O3) compound were supplied by ETI-MADEN 
(Turkey) and were used as received. 

2.2. Sample preparation  

Colemanite, ulexite and B2O3 were dried first in a 
vacuum oven at 80 oC for 36 h. Then HDPE/colemanite 
(HDPE-5C), HDPE/ulexite(HDPE-5U), and 
HDPE/B2O3 (HDPE-5B), composites with 5 weight 
percent were fabricated using a co-rotating twin screw 
extruder (L/D: 40). The temperature profile from feed 
zone to die zone was set at 190, 195, 200, 210 and 215 oC 
while the rotation speed of the screw was fixed at 
120 rpm. The composites were extruded in the form of 
strands through a die into a distilled water bath at room 
temperature and granulated into pellets. Since the 
obtained pellets were moist, they were dried in an oven 
at 80 oC for 24 h. This extrusion process was repeated 
2 times to improve the dispersivity of filler particles in 
the HDPE matrix.  

 

Figure 1. Photograph of doped composite materials produced 
in the form of a 5 mm thick and 7.5 cm diameter disc 

After pelletizing, HDPE/colemanite, HDPE/ulexite, 
and HDPE/B2O3 composites were dried in a vacuum 
oven at 80 oC for 36 h and these dried composites were 
converted into test samples in an injection molding 
machine for neutron absorption testing. The samples 
for neutron absorption test were obtained in form of a 
circular disc with 7.5 cm of diameter and 5 mm of 
thickness. The produced discs are shown in Figure 1. 

2.3. Characterization 

Chemical analyses of the samples were carried out 
using a Perkin Elmer model AA 400 atomic absorption 
spectrometer (AAS) and the results are given in Table 1. 
The density of the composites is determined by 
Archimedes method. In order to determine the 
structure, the HDPE/colemanite, HDPE/ulexite, and 
HDPE/B2O3 composites were characterized using 
PANalytical X’Pert3 Pro X-Ray Diffractometer (XRD) 
using Cu-Ka radiation (λ =1.541874 Å) in a range of  
5 ≤ 2θ ≤ 75 with scan speed of 3o/min. A Zeiss Evo LS10 
scanning electron microscope (SEM) was used to 
observe the dispersion of fillers inside HDPE. The 
cryogenically fractured surface of the samples was used 
for morphology observation and each specimen was 
coated with gold to reduce the charge resulting from 
electron bombardment.  

Table 1. Chemical content of colemanite, ulexite and B2O3 

Component Colemanite Ulexite B2O3 

 Composition (%) 

B2O3 39.2 35.7 78.2 

CaO 28.7 22.4 - 

H2O 22 35 17 

Na2O 1.9 2.7 - 

MgO 2.1 2.5 - 

Others 6.1 1.7 4.8 

2.4. Neutron absorption analysis 

Neutron shielding tests were carried out using a 
Nuclear-Chicago NH3 Howitzer with a 5 Curie 239Pu-Be 
(α,n) isotopic neutron source. The neutron strength, 
which is utilised for the normalization of flux values, 
equals 1.6×106 s−1Ci−1. The energy spectrum 
corresponds to the interval between 0 and 10.5 MeV, 
where the mean energy (Emean) is equal to 4.24 MeV 
[35]. 

The source, 2.59 cm in diameter and 11.2 cm in 
height, is found at the center of the Howitzer, 
surrounded by a paraffin base with a 28.5 cm radius, 
encapsulated with a 0.3 cm thick aluminum drum. An 
empty 3 cm in radius channel connects the source to the 
Howitzer’s exit. A plexiglass rod is connected to the 
source from the top and is used to parallel it to the test 
channel during irradiation testing. Figure 2 shows the 
test setup. Neutrons exit through the test channel 
indicated with '2' where the prepared shielding samples, 
indicated with '3', are positioned. Sample to source 
distance is 29 cm, whereas sample to detector distance 
is 21 cm. Radiation shielding material blocks are used to 
stop neutrons and the accompanying gamma rays from 
exiting the test area [35]. 
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Figure 2. Pu-Be tests setup as seen from above with its main 
components numbered 1 to 5 (a) and the exit channel seen 

from the prospective of the neutron detector. The detector’s 
main body is found under the shielding aligned with the exit 

channel 

For each of the fabricated samples, the neutron 
removal cross-section was determined using the 
following relationship: 

 (1) 

where Σ is the macroscopic removal cross-section, I0 is 
the incident neutron intensity, I is the transmitted 
neutron intensity and x is the sample thickness [28]. 

Neutron intensities, given in counts per second 
(cps), were measured using a Polimaster PM1401K 
neutron detector with an energy sensitivity range of 
0.025 eV to 14 MeV. Once the detector's position was 
fixed, I0 measurements were taken. Then, the 
fabricated disk samples were placed at the exit one by 
one to measure the I's for each of the three mixtures for 
sample thicknesses up to 4 cm. 

3. RESULTS AND DISCUSSION 

3.1. SEM and XRD analysis of HDPE composites 

The SEM images of cryogenically fractured surfaces 
of HDPE composite materials filled with 5wt% 
colemanite, 5wt% ulexite, and 5wt% B2O3 are shown in 
Figure 3 (a), (b), (c), respectively.  

 

Figure 3. The SEM images for 5wt% colemanite (a), 5wt% 
ulexite (b), 5wt% B2O3 (c) filled HDPE, and (d) pure HDPE 

The cryogenically fractured surface of the samples 
was used for morphology observation. SEM images 
show that the colemanite, ulexite and B2O3 additives 
were homogeneously dispersed in the HDPE polymer. 
But, as seen in Fig. 3, the fillers are debonded and 
pulled-out from the HDPE matrix. Besides, some voids 
were seen in composites. These indicate that the filler 
particles are adhered poorly in the HDPE matrix.  

 

Figure 4. The XRD pattern  for (a) 5wt% colemanite,  
(b) 5wt% ulexite and (c) 5wt% B2O3 filled HDPE composites 

As seen in Figure 4, the filler particles are dispersed 
homogeneously and are adhered poorly in the HDPE 
matrix. The XRD patterns for HDPE/colemanite, 
HDPE/ulexite, and HDPE/B2O3 composites are 
illustrated in Figure 4a-c. As illustrated in the XRD 
spectra, the HDPE has a characteristic maximum 
intensity peak at 2θ = 21.470, In addition to the strong 
HDPE peak, some week reflection peaks belonging to 
colemanite, ulexite and B2O3 particles are seen. 



S. Uzun Duran et al., 5% HDPE/boron composites..., RAD Conf. Proc., vol. 6, 2022, 43–48 
 

 46 

3.2. Density and Porosity of HDPE composites 

Experimental and theoretical densities of the HDPE 
composites are listed in Table 2. Experimental densities 
were obtained by using Archimedes’ principle. The 
theoretical density of composites in terms of weight 
fraction were computed using equation  

ρc=1/[(wf/ρf)+(wm/ρm)] (2) 

where, w and ρ represent the weight fraction and 
density respectively. The suffix f, m, and c stand for the 
filler, matrix, and the composite materials respectively 
[36]. In calculation, theoretical densities of colemanite, 
ulexite and B2O3 were taken as 2.42 g/cm3, 2.13 g/cm3 

and 2.17 g/cm3, respectively.  

Table 2. Experimental and theoretical values of HDPE, 

HDPE-5C, HDPE-5U and HDPE-5B composites 

Materials 
Experimental Density 

(g/cm3) 
Theoretical 

Density (g/cm3) 
HDPE 0.9580.01 0.960 

HDPE-5C 0.981 ± 0.01 1.055 
HDPE-5U 1.0010.02 1.046 

HDPE-5B 1.0140.01 1.048 
 

From Table 2, it is clearly seen that theoretical 
density values are higher than experimental density 
values. This difference indicates that HDPE composite 
materials contain some voids and pores in structure.  
The reason for this, might be release of the crystal water 
in colemanite, ulexite and B2O3 when the composites 
are extruded. 

3.3. Neutron absorption test 

In this study, the neutron absorption properties of 
high-density polyethylene materials containing 5% 
boron by weight (ulexite-colemanite-B2O3) were 
determined by using a 239Pu-Be neutron source. 
Figure 5-a gives the neutron transmission I/I0 
(transmitted radiation intensity/initial radiation 
intensity, I/I0 results for the 5% by weight of the borated 
polymer (B-PE) mixtures compared to pure HDPE. 

The relationship between neutron transmission 
ratio and sample thickness of the 5% by weight borated 
polymer mixtures is compared to pure HDPE and their 
corresponding Σtot. 

The highest neutron macroscopic cross section was 
boron oxide, then colemanite, and lastly ulexite.  But all 
of them have better neutron absorption cross section 
than pure HDPE. 

The total macroscopic cross-section (Σ) is the cross 
section used in the calculation of the attenuation of 
neutrons. The total macroscopic cross sections (Σ) for 
239Pu-Be neutron source was derived from Figure 5-b by 
utilizing Eq. (1). The neutron attenuation feature was 
discussed taking into account the total neutron 
attenuation. Total macroscopic cross-sections (Σ) data 
for neutrons presented in Table 3. 

As seen Table 3, All Boron mineral filled HDPE 
composites have higher neutron absorption rate than 
pure HDPE material. In addition, among the 
composites, the best neutron absorption rate is HDPE-
5B composites. As seen in Table 3, the materials with 

the highest macroscopic cross section are HDPE-5B, 
HDPE-5C, HDPE-5U, respectively. All three minerals 
can be used as shielding material in neutron-containing 
applications. 

 

 

Figure 5-a. The relationship between neutron transmission 
ratio and sample thickness of the 5% by weight borated 

polymer mixtures compared to pure HDPE and their 
corresponding Σtot. Figure 5-b. ln(I/I0) as a function of the 

thickness of the studied materials. 

Table 3. Total macroscopic cross-sections (Σ) of of HDPE, 

HDPE-5C, HDPE-5U and HDPE-5B composites. 

Materials Σtot (cm-1) 

HDPE 1.63±0.04 

HDPE-5B 2.05±0.03 

HDPE-5C 1.84±0.03 
HDPE-5U 1.67±0.02 

4. CONCLUSION  

In this study, a shielding material was produced for 
applications containing neutrons by adding 5% boron 
minerals to high density polyethylene material. The 
neutron attenuation properties of the produced 
materials were investigated. 

Among the three borate additives used, B2O3 
showed the best neutron absorption performance, 
followed closely by colemanite. 

The neutron absorption rates of these three 
materials produced are much better than pure high 
density polyethylene material. These three materials 
can be used as neutron absorbing materials. Here, ease 

a 

b 
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of production and place of use come to the fore. It is 
suitable for use in places such as hospitals, neutron 
therapy, laboratories and accelerators rather than 
environments that reach high temperatures. 
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