Vol. 3, 2018

Original research papers



Andjelka Hedrih, Katica (Stevanović) Hedrih

Pages: 225–230

DOI: 10.21175/RadProc.2018.47

The aim of this work is to study how different oscillatory behavior of centrosomes and their mass arrangement affect the kinetic energy of pairs of dyads of sister chromatids in the system of a mitotic spindle during metaphase. The analyses are done through a biomechanical oscillatory model of the mitotic spindle. Analytical expressions for the kinetic energy of the oscillating dyads of sister chromatids are given for the case when the biomechanical system of the mitotic spindle is conservative, linear, and when it oscillates under external single frequency oscillation. Numerical analyses with some approximation for mouse chromosomes are done. Our numerical experiment reveals that the kinetic energy of the oscillating dyads of sister chromatids has an oscillatory character and is affected by the chromosomes’ mass distribution and the frequency of centrosome excitation. The difference in energy distribution regarding different centrosome oscillatory frequencies in the same cell and the mass chromosome distribution may carry additional epigenetic information and could be important for the process of cell differentiation.
  1. A. Weise et al., “Chromosomes in a genome-wise order: evidence for metaphase architecture,” Mol. Cytogenet., vol. 9, no. 36, pp. 1 – 11, Apr. 2016.
    DOI: 10.1186/s13039-016-0243-y
    PMid: 27123045
  2. E. A. Franklin, W. Z. Cande, “Nuclear Organization and Chromosome Segregation,” Plant Cell, vol. 11, no. 4, pp. 523 – 534, Apr. 1999.
    DOI: 10.1105/tpc.11.4.523
    PMid: 10213775
  3. V. Magidson et al., “The Spatial Arrangement of Chromosomes during Prometaphase Facilitates Spindle Assembly,” Cell, vol. 146, no. 4, pp. 555 – 567, Aug. 2011.
    DOI: 10.1016/j.cell.2011.07.012
    PMid: 21854981
    PMCid: PMC3291198
  4. A. N. Hedrih, K. Hedrih, “Resonance as potential mechanism for homolog chromosomes separation trough biomechanical oscillatory model of mitotic spindle,” in Proc. 6th Int. Congress of Serbian Society of Mechanics, Mountain Tara, Serbia, 2017. pp. 1 – 10.
    Retrieved from: https://www.researchgate.net/publication/318113047_Resonance_as_potential_mechanism_for_homologue_chromosomes_ separation_trough_biomechanical_oscillatory_model_of_mitotic_spindle;
    Retrieved on: Jun. 3, 2018
  5. I. V. Maly, “Systems biomechanics of centrosome positioning A conserved complexity,” Commun. Integr. Biol., vol. 4, no. 2, pp. 230 – 235, Mar. 2011.
    DOI: 10.4161/cib.4.2.14548
    PMid: 21655449
    PMCid: PMC3104588
  6. I. Gasic, P. Nerurkar, P. Meraldi, “Centrosome age regulates kinetochore–microtubule stability and biases chromosome mis-segregation,” Elife, vol. 4, pp. 1 – 15, Aug. 2015.
    DOI: 10.7554/eLife.07909
    PMid: 26287477
    PMCid: PMC4579388
  7. M. Ueda, R. Graf, H. K. Macwilliams, M. Schliwa, U. Euteneuer, “Centrosome positioning and directionality of cell movements,” PNAS, vol. 94, no. 18, pp. 9674 – 9678, Sep. 1997.
    DOI: 10.1073/pnas.94.18.9674
    PMid: 9275182
  8. P. T. Conduit, “The dominant force of Centrobin in centrosome asymmetry,” Nat. Cell. Biol., vol. 15, no. 3, pp. 235 – 237, Mar. 2013.
    DOI: 10.1038/ncb2704
    PMid: 23449145
  9. A. Hedrih, “Relation between centrosome excitation and oscillatory energy of mitotic spindle in metaphase trough biomechanical oscillatory model of mitotic spindle” in Book of Abstr. 4th Int. Seminar “Nonlinear Phenomenology Advances”, Saint Petersburg, Russia, 2017.
  10. Hedrih, K. Hedrih. “Influence of mass chromosome distribution in equatorial plane on oscillatory energy of mitotic spindle trough biomechanical oscillatory model of mitotic spindle,” in 14th Int. Conf. Dynamical Systems – Theory and Applications (DSTA 2017), Lodz, Poland, 2017.
    Retrieved from: https://www.dys-ta.com/abs_view?pkey=agxzfmR5cy10YS1ocmRyEgsSBVBhcGVyGICAgKC-q4kJDA;
    Retrieved on: Jun. 3, 2018
  11. Д. Рашковић, Теорија осцилација, 3. изд, Београд, Србија: Грађевинска књига, 1974. (D. Rašković, Theory of oscillations, 3rd ed., Belgrade, Serbia: Građevinska knjiga, 1974.)
    Retrieved from: https://www.scribd.com/document/165759261/Teorija-Oscilacija-D-Raskovic;
    Retrieved on: Jun. 3, 2018
  12. А. А. Андронов, А. А. Витт, С. Э. Хайкин, Теория колебаний, Москва, Россия: Наука, 1981. (A. A. Andronov, A. A. Witt, S. E. Khaikin, Theory of oscillations, Moscow, Russia: Nauka, 1981.)
  13. K. Hedrih, “Dynamics of coupled systems,” Nonlinear Analysis: Hybrid Systems, vol. 2, no. 2, pp. 310 – 334, Jun. 2008.
    DOI: 10.1016/j.nahs.2006.06.003
  14. G. L. Ortega, A. Stoholski, R. C. Mellors, J. Hlinka, “Chromosomal mass in germinal cells and in cancer cells of the mouse,” Exp. Cell. Res., vol. 12, no. 3, pp. 560 – 567, Jun. 1957.
    DOI: 10.1016/0014-4827(57)90171-4
  15. B. Houchmandzadeh, J. F. Marko, D. Chatenay, A. Libchaber, “Elasticity and structure of eukaryote chromosomes studied by micromanipulation and micropipette aspiration,” J. Cell. Biol., vol. 139, no. 1, pp. 1 – 12, Oct. 1997.
    DOI: 10.1083/jcb.139.1.1
    PMid: 9314524
    PMCid: PMC2139812
  16. A. Kis, S. Kasas, A. J. Kulik, S. Catsicas, L. Forró, “Temperature-dependent elasticity of microtubules,” Langmuir, vol. 24, no. 12, pp. 6176 – 6181, Jun. 2008.
    DOI: 10.1021/la800438q
    PMid: 18494514
  17. I. V. Maly, Systems Biomechanics of the Cell, New York (NY), USA: Springer, 2013.
    DOI: 10.1007/978-1-4614-6883-7
  18. R. Milo, R. Phillips, “Concentrations and absolute numbers,” in Cell Biology by the Numbers, New York (NY), USA: Taylor & Francis Group, 2016. ch 2. sec. 2, pp. 87 – 128.
  19. R. J. Kuhn, M. Poenie, “Dynamic polarization of the microtubule cytoskeleton during CTL-mediated killing,” Immunity, vol. 16, no. 1, pp. 111 – 121, Jan. 2002.
    DOI: 10.1016/S1074-7613(02)00262-5
  20. S. Riche et al., “Evolutionary comparisons reveal a positional switch for spindle pole oscillations in Caenorhabditis embryos,” J. Cell. Biol., vol. 201, no. 5, pp. 653 – 662, May 2013.
    DOI: 10.1083/jcb.201210110
    PMid: 23690175
  21. D. Delaunay, V. Cortay, D. Patti, K. Knoblauch, C. Dehay, “Mitotic spindle asymmetry: aWnt/PCP-regulated mechanism generating asymmetrical division I ncortical precursors,” Cell Rep., vol. 6, no. 2, pp. 400 – 414, Jan. 2014.
    DOI: 10.1016/j.celrep.2013.12.026
    PMid: 24412369
  22. G. Civelekoglu-Scholey, D. Cimini, “Modelling chromosome dynamics in mitosis: a historical perspective on models of metaphase and anaphase in eukaryotic cells,” Interface Focus, vol. 4, no. 3,20130073, Jun. 2014.
    DOI: 10.1098/rsfs.2013.0073
    PMid: 24904736
    PMCid: PMC3996585
  23. A. Iakovliev, S. Dasmahapatra, A. Bhaskar, “Stability of mitotic spindle using computational mechanics,” unpublished.