Vol. 3, 2018

Original research papers

Environmental Chemistry


J.F. Facetti-Masulli, Peter Kump, Virginia Romero

Pages: 181–186

DOI: 10.21175/RadProc.2018.39

Incompatible elements (IE) from the bottom sediments of the Acaray Reservoir in the Alto Paraná region of Eastern Paraguay were investigated by the EDXRF technique. Most of them are refractory, that is, they maintain their primary relationships and are transferred almost directly into sediments and thus, they are considered as geoindicators. In this regard, IE are of utmost interest in sediments studies. The refractory trace elements analyzed were Y-Rb-Sr-Zr-Nb-Ba-La-Ce-Nd, and the minor elements Ti-Mn-Fe. The analyses were performed with an Am-241 source and an X-ray tube. Samples were taken from six different stations. Like the sediments of the Itaipu Dam, spidergram results show an enrichment of IE and contributions of sedimentary material to the bottom sediments of the Acaray Reservoir.
  1. Balance Hídrico Superficial del Paraguay, Dirección de Meteorología, Asunción, Paraguay, 1992. (Surface Water Balance of Paraguay, Directorate of Meteorology, Asunción, Paraguay, 1992.)
  2. Cartas Nacionales. Hojas SG 21 8;21 7; 21 4;21 3., Direccion Instituto Geográfico Militar, Asunción, Paraguay, 1995. (National Maps. Sheets SG 21 8;21 7; 21 4;21 3., Directorate of the Military Geographical Institute, Asunción, Paraguay, 1995.)
  3. V. J. Fúlfaro, “Geology of Eastern Paraguay,” in Alkaline magmatism in Central-Eastern Paraguay, P. Comin-Chiaramonti, C. Gomes, Eds., Sao Paulo, Brasil: Universidad de S. Paulo Editora, 1996, ch. 1, sec. 1.1, pp. 17 – 29.
  4. Acerca de los ríos Acaray y Jejui. Aspectos Hidrológicos, Informe de Hydroconsult SRL al Ministerio de Obras Públicas, Asunción, Paraguay, 1994. (About the Acaray and Jejui rivers. Hydrological aspects, Report of the Hydroconsult SRL to the Ministry of Public Works, Asunción, Paraguay, 1994.)
  5. J. L. Scroccaro, “Estudio del Transporte de Sólidos para el Embalse de Itaipu,” en Actas de 1er Seminario de la Itaipú Binacional sobre Medio Ambiente, Asunción, Paraguay, 1979, pp. 101 – 113. (J. L. Scroccaro, “Study of the Transport of Solids for the Itaipu Reservoir,” in Proc. 1st Binational Itaipu Seminar on the Environment, Asunción, Paraguay, 1979, pp. 101 – 113.)
  6. J. F. Facetti, “Embalse de Itaipu-Aspectos Limnológicos Partes I & II,” en Actas de 2do Seminario da Itaipú Binacional sobre Meio Ambiente, Foz do Iguazú, Brazil, 1987, pp. 153 – 186. (J. F. Facetti, “Itaipu Reservoir-Limnological Aspects Parts I & II,” in Proc. 2nd Binational Itaipu Seminar on the Environment, Foz do Iguazú, Brazil, 1987, pp. 153 – 186.)
  7. A. V. L. Bittencourt, W. Sanches, “Contribucao ao transporte de sólidos dissolvidos en bacias tributarias do sistema do reservatorio de Itaipu,” en Actas de 2do Seminario da Itaipú Binacional sobre Meio Ambiente, Foz do Iguazú, Brazil, 1987, pp. 207 – 220. (A. V. L. Bittencourt, W. Sanches, “Contribution to the transport of dissolved solids in tributary streams of the Itaipu reservoir system,” in Proc. 2nd Binational Itaipu Seminar on the Environment, Foz do Iguazú, Brazil, 1987, pp. 207 – 220.)
  8. R. A. Ribeiro Filho, M. Petrere Junior, S. F. Benassi, J. M. A. Pereira, “Itaipú Reservoir limnology: eutrophication degree and the horizontal distribution of its limnological variables,” Braz. J. Biol. vol. 71, no. 4, pp. 889 – 902, Nov. 2011.
    DOI: 10.1590/S1519-69842011000500010
  9. J. F. Facetti-Masulli, M. Bordas, “El Modelo de Lewis y el comportamiento térmico del Lago de Itaipu,” Rev. Soc. Cientif. Paraguay,vol. 15, no. 2, pp. 137 – 152, 2010. (J. F. Facetti Masulli, M. Bordas, “The Lewis model and the thermal patterns of the Itaipu Lake,” Rev. Soc. Cientif. Paraguay, vol. 15, no. 2, pp. 137 – 152, 2010.)
  10. T. A. Pagioro, S. M. Thomaz, “Longitudinal patterns of sedimentation in deep monomitic subtropical reservoir of Itaipu (Brazil-Paraguay),” Arch. Für Hydrobiologie, vol. 154, no. 3, pp. 515 – 528, Jul. 2002.
    DOI: 10.1127/archiv-hydrobiol/154/2002/515
  11. F. Flores, J. F. Facetti-Masulli, “Phosphorus availability from bottom sediments of lakes using a nuclear technique,” J. Radioanal. Nucl. Chem., vol. 161, no. 1, pp. 239 – 244, Aug. 1992.
    DOI: 10.1007/BF02034897
  12. B. P. Roser, R. J. Korsch, “Provenance signatures of sandstone-mud stone suites determined using discriminant function analysis of major element data,” Chem. Geol.,vol. 67, no. 1-2, pp. 119 – 139, Jan. 1988.
    DOI: 10.1016/0009-2541(88)90010-1
  13. D. J. Burnett, D. G. Quirk, “Turbidite provenace in the Lower Palaeozoic Manx Group, Isle of Man: implications for the tectonic setting of Eastern Avalonia,” J. Geol. Soc., vol. 158, no. 6, pp. 913 – 924, 2001.
    DOI: 10.1144/0016-764900-205
  14. F. Albaréde, Geochemistry: An Introduction, Cambridge, UK: Cambridge University Press, 2003, ch. 8 sec. 8.3-8.4 pp. 155 – 163, app. A, pp. 207 – 209.
    DOI: 10.1180/0671322
  15. J. F. Facetti-Masulli, P. Kump, Z. Villanueva de Diaz, “Selected trace and minor elements in sediments of Itaipu Dam Reservoir,” Czechoslovak J. Phys., vol. 53, suppl. 1, pp. A209 – A215, Jan. 2003.
    DOI: 10.1007/s10582-003-0027-6
  16. J. F. Facetti-Masulli, P. Kump, Z. Villanueva de Diaz, V. R. de González, “Incompatible elements in bottom sediments of the Itaipu Dam Reservoir by EDXRF,” J. Radioanal. Nucl. Chem., vol. 316, no. 2, pp. 861 – 868, May 2018.
    DOI: 10.1007/s10967-018-5801-9
  17. J. F. Facetti-Masulli, P. Kump, “Selected minor and trace elements from water bodies of Western Paraguay,” J. Radioanal. Nucl. Chem.,vol. 286, no. 2, pp. 441 – 448, Nov. 2010.
    DOI: 10.1007/s10967-010-0775-2
  18. J. F. Facetti-Masulli, F. Flores, P. Kump, “Geochemical studies and elemental contaminants in the Bay of the City of Asunción,” J. Chem. Chem. Eng., vol. 7, no. 11, pp. 1060 – 1067, 2013.
    DOI: 10.17265/1934-7375/2013.11.009
  19. K. Rankama, T. Sahama, Geoquímica, Madrid, España: Aguilar, 1954. (K. Rankama, T. Sahama, Geochemistry, Madrid, Spain: Aguilar, 1954.)
  20. P. Van Espen, H. Nullens, F. Adams, “A computer analysis of X-Ray Fluorescence spectra,” Nucl. Instrum. Methods, vol. 142, no. 1-2, pp. 243 – 250, Apr. 1977.
    DOI: 10.1016/0029-554X(77)90834-5
  21. P. Kump, QAES Instruction Manual, J.Stefan Institute, Ljubljana, Yugoslavia, 1988.
  22. P. Kump, M. Necemer, P. Kupnic, “Development of the Quantification procedures for in situ XRF analysis,” in In situ applications of X Ray Fluorescence Techniques, IAEA-TECDOC-1456, Vienna, Austria: IAEA, pp.217 – 229.
    Retrieved from: https://www-pub.iaea.org/MTCD/Publications/PDF/te_1456_web.pdf;
    Retrieved on: Jun. 18, 2018
  23. A. Melfi, E. Piccirillo, A. Nardy, “Geological and magmatic aspects of the Paraná basin- An Introsuccion,” in The Mesozoic flood volcanism of the Parana Basin petrogenetic and geophysical aspects, E. M. Piccirillo, A. J. Melfi, Eds., Sao Paulo, Brazil: Instituto Astronómico e Geofísico University of San Paulo, 1988, ch. 1, sec. I.1, pp. 1 – 14.
  24. P. Comin-Chiaramonti, P. Cundari, J. M. De Graaf, C. B. Gomez, E. M. Piccirillo, “Early Cretaceous magmatism in Eastern Paraguay (Western Paraná basin); geological, geophysical and geothermal relationships,” J. Geodyn.,vol.28, no. 4-5, pp. 375 – 395, Nov-Dec. 1999.
    DOI: 10.1016/S0264-3707(99)00016-2
  25. M. Ernesto et al., “Paraná Magmatic Province-Tristan da Cunha Plume System fixed vs mobile plume, petrogemetic considerations and alternative heat source,” J. Volcanol. Geotherm. Res., vol. 118, no. 1-2, pp. 527 – 553, Nov. 2002.
    DOI: 10.1016/S0377-0273(02)00248-2
  26. P. Comin-Chiaramonti, C. B. Gomes, A. Cundari, F. Castorina, P. Censi, “A review of carbonatitic magmatism in the Parana-Angola-Namibia (PAN) System,” Periodico di Mineralogica, vol. 76, no. 2-3, pp. 25 – 78, 2007.
    Retrieved from: http://www.dst.uniroma1.it/riviste/permin/testi/V76.DI/2007PM0016.pdf;
    Retrieved on: Jun. 23, 2018
  27. G. Belliene, P. Comin-Chiaramonti, L. S. Masques, A. J. Melfi, A. J. Nardy, “Petrogenetic aspects of acid and basaltic lavas from the Parana plateau Brazil: Geological, Mineralogical and Petrochemical relationships,” J. Petrol., vol. 27, no. 4, pp. 915 – 944, Aug. 1986.
    DOI: 10.1093/petrology/27.4.915
  28. E. M. Piccirillo, M. Civetta, “Regional variations within the Parana flood basalts (Southerns Brasil) for subconatinetnal mantle heterogeneity,” Chem. Geol., vol. 75, no. 1-2, pp. 103 – 122, Feb. 1989.
    DOI: 10.1016/0009-2541(89)90023-5
  29. G. Bellieni et al., “Continental flood basalts from the central –western regions of the Paraná plateau (Paraguay and Argentina): petrology and petrogenetic aspects,” Neues Jahr. Miner. Abh., vol. 154, pp. 111 – 139, 1986.
  30. E. M. Piccirillo et al., “Bimodal fissural volcanic suites from the Parana basin (Brazil): K-Ar ages, Sr isotopes and geochemistry,” Rev. Geochem. Bras., vol. 1, pp. 53 – 69, 1987.
  31. M. Menzies, N. Rogers, A. Tindle, C. Hawkesworth, “Metasomatic and Enrichment Pocesses in Lithospheric Peridotites, an Effect of Athenosphere-lithosphere Interaction,” in Mantle Metasomatism, M. A. Menzies, C. J. Hawkesworth, Eds., London, UK: Academic Press, 1987, ch. 8, sec. III, pp. 316 – 334.
  32. P. Comin-Chiaramonti, G. Demarchi, V. A. V. Girardi, F. Princivalle, S. Sinigoi, “Evidence of mantle metasomatism and hetereogeneity from peridotite inclusions of northeastern Brazil and Paraguay,” Earth Planet. Sci Lett., vol. 77, no. 2, pp. 203 – 217, Mar. 1986.
    DOI: 10.1016/0012-821X(86)90161-5
  33. S. R. Taylor, S. M. McLennan, “The geochemical evolution of the continental crust,” Rev. Geophys., vol. 33, no. 2, pp. 241 – 265, May 1995.
    DOI: 10.1029/95RG00262
  34. S. M. McLennan, “Relationship between trace element composition of sedimentary rocks and upper continental crust,” Geochem. Geophys. Geosyst.,vol. 2, no. 4, pp. 17, Apr. 2001.
    DOI: 10.1029/2000GC000109
  35. J. F. Facetti-Masulli, P. Kump, E. Gonzalez-Erico, “Selected trace and minor elements in sandstones from Paraguay,” Radiochim. Acta, vol. 98, no. 7, pp. 441 – 446, 2010.
    DOI: 10.1524/ract.2010.1734
  36. M. Dellinger et al, “Li isotope fractionation in the Amazon River basin controlled by the weathering regimes,” Geochim. Cosmochim. Acta, vol. 164, pp. 71 – 93, Sep. 2015.
    DOI: 10.1016/j.gca.2015.04.042
  37. J. Gaillardet, B. Dupre, C. J. Allegre, “Geochemistry of large river suspended sediments: what can we learn about present day weathering of silicates?” Mineralogical Magazine,vol.62, pp. 489 – 490, 1998.
    DOI: 10.1180/minmag.1998.62A.1.259
  38. J. Gaillardet, B. Dupre, P. Louvat, C. J. Allegre, “Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers,” Chem. Geol., vol. 159, no. 1-4, pp. 3 – 30, Jul. 1999.
    DOI: 10.1016/S0009-2541(99)00031-5
  39. S. Yang, H. S. Jung, C. Li, “Two unique weathering regimes in the Changjiang and Huanghe drainage basins: geochemical evidence from river sediments,” Sedimentary Geology,vol.164, no. 1-2, pp. 19 – 34, Feb. 2004.
    DOI: 10.1016/j.sedgeo.2003.08.001
  40. L. Bastian, M. Revel, G. Bayon, A. Dufour, N. Vigie, “Abrupt response of chemical weathering to Late Quaternary hydro-climate changes in Northeast Africa,” Sci. Rep., vol. 7, 44231, 2017.
    DOI: 10.1038/srep44231
  41. N. Höppner, F. Lucassen, C. M. Chiessi, A. O. Sawakuchi, S. Kasemann, “Holocene provenance shift of suspended particulate matter in the Amazon River basin,” Quaternary Sci. Rev.,vol. 190, pp. 66 – 80, Jun. 2018.
    DOI: 10.1016/j.quascirev.2018.04.021
  42. H. Yu et al., “The fertilizing role of African dust in the Amazon rainforest: A first multiyear assessment based on data from Cloud‐Aerosol Lidar and Infrared Pathfinder Satellite Observations,” Geophys. Res. Lett., vol. 42, no. 6, Mar. 2015.
    DOI: 10.1002/2015GL063040