Vol. 3, 2018

Original research papers

Medical Physics

IN-BEAM PET MONITORING TECHNIQUE FOR PROTON THERAPY: EXPERIMENTAL DATA AND MONTE CARLO PREDICTION

A. Topi et al.

Pages: 149–153

DOI: 10.21175/RadProc.2018.32

Charged particle therapy is a precise radiotherapy method for the treatment of solid tumors. This method can deliver conformal dose distributions minimizing damage to healthy tissues thanks to its characteristic dose profile. However, the steep dose profile of charged particle beams (due to the Bragg peak) can result in over- or under-dosage in critical regions. Monitoring the range of the charged particles is therefore highly desirable. In this study, we use a planar in-beam PET system for the range verification of pencil beams in proton therapy. The planar geometry of the DoPET system is advantageous because it can be used online, i.e., during treatment. In the particle therapy community, the Monte Carlo (MC) codes are widely used to evaluate the radiation transport and interaction with matter. For this reason, the FLUKA MC code was used to simulate the experimental conditions of irradiations performed at the Cyclotron Centre Bronowice (CCB) proton therapy center in Krakow (PL). 130MeV pencil beams were delivered on phantoms mimicking human tissues. Different acquisitions are analyzed and compared with the MC predictions. The image reconstruction for experimental data and simulation is based on the Maximum Likelihood Estimation Method (MLEM) algorithm. A special focus in the paper will be on the validation of the PET detector response for activity range verification.
  1. D. Schulz-Ertner, H. Tsuji, “Particle radiation therapy using proton and heavier ion beams,” J. Clin. Oncol., no. 25, no. 8, pp. 953 – 964, Mar. 2007.
    DOI: 10.1200/JCO.2006.09.7816
    PMid: 17350944
  2. A. Knopf, A. Lomax, “In vivo proton range monitoring: a review,” Phys. Med. Biol., vol. 58, no. 15, pp. R131 – R160, Aug. 2013.
    DOI: 10.1088/0031-9155/58/15/R131
    PMid: 23863203
  3. X. Zhu, G. El Fahkri, “Proton therapy verification with PET imaging,” Theranostics, no. 3, no. 10, pp. 731 – 740, Sep. 2013.
    DOI: 10.7150/thno.5162
    PMid: 24312147
    PMCid: PMC3840408
  4. A. Del Guerra et al., “Positron emission tomography: its 65 years,” Riv. Nuovo Cim., no. 39, no. 4, pp. 155 – 223, Apr. 2016.
    DOI: 10.1393/ncr/i2016-10122-6
  5. K. Parodi et al., “In-beam PET measurements of b+ radioactivity induced by proton beams,” Phys. Med. Biol., vol. 47, no. 1, pp. 21 – 36, Jan. 2002.
    DOI: 10.1088/0031-9155/47/1/302
    PMid: 11814225
  6. G. Sportelli et al., “First full-beam PET acquisitions in proton therapy with a modular dual-head dedicated system,” Phys. Med. Biol., no. 59, vol. 1, pp. 43 – 60, Jan. 2013.
    DOI: 10.1088/0031-9155/59/1/43
    PMid: 24321855
  7. N. Camarlinghi et al., “An in-beam PET system for monitoring ion-beam therapy: test on phantoms using clinical 62 MeV protons,” J. Instrum., vol. 9, no. 4, C04005, Apr. 2014.
    DOI: 10.1088/1748-0221/9/04/C04005
  8. L. Brombal et al., “Proton therapy treatment monitoring with in-beam PET: Investigating space and time activity distributions,” Nucl. Instrum. Methods Phys. Res. A, vol. 861, pp. 71 - 76, 2017.
    DOI: 10.1016/j.nima.2017.05.002
  9. S. Helmbrecht et al., “In-beam PET at clinical proton beams with pile-up rejection”, Zeitscrift für Medicinische Physik, vol. 27, pp. 202-217, 2017
  10. S. Moehrs et al., “Multi-ray-based system matrix generation for 3D PET reconstruction,” Phys. Med. Biol., vol. 53, no. 23, pp. 6925 – 6945, Dec. 2008.
    DOI: 10.1088/00031-9155/53/23/018
    PMid: 19001696
    DOI: 10.1016/j.zemedi.2016.07.003
  11. S. Muraro et al., “Proton therapy treatment monitoring with the DoPET system: Activity range, positron emitters evaluation and comparison with Monte Carlo predictions,” J. Instrum., vol. 12, C12026, Dec. 2017.
    DOI: 10.1088/1748-0221/12/12/C12026
  12. A. Ferrari, P. Sala, A. Fassò, J. Ranft, FLUKA: A Multi-Particle Transport Code, Rep. CERN-2005-10, INFN/TC_05/11, SLAC-R-773, CERN, INFN, SLAC, Geneva, Switzerland, 2005.
    Retrieved from: https://www.slac.stanford.edu/pubs/slacreports/reports16/slac-r-773.pdf;
    Retrieved on: May 12, 2018
  13. T. T. Boehlen et al., “The FLUKA code: developments and challenges for high energy and medicalapplications,” Nucl. Data Sheets, vol. 120, pp. 211 – 214, Jun. 2014.
    DOI: 10.1016/j.nds.2014.07.049
  14. G. Battistoni et al., “The FLUKA code: an accurate simulation Tool for Particle Therapy,” Front. Oncol.,vol. 6, no. 116, May 2016.
    DOI: 10.3389/fonc.2016.00116
    PMid: 27242956
    PMCid: PMC4863153
  15. V. Rosso et al., “A new PET prototype for proton therapy: Comparison of data and Monte Carlo simulation, J. Intrsum.,vol. 8, C03021, Mar. 2013.
    DOI: 10.1088/1748-0221/8/03/C03021
  16. A. Kraan et al., “Online monitoring for proton therapy: A real-time procedure using a planar PET system,” Nucl. Instrum. Methods Phys. Res. A, vol. 786, pp. 120 – 126, Jun. 2015.
    DOI: 10.1016/j.nima. 2015.03.059