Vol. 3, 2018

Original research papers

Radiation Chemistry

SORPTION REMOVAL OF Sr2+ AND Y3+ IONS FROM AQUEOUS SOLUTIONS BY A TiO2 -BASED SORBENT

I. F. Myroniuk, H. V. Vasylyeva

Pages: 15–20

DOI: 10.21175/RadProc.2018.04

In present investigations, the sorption removal of Sr2+ and Y3+ ions from aqueous solutions by TiO2 – La sorbent was researched. The dependence of the sorption process on the time of interaction, solution’s acidity, and initial concentrations of the Sr2+ and Y3+ ions were investigated. Four simplified kinetic models – Lagergren’s pseudo-first and pseudo-second order kinetic models, Intra-particle diffusion and Elovich models – were tested to describe the adsorption process. Equilibrium isotherms data were analyzed using Langmuir and Freundlich isotherm models. The kinetic data indicated that the adsorption of Sr2+ and Y3+ ions by ТіО2–La fitted well with the pseudo-second order kinetic model with coefficients of linear approximation (R2 = 0.99) for both elements. The application of the Elovich model to the experimental data of the sorption of Sr2+ and Y3+ ions by ТіО2–La shows that yttrium is absorbed due to the mechanism of chemisorption. Coefficient of linear approximation R2 = 0.98. Strontium is absorbed via physical sorption or ion exchange mechanism. The maximum adsorption capacity of ТіО2 –La was found to be 0,9 mmol·g-1 (79 mg g-1) for Sr2+ and 1.6 mmol·g-1 (134 mg·g-1) for Y3+.
  1. M. Torab-Mostaedi et al., “Removal of Strontium and Barium from aqueous solutions by adsorption onto expanded perlite,” Can. J. Chem. Eng., vol. 89, no. 5, pp. 1247 – 1254, Oct. 2011.
    DOI: 10.1002/cjce.20486
  2. Y. Takahatake, A. Shibata, K. Nomura, T. Sato, “Effect of flowing water on Sr sorption change of hydrous sodium titanate,” Minerals, vol. 7, no. 12, Dec. 2017.
    DOI: 10.3390/min7120247
  3. D. J. Davidson, J. L. Collins, K. K. Anderson, C. W. Chase, B. J. Egan, “Removal of Cesium, Technetium and Strontium from Tank Waste Supernatant,” Rep. ORNL/TM-13612, ORNL, Oak Ridge (TN), USA, 1998.
    Retrieved from: https://www.researchgate.net/publication/279530150_Removal_of_Cesium_Technetium_and_Strontium_from_Tank_Waste _Supernatant_ORNLTM-13612;
    Retrieved on: Aug. 15, 2018
  4. І. Ф. Миронюк, В. Л. Челядин, “Методи одержання діоксиду титану (огляд),” Фізика і Хімія Твердого Тіла, т. 11, но. 4, с. 815 – 831, 2010. (I. F. Myroniuk, V. L. Chelyadyn, “Obtaining methods of Titanium Dioxide (Reviev),” Phys. Chem. Solid State, vol. 11, no. 4, pp. 815 – 831, 2010.)
    Retrieved from: http://old.pu.if.ua/inst/phys_che/start/pcss/vol11/1104-03.pdf;
    Retrieved on: Aug. 15, 2018
  5. І. Ф. Миронюк, В. Л. Челядин, В. О. Коцюбинський, Л. І. Миронюк, “Будова та морфологія частинок ТіО2, одержаних рідкофазним гідролізом TiCl4,Фізика і Хімія Твердого Тіла, т. 12, но. 2, с. 418 – 427, 2011. (I. F. Myroniuk, V. L. Chelyadyn, V. O. Kotsyubinsky, L. I. Mironyuk еt al., “Structure and Morphology of TiO2 obtaining by Liquid-Phase TiCl4 hydrolysis,” Phys. Chem. Solid State, vol. 12, no. 2, pp. 418 – 427, 2011.)
    Retrieved from: http://irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe?C21COM=2&I21DBN=UJRN&P21DBN=UJRN&IMAGE_ FILE_DOWNLOAD=1&Image_file_name=PDF/PhKhTT_2011_12_2_27.pdf;
    Retrieved on: Aug. 15, 2018
  6. Г. Шварценбах, Г. Флашка, Комплексо нометрическое титрование, Москва, СССР: Химия, 1970. (G. Schwarzenbach, H. Flaschka, Complex titrations, Moscow, USSR: Chimiya, 1970.)
  7. Atlas of Eh-pH diagrams, AIST, Tokyo, Japan, 2005.
    Retrieved from: http://www.eosremediation.com/download/Chemistry/Chemical%20Properties/Eh_pH_Diagrams.pdf;
    Retrieved on: Aug. 15, 2018
  8. H. V. Vasylyeva et al., “Radiochemical studies of lanthanum microamounts in water solution,” J. Mol. Liq., vol. no. 1-3, pp. 41 – 44, Apr. 2005.
    DOI: 10.1016/j.molliq.2004.07.008
  9. I. S. Mclintock, “The Elovich Equation in chemisorption kinetics,” Nature,vol. 216, pp. 1204 – 1205, Dec. 1967.
  10. N. H. Turner, “Kinetic of Cemisorption: An examination of the Elovich Equation,” J. Catal., vol. 36, no. 3, pp. 262 – 265, Mar. 1975.
    DOI: 10.1016/0021-9517(75)90035-4
  11. W. Rudzinski, W. Plazinski, “Kynetic of Solute Adsorption at Solid/Solution Interfaces: A Theoretical Development of the Empirical Pseudo-First and Pseudo-Second Order Kinetic Rate Equation, Based on Applying the Statistical Rate Theory of Interfacial Transport,” Phys. Chem. B, vol. 110, no. 33, pp. 16514 – 16525, Aug. 2006.
    DOI: 10.1021/jp061779n
  12. Y-S. Ho, “Citation review of Lagergren kinetic rade equation on adsorption reactions,” Scientometrics, vol. 59. no. 1, pp. 171 – 177, Jan. 2004.
    DOI: 10.1023/B:SCIE.0000013305.99473.cf
  13. N. R. Villarante, A. Patrick, R. Bautista, D. Erl, P. Sumalapao, “Batch Adsorption Study and kinetic profile of Cr(VI) Uzing Lumbang (Aleurites moluccana)-Derived Activated Carbon-Chitozan Compozite Crosslinked with Epichlorohydrin,” Orient. J. Chem., vol. 33, no. 3, pp. 1111 – 1119, 2017.
    DOI: 10.13005/ojc/330307
  14. Y-S. Ho, G. McKay, “Application of kinetic models to the sorption of copper (II) on to peat,” Adsorpt. Sci. Technol., vol. 20, no. 8, pp. 797 – 815, Oct. 2002.
    DOI: 10.1260/026361702321104282
  15. M. Kanna, S. Wongnawa, P. Sherdshoopongse, Ph. Boonsin, “Adsorption behavior of some metal ions on hydrated amorphous titanium dioxide surface,” Songklanakarin J. Sci. Technol. vol. 27, no. 5, pp. 1017 – 1026, Sep-Oct. 2005.
    Retrieved from: http://rdo.psu.ac.th/sjstweb/journal/27-5/10-ions-adsorption.pdf;
    Retrieved on: Aug. 15, 2018
  16. Y-S. Ho, G. McKay, “Pseudo-second order model for sorption processes,” Process Biochemistry, vol. 34, no. 5, pp. 451 – 465, Jul. 1999.
    DOI: 10.1016/S0032-9592(98)00112-5
  17. Standard Deviation Calculator, Maple Tech. International LLC, Timberloch PI (TX), USA, 2018.
    Retrieved from: http://www.calculator.net/standard-deviation-calculator.html;
    Retrieved on: Aug. 15, 2018
  18. A. W. Adamson, Physical Chemistry of Surfaces, 3rd ed., New York (NY), USA: Wiley-Interscience, 1976.
  19. M. Daniel, M. Vasiliki, P. Alexandros, Sorption of the Rare Earth Elements and Yttrium (REE-Y) in calcite: the mechanism of a new effective tool in identifying paleoearthquakes on carbonate faults, Rep. EGU2015-3437, European Geosciences Union, Vienna, Austria, 2015.
    Retrieved from: http://meetingorganizer.copernicus.org/EGU2015/EGU2015-3437.pdf;
    Retrieved on: Aug. 15, 2018
  20. K. A. Quinn, R. H. Byrne, J. Schijf, “Sorption of Yttrium and Rare earth Elements by Amorphous Ferric Hydroxide: Influence of temperature,” Environ. Sci. Technol., vol. 41, no. 2, pp. 541 – 546, 2007.
    DOI: 10.1021/es0618191
  21. K. A. Quinn, “Influence of solution and surface chemistry on yttrium and rare earth elements sorption,” Ph.D. dissertation, University of South Florida, Dept. Marine Science, Tampa (FL), USA, 2006.
    Retrieved from: https://scholarcommons.usf.edu/cgi/viewcontent.cgi?article=3664&context=etd;
    Retrieved on: Aug. 15, 2018