Vol. 2, 2017

Original research papers

Biophysics

ERYTHROCYTES AND DNA STUDY VIA OPTICAL MICROSCOPY

N. V. Kamanina, S. V. Likhomanova, А. А. Kamanin

Pages: 265-268

DOI: 10.21175/RadProc.2017.54

The physical phenomena resulting from forces exerted on a liquid-crystal mesophase on the account of the electric, magnetic, thermal fields and deformation are due to the weak intermolecular interaction of the structural elements of liquid-crystal media. In order to take an advantage of the factors, such as the presence of weak dispersion forces between the molecules of liquid crystals and the high orienting ability, the liquid-crystal anisotropic medium has been considered for visualizing, fixing, and orienting human red blood cells and DNA. The feedback mechanism of the liquid crystal self-organization has been discussed, due to the interaction with erythrocytes; moreover, the spectral features of the LC with DNA have been shown. In the present paper, the special accent will be on the orientation of these types of the bio-objects under the conditions in which the interface between solid and liquid crystal mesophase is modified via laser oriented deposition technique, as well as by using the surface electromagnetic waves treatment. It provokes the best visualization and orientation of the bio-objects in the anisotropic liquid crystal media when the direct orienting polymer coatings have been removed.
  1. A. L. Garner, M. Deminsky, V. B. Neculaes, V. Chashi- hin, A. Knizhnik, B. Potapkin, “Cell membrane thermal gradients induced by electromagnetic fields,” Journal of Applied Physics, vol. 113, no. 21, pp. 214701-1 – 214701-11, Jun. 2013.
    DOI: 10.1063/1.4809642
  2. A. K. Sharm, “Plasmonic biosensor for detection of hemoglobin concentration in human blood: Design considerations,” Journal of Applied Physics, vol. 114, no. 4, pp. 044701-1 – 044701-8, Jul. 2013.
    DOI: 10.1063/1.4816272
  3. W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt., vol. 19, no. 7, pp. 071412-1 – 071412-34, Jul. 2014.
    DOI: 10.1117/1.JBO.19.7.071412
    PMid: 25079820
  4. M. Li, F. Zhao, J. Zeng, J. Qi, J. Lu, W. Ch. Shih, “Microfluidic surface-enhanced Raman scattering sensor with monolithically integrated nanoporous gold disk arrays for rapid and label-free biomolecular detection,” J. Biomed. Opt., vol. 19, no. 11, pp. 111611-1 – 111611-8, Jul. 2014.
    DOI: 10.1117/1.JBO.19.11.111611
  5. S. Manakasettharn, T. H. Hsu, J. A. Taylor, T. Krupenkin, “Interplay between iridescent and non-iridescent coloration in bio-inspired electrically-tunable nanostructures,” Optical Materials Express, vol. 4, no. 4, pp. 681–688, Apr. 2014.
    DOI: 10.1364/OME.4.000681
  6. A. A. Vdovichev, T. S. Sych, Z. V. Reveguk, A. A. Smirnova, D. A. Maksimov, R. R. Ramazanov, A. I. Kononov, “Structure of fluorescent metal clusters on a DNA template,” Journal of Physics: Conference Series, vol. 741, pp. 012069-1 – 012069-4, 2016.
    DOI: 10.1088/1742-6596/741/1/012069
  7. N. V. Kamanina and V. N. Kidalov, “A study of the lining up of red blood cells in a nematic liquid crystal medium,” Tech. Phys. Lett., vol. 22, no. 7, pp. 571–572, 1996.
  8. N. V. Kamanina, “Similarities and differences between the effect of orientation of red blood cells in a nematic liquid-crystal medium and the Fröhlich electrical vibrations,” Tech. Phys. Lett., vol. 23, no. 12, pp. 902–905, Dec. 1997.
    DOI: 10.1134/1.1261926
  9. A. A. Kamanin, N. V. Kamanina, “Induced rearrangement of liquid crystal caused by aligning of human erythrocytes,” Materials Science Forum, vol. 555, pp. 401-404, Sep. 2007.
    DOI: 10.4028/www.scientific.net/MSF.555.401
  10. A. Kamanin and N. Kamanina, “Self-Organization of Liquid Crystals Induced by Aligning of Human Erythrocytes,” Mol. Cryst. Liq. Cryst., vol. 486, no. 1, pp. 50–56, 2008.
    DOI: 10.1080/15421400801917379
  11. N. V. Kamanina, S. V. Serov, Y. Bretonniere, C. Andraud, “Organic Systems and Their Photorefractive Properties under the Nano- and Biostructuration: Scientific View and Sustainable Development,” Journal of Nanomaterials, vol. 2015, 2015.
    DOI: 10.1155/2015/278902
  12. Н. В. Каманина, П. Я. Васльев, “Оптическое покрытие на основе углеродных нанотрубок для оптического приборостроения и наноэлектроники,” Патент на изобретение №2355001, Май 10. 2009. (N. V. Kamanina, P. Ya. Vasilyev, “Optical coatings based on CNTs for the optical devises and nanoelectronics,” Patent RU 2355001 C2, May 10, 2009.)
    Retrieved from: http://bd.patent.su/2355000-2355999/pat/servl/servlet331f.html
    Retrieved on: Dec. 19, 2016
  13. Н. В. Каманина, П. Я. Васльев, В. И. Студенов, “Оптическое покрытие на основе ориентированных в электрическом поле углеродных нанотубок для оптического приборостроения, микро- и наноэлектроники при нивелировании границы раздела сред: твердая подложка-покрытие,” Патент № RU 2405177 С2, Ноя. 27. 2010. (N. V. Kamanina, P. Ya. Vasilyev, V. I. Studeonov, “Optical coating based on oriented in the electric field CNTs for the optical devises, micro- and nanoelectronics under the conditions when the interface: solid substrate-coating can be eliminated,” Patent RU 2405177 С2, Nov. 27, 2010.)
    Retrieved from: http://www.freepatent.ru/images/patents/57/2405177/patent-2405177.pdf
    Retrieved on: Dec. 16, 2016
  14. N. V. Kamanina, Yu. A. Zubtcova, A. A. Kukharchik, C. Lazar, I. Rau, “Control of the IR-spectral shift via modification of the surface relief between the liquid crystal matrixes doped with the lanthanide nanoparticles and the solid substrate,” OPTICS EXPRESS, vol. 24, no. 2, pp. A270 – A275, Jan. 2016.
    DOI: 10.1364/OE.24.00A270
    PMid: 26832580
  15. N. Kamanina, “Refractive properties of the bio- and nano-structured materials as an indicator of the model matrix macro parameters modification,” Radiation and Applications, vol. 2, no. 1, pp. 58 – 61, Apr. 2017.
    DOI: 10.21175/radj.2017.01.012