Vol. 2, 2017

Original research papers

Medical Imaging

THERMAL IMAGING AS A TOOL FOR PATTERN RECOGNITION AND ANOMALY STUDIES: IDENTIFYING THE CHANGES IN THE CONDITION OF AN OBJECT OVER TIME BY SPOTTING A TREND OF CHANGING TEMPERATURES

Gordana Laštovička-Medin

Pages: 198-206

DOI: 10.21175/RadProc.2017.41

More than five decades have passed since the hypothesis of thermography in breast imaging was proposed. During this time, thermography has gone from a legitimate, promising technology to one relegated to the shadows outside conventional medicine. Thermal imaging in clinical trials is still controversial issue. However even those who discard the method due to insufficient reliability of data do not validate their arguments by clear understanding of the reasons behind the inaccuracy. While thermography is not well evidenced for use as a screening tool, its use as an adjunctive imaging procedure alongside mammography should be considered, particularly for those with dense breast tissue. It is certain that images captured by digital infrared thermal imaging support the effective recognition of irregular body patterns and that they can be used as indicators of any anomaly over the time period by spotting a trend of changes in the temperature. But data has to be not only interpreted accurately but also taken carefully and the effect of surrounding environment has to be kept minimal. The identified localized patterns have to be accurately assigned to a certain anomaly in order to be treated as diagnostic method, and the evaluation method as well as interpretation have to be standardized, and method replicable. Moreover, validation of protocols, equipment, and analytical techniques is needed to be placed in the context of large, randomized trials before its use can be considered truly evidence-based. Accurate interpretation of thermal data is largely dependent upon an experienced, knowledgeable operator who understands infrared theory and heat transfer concepts, basic anatomy and physiology, and infrared equipment operation and importantly, limitations too. In this paper we integrate theory behind thermal imaging, potential of thermal imaging in clinical research and general uncertainties and misinterpretations that lead to reduced accuracy of data interpretation and feasibility of the method.
  1. E. F. J. Ring, “Quantitative thermal images,” Clin. Phys. Physiol. Meas., vol. 11, no. suppl. A, pp. 87 – 95, 1990.
    DOI: 10.1088/0143-0815/11/4A/310
    PMiD: 2286052
  2. E. F. J. Ring and J. M. Dicks, “Spatial resolution of new thermal imaging systems,” Thermol. Int. vol. 9, no. 1, pp. 7 – 14, 1999.
  3. J. Fraden, Handbook of modern sensors, Physics, design and applications, 5th ed., San Diego (CA), USA: Springer, 2016.
    DOI: 10.1007/978-3-319-19303-8
  4. R. Dobrin, C. Kirsch, S. Kirsch et al., “Experimental measurements of the human energy field,” Psychoenergetic Systems, vol. 2, pp. 213 – 216, 1979.
  5. C. R. Hitchcock, D. F. Hickok, J. Soucheray, T. Moulton, R. C. Baker, “Thermography in mass screening for occult breast cancer,” JAMA. vol. 204, no. 6, pp. 419 – 422, May 1968.
    DOI: 10.1001/jama.1968.03140190001001
    PMid: 5694429
  6. S. A. Feig, G. S. Shaber, G. F. Schwartz et al., “Thermography, mammography, and clinical examination in breast cancer screening: Review of 16,000 studies,” Radiology,vol. 122, no. 1, pp. 123 – 127, Jan. 1977.
    DOI: 10.1148/122.1.123
    PMid: 830320
  7. M. Kontos, R. Wilson, I. Fentiman, “Digital infrared thermal imaging (DITI) of breast lesions: sensitivity and specificity of detection of primary breast cancers,” Clin. Radiol., vol. 66, no. 6, pp. 536 – 539, Jun. 2011.
    DOI: 10.1016/j.crad.2011.01.009
    PMid: 21377664
  8. S. Bagavathiappan, T. Saravanan, “Infrared thermal imaging for detection of peripheral vascular disorders,” J. Med. Phys., vol. 34, no. 1, pp. 43 – 47, Jan. 2009.
    DOI: 10.4103/0971-6203.48720
    PMid: 20126565
    PMCid: PMC2804148
  9. F. Ring, “Thermal imaging today and its relevance to diabetes”, J. Diabetes Sci. Technol., vol. 4, no. 4, pp. 857 – 862, Jul. 2010.
    DOI: 10.1177/193229681000400414
    PMid: 20663449
    PMCid: PMC2909517
  10. E. F. J. Ring and K. Ammer, “Infrared thermal imaging in medicine,” Physiological Measurement, vol. 33, no. 3, pp. 33 – 46, Feb. 2012.
    DOI: 10.1088/0967-3334/33/3/R33
    PMid: 22370242
  11. B. L. Jian, C. L. Chen, W. L. Chu, M. W. Huang, “The facial expression of schizophrenic patients applied with infrared thermal facial image sequence,” BMC Psychiatry., vol. 17, no. 1, p. 229, Jun. 2017.
    DOI: 10.1186/s12888-017-1387-y
    PMid: 28646852
    PMCid: PMC5483292
  12. E. Keenan, G. Gethin, L. Flynn, D. Watterson, G. M. O`Connor, “Enhanced thermal imaging of wound tissue for better clinical decision making,” Physiol. Meas., vol. 38, no. 6, pp. 1104 – 1115, May 2017.
    DOI: 10.1088/1361-6579/aa6ea0
    PMid: 28430667
  13. N. Golestani, M. EtehadTavakol, E. Ng, “Level set method for segmentation of infrared breast thermograms,” EXCLI J.,vol. 13, no. 13, pp. 241 – 251, Mar. 2014.
    PMid: 26417258
    PMCid: PMC4464455
  14. M. Milosevic, D. Jankovic, A. Peulic, “Thermography based breast cancer detection using texture features and minimum variance quantization,” EXCLI J., vol. 13, pp. 1204 – 1215, Nov. 2014.
    PMid: 26417334
    PMCid: PMC4464488
  15. S. Shen, W. Sandham, M. Granat, A. Sterr, “MRI fuzzy segmentation of brain tissue using neighbourhood attraction with neural-network optimization,” IEEE Trans. Inf. Technol. Biomed., vol. 9, no. 3, pp. 459 – 467, Sep. 2005.
    DOI: 10.1109/TITB.2005.847500
    PMid: 16167700
  16. M. R. K. Mookiah, U. R. Acharya, E. Y. K. Ng, “Data mining technique for breast cancer detection in thermograms using hybrid feature extraction strategy,” J. Quantit. IR Thermography, vol. 9, no. 2, pp. 151 – 165, Nov. 2012.
    DOI: 10.1080/17686733.2012.738788
  17. S. V. Francis, M. Sasikala, “Automatic detection of abnormal breast thermograms using asymmetry analysis of texture features,” J. Med. Eng. Technol., vol. 37, no. 1, pp. 17 – 21, Nov. 2012.
    DOI: 10.3109/03091902.2012.728674
    PMid: 23194447
  18. P. J. Lisboa, A. F. Taktak, “The use of artificial neural networks in decision support in cancer: a systematic review,” Neural. Netw., vol. 19, no. 4, pp. 408 – 415, May 2006.
    DOI: 10.1016/j.neunet.2005.10.007
    PMid: 16483741
  19. A. Chanmugam, R. Hatwar, C. Herman, “Thermal analysis of cancerous breast model,” in Proc. Int. Mech. Eng. Congress Expo., 2012, pp. 134 – 143.
    DOI: 10.1115/IMECE2012-88244
    PMid: 25328914
    PMCid: PMC4199207
  20. N. Köşüş, A. Köşüş, M. Duran, S. Simavlı, N. Turhan, “Comparison of standard mammography with digital mammography and digital infrared thermal imaging for breast cancer screening,” J. Turk. Ger. Gynecol. Assoc.,vol. 11, no. 3, pp. 152 – 157, Sep. 2010.
    DOI: 10.5152/jtgga.2010.24
    PMid: 24591923
    PMCid: PMC3939224
  21. S. H. Kobrunner, A. Hacker, S. Sedlacek, “Advantages and disadvantages of mammography screening,” Breast Care (Basel, Switzerland), vol. 6, no. 3, pp. 199 – 207, Jun. 2011.
    DOI: 10.1159/000329005
    PMCid: PMC3132967
  22. D. Kennedy, T. Lee, D. Seely, “A comparative review of thermography as a breast screening technique,” Integr. Cancer Ther., vol. 8, no. 1, pp. 9 – 16, Feb. 2009.
    DOI: 10.1177/1534735408326171
    PMid: 19223370
  23. M. Gautherie, C. M. Gros, “Breast thermography and cancer risk prediction,” Cancer, vol. 45, no. 1, pp. 51 – 56, Jan. 1980.
    DOI: 10.1002/cncr.2820450110
    PMid: 7351006
  24. W. Wang, Y. Zeng et al., “Clinical Study on Using Thermal Texture Maps in SARS Diagnose,” in Proc. 26th Annual International Conference of the IEEE EMBS, San Francisco (CA), USA, 2004, pp. 5258 – 5264.
    DOI: 10.1109/IEMBS.2004.1404469
  25. M. Norzakiah, Thermography: infrared thermal imaging: Technology review, S. Sadasivan, Ed., Putrajaya, Malaysia: Health Technology Assessment Unit, Ministry of Health Malaysia, 2005.
    Retrieved from: http://www.moh.gov.my/index.php/database_stores/attach_download/347/39
    Retrieved on: Jan. 20, 2017
  26. K. Ammer, E. F. J. Ring, “Standard Procedures for Infrared Imaging in Medicine,” in Medical Infrared Imaging: Principles and Practice, M. Diakides, J. D. Bronzino, D. R. Peterson, Eds., Boca Raton (FL), USA: CRC Press, 2013, ch. 32. pp. 32.1 – 32.14.
    Retrieved from: https://www.researchgate.net/publication/233986901_Standard_Procedures_For_Infrared_Imaging_in_Medicine
    Retrieved on: Jan. 20, 2017
  27. J. D. Hardy, "The radiation of heat from the human body. III. The human skin as a black body radiator,” J. Clin. Invest., vol. 13, pp. 615 – 620, Jul. 1934.
    DOI: 10.1172/JCI100609
  28. T. Togawa, H. Saito, “Non-contact imaging of thermal properties of the skin,” Physiol. Meas., vol. 15, no. 3, pp. 291 – 298, Aug. 1994.
    DOI: 10.1088/0967-3334/15/3/007
    PMid: 7994207
  29. J. M. Engel, “Physical and physiological influence of medical ointments of infrared thermography,” in Recent Advances in Medical Thermology, E. F. J. Ring, B. Phillips, Eds., New York (NY), USA: Plenum Press, 1984, pp. 177 – 183.
    DOI: 10.1007/978-1-4684-7697-2
  30. S. Hejazi, M. Anbar, “Effects of topical skin treatment and of ambient light in infrared thermal images,” Biomed. Thermol., vol. 12, pp. 300 – 305, Jan. 1993.
  31. N. Zaproudina, V. Varmavuo, O. Airaksinen and M. Närhi, “Reproducibility of infrared thermography measurements in healthy individuals,” Physiological Measurement, vol. 29, no. 4, pp. 515 – 524, Apr. 2008.
    DOI: 10.1088/0967-3334/29/4/007
    PMid: 18401069