Vol. 2, 2017

Radiobiology

THE ASSESSMENT OF CYTOGENETIC INDICES OF CHERNOBYL POWER PLANT DISASTER LIQUIDATORS

N. M. Hovhannisyan, A. G. Karapetyan, V. S. Grigoryan

Pages: 1-5

DOI: 10.21175/RadProc.2017.01

The aim of the current research was to detect and assess the cytogenetic disorders of disaster fighters of Chernobyl nuclear power plant catastrophe, depending on radiation and non-radiation factors in the early and distant post-disaster periods with the help of system analysis methods. One can come across works dedicated to the study of genetic disorders of organisms exposed to a high level of radiation, but there are not enough data about the changes in these indices in case of low level radiation (lower than 1 Gy). This is the reason why it is of interest to find out the role of cytogenetic indices in the development of radiobiological effects in case of low dosage exposure. The results of regression, factorial dispersive multi regression and discriminant analyses methods of cytogenetic indices are presented in the study.
  1. J. B. Little, “Genomic instability and radiation,” Journal of Radiological Protection, vol. 23, no. 2, pp. 173-181, Jun. 2003.
    DOI: 10.1088/0952-4746/23/2/304
    PMid: 12875549
  2. K. Suzuki, M. Ojima, S. Kodama, M. Watanabe, “Radiation-induced DNA damage and delayed induced genomic instability,” Oncogene, vol. 22, no. 45, pp. 6988–6993, Oct. 2003.
    DOI: 10.1038/sj.onc.1206881
    PMid: 14557802
  3. W. Han, K. N. Yu, “Ionizing Radiation, DNA Double Strand Break and Mutation,” Advances in Genetics Research, vol. 4, pp. 1-13, Jan. 2010.
    Retrieved from: https://www.researchgate.net/publication/266462167_Ionizing_Radiation_DNA_Double_Strand_Break_and_Mutation
    Retrieved on: Feb 2, 2017.
  4. E. S. Gilbert, “Ionizing Radiation and Cancer Risks,” International Journal Radiation Biology, vol. 85, no. 6, pp. 467–482, Jun. 2009.
    DOI: 10.1080/09553000902883836
    PMid: 19401906
    PMCid: PMC2859619
  5. R. B. Richardson, “Ionizing radiation and aging: rejuvenating an old idea,” Aging (Albany NY), vol. 1, no. 11, pp.887-902, Nov. 2009.
    DOI: 10.18632/aging.100081
    PMid: 20157573
    PMCid: PMC2815743
  6. M. Nakano, Y. Kodama, K. Ohtaki, M. Itoh, R. Delongchamp, A. Awa et al., “Detection of stable chromosome aberrations by FISH in A-bomb survivors: Comparison with previous solid Giemsa staining data on the same 230 individuals,” Int. J. Radiation Biology, vol. 77, no. 9, pp.971–977, Sep. 2001.
    DOI: 10.1080/09553000110050065
    PMid: 11576457
  7. K. Breger, L. Smith, M. Turker, M. Trayer, “Ionizing radiation induces frequent translocations with delayed replication and condensation,” Cancer Res., vol. 64, no. 22, pp.8231-8238, Nov. 2004.
    DOI: 10.1158/0008-5472.CAN-04-0879
    PMid: 15548689
  8. B. R. Scott, K. M. Gott, C. A. Potter, J. Wilder, “A Comparison of in vivo cellular responses to Cs-137 Gamma Rays and 320-Kv X-rays,” Dose Response, vol. 11, no. 4, pp. 459–474, Nov. 2013.
    DOI: 10.2203/dose-response.12-050.Scott
    PMid: 24298223
    PMCid: PMC3834739
  9. Н. Д. Окладникова, Б. Р. Скотт, З. Б. Токарская, Г. В. Жунтова, В. Ф. Хохряков, В. А. Сырчиков, Е. С. Григорьева, “Уровень нестабильных и стабильных хромосомных аберраций при инкорпорации нетранспортабельных соединений плутония-239,” Медицинская радиология и радиационная безопасность, т. 50, № 6, с. 23-32, 2005. (N. D. Okladnikova, B. R. Scott, Z. B. Tokarskaya, G. V. Zhuntova, V. F. Khokhryakov, V. A. Syrchikov, E. S. Grigoryeva, “Evaluation of Genome Stability at Incorporation of Non-Transpose Compounds of Pu-239,” Medical Radiology and Radiation Safety, vol. 50, no. 6, pp. 23-32, 2005.)
  10. Cryptogenic Analysis for Radiation Dose Assessment, 1st ed., IAEA, Vienna, Austria, 2001, pp. 1-88.
    Retrieved from: http://www-pub.iaea.org/MTCD/publications/PDF/TRS405_scr.pdf
    Retrieved on: Jan. 24, 2017.
  11. В. П. Боровиков, “Классификация данных в системе STATISTICA – модуль Discriminant Analysis,” в Популярное введение в программу STATISTICA, 1-е издание, Москва, Россия: КомпьютерПресс, 1998, гл. 5, с. 163-185 (V. P. Borovikov, “Classification of data in Statistica system – Discriminant Analysis module,” in Popular introduction to the program STATISTICA, 1st ed., Moscow, Russia: ComputerPress, 1998, ch. 5, pp. 163-185.)
  12. Э. А. Вуколов, “Дисперсионный анализ,” “Регрессионный анализ,” в Основы статистического анализа, 2-е издание, Москва, Россия: Форум, 2008, гл. 5-6, с. 150-240. (E. A. Vukolov, “Dispersive analysis,” “Regression analysis,” in Fundamentals of statistical analysis, 2nd ed., Moscow, Russia: Forum, 2008, ch. 5-6, pp. 150-240.)
  13. J. S. Bedford, D. Phil, “Sublethal damage, potentially lethal damage, and chromosomal aberrations in mammalian cells exposed to ionizing radiations,” Int. J. Radiat. Oncol. Biol. Phys., vol. 21, no. 6, pp. 1457-1469, Nov. 1991.
    DOI: 10.1016/0360-3016(91)90320-4
  14. Н. Л. Шмакова, Е. А. Насонова, Е. А. Красавин, Л. А. Мельникова, Т. А. Фадеева, “Индукция хромосомных аберраций и микроядер в лимфоцитах периферической крови человека при действии малых доз облучения,” Радиационная биология. Радиоэкология, т. 46, № 4, с. 480-487, 2006. (N. L. Shmakova, E. A. Nasonova, E. A. Krasavin, L. A. Melnikova, T. A. Fadeeva, “Induction of Chromosome Aberrations and Micronuclei in Human Peripheral Blood Lymphocytes at Low Dose of Radiation,” Radiation biology. Radioecology, vol. 46, no. 4, pp. 480-487, 2006.)
  15. V. Yu. Kravtsov, R. F. Fedortseva, Ye. V. Starkova, N. M. Yartseva, A. M. Nikiforov, “Tailed nuclei and dicentric chromosomes in irradiated subjects,” Appl. Radiat. Isot., vol. 52, no. 2, pp. 1121-1127, May 2000.
    Retrieved from: www.sciencedirect.com/science/article/pii/S0969804300000579?via%3Dihub
    Retrieved on: Jan. 21, 2017
  16. V. Gorbunova, A. Seluanov, Z. Mao, C. Hine, “Changes in DNA repair during aging,” Nucleic Acids Res., vol. 35, no. 22, pp. 7466–7474, Dec. 2007.
    DOI: 10.1093/nar/gkm756
    PMid: 17913742
    PMCid: PMC2190694
  17. S. M. Gollin, “Acquired chromosome abnormalities: the cytogenetics of cancer,” in Encyclopedia of Genetics, Genomics, Proteomics and Bioinformatics, vol. 1, L. Jorde, P. Little, M. Dunn, S. Subramaniam, Eds., 1st ed., John Wiley and Sons, 2005, ch. 1, sec. 2, pp. 1-14.
    DOI: 10.1002/047001153X.g102204

EFFECT OF N-METHYL-D-ASPARTATE RECEPTOR ANTAGONIST ON RADIATION-INDUCED GUT INJURIES IN MICE

Masatsugu Ohgami, Nobuhiko Takai, Masahiko Watanabe, Koichi Ando, Akiko Uzawa, Ryoichi Hirayama

Pages: 6-10

DOI: 10.21175/RadProc.2017.02

The intestinal crypt stem cells in gut have a high growth potential and radiosensitivity, it is dose-dependently reduced by heavy-ion irradiation and intestinal death occurs by arrest of epithelial cells supply in high dose area. The radiation to abdominal cancer, for example uterus and bladder, could give impairments not only on tumor, but also on gut nearby target. Therefore, the development of radioprotective agents for gut may contribute to more effective and less harmful heavy-ion therapy. N-methyl-D-aspartate receptor (NMDAR) is one of glutamate receptors and NMDAR antagonist has been reported to prevent the radiation-induced injuries in the central nervous system. Thus, we examined whether the peripheral NMDAR activation is a possible cause of gut injuries in mice irradiated with carbon-ion beam. We compared the dose-dependent change in the number of crypts after irradiation between treated MK-801 (0.1 mg/kg), a noncompetitive NMDAR antagonist, and untreated mice in order to confirm a MK-801 radioprotective effect on crypts. Compared with the sham group, the number of crypts in MK-801 group was significantly increased at 12.0 Gy or over. The radiolabeled [3H]MK-801 was intravenously injected with C3H female mice received 9 Gy whole body irradiation (290 MeV/u, 20 keV/μm). The significant increase was observed in [3H]MK-801 at 24 hr and 48 hr after irradiation, followed by decrease thereafter. These results suggest that intestinal NMDAR are most activated at 48 hr after carbon-ion irradiation. Thus, we suggested that radiation-induced gut injuries could be suppressed by NMDAR antagonists as radioprotective agents until 48 hr after carbon-ion exposure.
  1. T. Kamada, “Outline of Heavy Ion Radiotherapy,” in Proc. 2nd Int. Symp. on Heavy-Ion Radiotherapy and Advanced Technology, Tokyo, Japan, 2016, pp. 1-4
    Retrieved from: http://www.nirs.qst.go.jp/rd/reports/proceedings/pdf/2nd_International_Symposium_2016.pdf
    Retrieved on: Feb. 01, 2017
  2. Y. Yoshida et al., “Evaluation of therapeutic gain for fractionated carbon-ion radiotherapy using the tumor growth delay and crypt survival assays,” Radiother. Oncol, vol. 117,no. 2, pp. 351–357, Nov. 2015.
    DOI: 10.1016/j.radonc.2015.09.027
    PMid: 26454348
  3. T. Ohno, “Particle radiotherapy with carbon ion beams,” EPMA J, vol. 4,no. 9, Mar. 2013.
    DOI: 10.1186/1878-5085-4-9
  4. A. Dubois, R. I. Walker, “Prospects for Management of Gastrointestinal Injury Associated with the Acute Radiation Syndrome,” Gastroenterology, vol. 95,no. 2, pp. 500–507, Aug. 1988.
    Retrieved from: http://www.sciencedirect.com/science/article/pii/0016508588905124
    Retrieved on: Feb. 01, 2017.
  5. M. M. Bismar, F. A. Sinicrope, “Radiation enteritis,” Curr. Gastroenterol. Rep., vol. 4,no. 5, pp. 361–365, Oct. 2002.
    DOI: 10.1007/s11894-002-0005-3
    PMid: 12228037
  6. C. G. Rousseaux, “A Review of Glutamate Receptors I: Current Understanding of Their Biology,” J Toxicol. Pathol., vol. 21,no. 1, pp. 25–51, Apr. 2008
    DOI: 10.1293/tox.21.25
  7. S. F. Traynelis et al., “Glutamate Receptor Ion Channels: Structure, Regulation, and Function,” Pharmacol. Rev., vol. 62,no. 3, pp. 405–496, Sep. 2010.
    DOI: 10.1124/pr.109.002451
    PMid: 20716669
    PMCid: PMC2964903
  8. K. G. Dickman et al., “Ionotropic Glutamate Receptors in Lungs and Airways,” Am. J. Respir. Cell Mol. Biol., vol. 30,no. 2, pp. 139–144, Feb. 2004.
    DOI: 10.1165/rcmb.2003-0177OC
    PMid: 12855408
  9. J. W. Olney, “Excitotoxic Amino Acids and Neuropsychiatric Disorders,” Annu. Rev. Pharmacol. Toxicol., vol. 30, pp. 47–71, Apr. 1990.
    DOI: 10.1146/annurev.pa.30.040190.000403
    PMid: 2188577
  10. D. W. Choi, “Excitotoxic cell death,” J. Neurobiol., vol. 23,no. 9, pp. 1261–1276, Nov. 1992.
    DOI: 10.1002/neu.480230915
    PMid: 1361523
  11. Y. M. Lu, “Ca2+-Permeable AMPA/Kainate and NMDA Channels: High Rate of Ca2+ Influx Underlies Potent Induction of Injury,” J. Neurosci., vol. 16,no. 17, pp. 5457–5465, Sep. 1996.
    Retrieved from: http://www.jneurosci.org/content/jneuro/16/17/5457.full.pdf
    Retrieved on: Feb. 01, 2017.
  12. C. G. Rousseaux, “A Review of Glutamate Receptors II: Pathophysiology and Pathology,” J. Toxicol. Pathol., vol. 21,no. 3, pp. 133–173, Oct. 2008.
    DOI: 10.1293/tox.21.133
  13. L. Tenneti et al., “Role of Caspases in N-Methyl-D-Aspartate-Induced Apoptosis in Cerebrocortical Neurons,” J. Neurochem., vol. 71,no. 3, pp. 946–959, Sep. 1998.
    DOI: 10.1046/j.1471-4159.1998.71030946.x
    PMid: 9721720
  14. T. Fuchigami et al., “Development of PET and SPECT probes for glutamate receptors,” Scientific World Journal, vol. 2015,no. 716514, Mar. 2015.
    DOI: 10.1155/2015/716514
  15. J. A. McRoberts et al., “Role of peripheral N-methyl-D-aspartate (NMDA) receptors in visceral nociception in rats,” Gastroenteoloy, vol. 120,no. 7, pp. 1737–1748, Jun. 2001.
    DOI: 10.1053/gast.2001.24848
  16. H. Chen et al., “Identification of a homocysteine receptor in the peripheral endothelium and its role in proliferation,” J. Vasc. Surg., vol. 41,no. 5, pp. 853–860, May. 2005.
    DOI: 10.1016/j.jvs.2005.02.021
  17. H. Wang et al., “Peripheral NMDA receptors contribute to activation of nociceptors: a c-fos expression study in rats,” Neurosci Lett, vol. 221,no. 2-3, pp. 101–104, Jan. 1997.
    DOI: 10.1016/S0304-3940(96)13299-7
  18. C. G. Parsons, “NMDA receptors as targets for drug action in neuropathic pain,” Eur. J. Pharmacol., vol. 429,no. 1-3, pp. 71–78, Oct. 2001.
    DOI: 10.1016/S0014-2999(01)01307-3
  19. A. B. Petrenko et al., “The role of N-methyl-D-aspartate (NMDA) receptors in pain: a review,” Anesth. Analg., vol. 97,no. 4, pp. 1108–1116, Oct. 2003.
    DOI: 10.1213/01.ANE.0000081061.12235.55
    PMid: 14500166
  20. W. Rzeski et al., “Glutamate antagonists limit tumor growth,” Proc. Natl. Acad. Sci. USA, vol. 98,no. 11, pp. 6372–6377, May. 2001.
    DOI: 10.1073/pnas.091113598
  21. G. A. Mickley et al., “Serial injections of MK 801 (Dizocilpine) in neonatal rats reduce behavioral deficits associated with X-ray-induced hippocampal granule cell hypoplasia,” Pharmacol. Biochem. Behav., vol. 43,no. 3, pp. 785–793, Nov. 1992.
    DOI: 10.1016/0091-3057(92)90409-9
  22. E. H. Wong et al., “The anticonvulsant MK-801 is a potent N-methyl-D-aspartate antagonist,” Proc. Natl. Acad. Sci. USA, vol. 83,no. 18, pp. 7104–7108, Sep. 1986.
    Retrieved from: http://www.pnas.org/content/83/18/7104.full.pdf
    Retrieved on: Feb. 01, 2017.
  23. J. F. MacDonald et al., “Actions of ketamine, phencyclidine and MK-801 on NMDA receptor currents in cultured mouse hippocampal neurones,” J. Pysiol., vol. 432,no. 1, pp. 483–508, Jan. 1991.
    DOI: 10.1113/jphysiol.1991.sp018396
  24. A. Uzawa et al., “Comparison of biological effectiveness of carbon-ion beams in Japan and Germany,” Int. J. Radiat. Oncol. Biol. Pys., vol. 73,no. 5, pp. 1545–1551, Apr. 2009.
    DOI: 10.1016/j.ijrobp.2008.12.021
    PMid: 19306751
  25. A. Balla et al., “Continuous phencyclidine treatment induces schizophrenia-like hyperreactivity of striatal dopamine release, Neuropsychopharmacol., vol. 25,no. 2, pp. 157–164, Aug. 2001.
    DOI: 10.1016/S0893-133X(01)00230-5
  26. J. A. Harder et al., “Learning impairments induced by glutamate blockade using dizocilpine (MK-801) in monkeys,” Br. J. Pharmacol., vol. 125,no. 5, pp. 1013–1018, Nov. 1998.
    DOI: 10.1038/sj.bjp.0702178
    PMid: 9846639
    PMCid: PMC1565679

SURFACE IRRADIATION OF CHICKEN EGGS BY NANOSECOND ELECTRON BEAM

S. Yu. Sokovnin, R. A. Vazirov, M. E. Balezin

Pages: 11-14

DOI: 10.21175/RadProc.2017.03

The irradiation exposure experiments were carried out by means of the pulsed repetitive nanosecond accelerator URT-0.5 (electron energy of up to 500 keV, a pulse width of 50 ns, pulse repetition rate of up to 200pps). The determination of the distribution of the absorbed dose (AD) in the depth in the polyethylene was conducted by a gray wedge. The measurement of the electron beam AD on the surface of the shell (removed from the eggs) and under the shell, as well as beneath the absorber layer (polyethylene 80 microns thick) was also performed by the film dosimeter. Thermoluminescent dosimeters, TLD-500, were used to determine the distribution of the bremsstrahlung AD inside chicken eggs. These results lead to the conclusion that the irradiation of an electron beam with the AD level of 5 kGy is sufficient for complete disinfection on the surface of an egg. The AD inside of it will not exceed 8 cGy because of bremsstrahlung.
  1. В. В. Гуслянников, М. А. Подлегаев, Технология мяса птицы и яйцепродуктов, Москва, Россия: Пищевая промышленность, 1979 г. (V. V. Guslyannikov, M. A Podlegaev, Technology of poultry meat and egg products AM, Moscow, Russia: Food Industry, 1979.)
  2. А. П. Лищук «Обеззараживание куриных яиц и яйцепродуктов (меланж и яичный порошок) от сальмонелл» диссертация на соискание ученой степени кандидата ветеринарных наук (16.00.06)/ Лищук Андрей Петрович; Российская академия сельскохозяйственных наук. - Москва, 2002 – 177 с. (A. P. Lishchuk “Disinfection of eggs and egg products (egg powder and egg products) from Salmonella,” Ph.D. dissertation, Veterinary Sciences, Russian Academy of Agricultural Sciences, Moscow, Russia, 2002.)
  3. М. А. Туманян, Д. А. Каушанский, Радиационная стерилизация, Москва, Россия: Медицина, 1974. стр. 304. (M. A. Tumanyan, D. A. Causeni, Radiation sterilization, Moscow, Russia: Medicine, 1974. p.304.)
  4. European Food Safety Authority, “Statement summarising the Conclusions and Recommendations from the Opinions on the Safety of Irradiation of Food adopted by the BIOHAZ and CEF Panels,” EFSA Journal, vol. 9, no. 4, pp. 2107-1 – 2107-98, Mar. 2011.
    DOI: 10.2903/j.efsa.2011.2107
  5. Yu. A. Kotov, S. Yu. Sokovnin. “Overview of the application of nanosecond electron beams for radiochemical sterilization,” IEEE Transactions on Plasma Science, Special Issue, vol. 28, no. 1, pp. 133-136, Feb. 2000.
    DOI: 10.1109/27.842883
  6. S. Yu. Sokovnin, M. E. Balezin “Production of nanopowders using nanosecond electron beam,” Ferroelectrics, vol. 436, no. 1, pp. 108-111, Dec. 2012.
    DOI: 10.1080/10584587.2012.731330
    DOI: 10.1080/10584587.2012.730951
  7. S. Yu. Sokovnin, Yu. A. Kotov, S. N. Rukin, G. A. Mesyats, “Research of the effects of Impulse frequency electron beams on microorganisms in aqueous solutions,” Russian Journal of Ecology, vol. 27, no. 3, 1996. pp. 214-216.
  8. Yu. A. Kotov, S. Yu. Sokovnin, M. E. Balezin, “YPT-0.5 repetitive-pulse nanosecond electron accelerator,” Instr. and Exp. Tech., vol. 43, no. 1, pp. 102-105, Jan. 2000.
    DOI: 10.1007/BF02759009
  9. R. A. Abdulov, V. V. Generalova “Monitoring maintenance of radiation-technological processes in Russia,” High Energy Chemistry, vol. 36, no. 1, pp. 26-33, Jan. 2002.
    DOI: 10.1023/A:1013644410792
  10. I. I. Mil`man, E. V. Moiseĭkin, S. V. Nikiforov, S. V. Solov`ev, I. G. Revkov, E. N. Litovchenko, “The role of deep traps in luminescence of anion-defective α-Al2O3: C crystals,” Physics of the Solid State, vol. 50, no. 11, pp 2076-2080, Nov. 2008.
    DOI: 10.1134/S1063783408110127
  11. А. М. Кузин, “Проблема малых доз и идеи гормезиса в радиобиологии,” Радиобиология, том. 31, вып. 1., сс. 16-21, 1991. (A. M. Kuzin, “The problem of low doses and hormesis ideas in radiobiology,” Radiobiology, vol. 31, no. 1, pp. 16-21, 1991.)
  12. D. W. Forster, M. Goodman, G. Herbert, J. C. Martin, T. Stor, “Electron beam diagnostics using X-rays,” in J. C. Martin on Pulsed Power, vol. 3, T. H. Martin, M. Williams, M. Kristiansen, Eds., 1st ed., New York, (NY), USA: Springer US, 1996, ch. 11, pp. 375 – 412.
    DOI: 10.1007/978-1-4899-1561-0_31
  13. Правила работы с радиоактивными веществами и другими источниками ионизирующих излучений в учреждениях и организациях Академии наук СССР, Академия наук СССР, Москва, СССР: Наука, 1984, c. 303. (Rules for working with radioactive substances and other sources of ionizing radiation at the institutions and organizations of the Academy of Sciences of USSR, Academy of Sciences of USSR, Moscow, USSR: Nauka, 1984, p. 303.)

THE STUDY OF BIOLOGICAL EFFECTS INDUCED BY ACCELERATED 12C IONS WITH AN ENERGY OF 450 MeV/N ON MICE IN VIVO

Svetlana Sorokina, Svetlana Zaichkina, Olga Rozanova, Alexander Shemyakov, Helena Smirnova, Sergey Romanchenko, Alsu Dyukina, Olga Vakhrusheva, Vladimir Pikalov

Pages: 15-18

DOI: 10.21175/RadProc.2017.04

In connection with the active space exploration and the search for new sources for tumor radiotherapy, studies of the effects of low doses of radiation, which are characterized by a high LET, are currently of particular interest. The therapy with heavy charged particles becomes of more and more interest all over the world, and many medical centers tend to use heavy ion beams in radiotherapy. We investigated the biological effects induced by accelerated 12C ions with an energy of 450 MeV/n in the Bragg peak in a dose range of 0.1–1.5 Gy in mice in vivo. It was found that: (1) the dose dependence of the level of cytogenetic damage in the bone marrow is nonlinear; (2) changes of the thymus and spleen weight index depend on the dose and the quality of radiation, and this index is considerably reduced as compared to that of unirradiated mice; and (3) the level of spontaneous ROS production in blood cells increases in comparison with irradiation at the same doses of X-rays. We calculated the ratio of biological effects under the action of accelerated carbon ions to the effects of same doses of X-ray radiation. The obtained coefficient served as an index of the radiation efficiency (IRE). Thus, it was found that the average IRE value for accelerated carbon ions with an energy of 450 MeV/n in the Bragg peak in the dose range examined varied from 1.1 to 2.4 and was independent of selected biological endpoints in mice in vivo.
  1. A. H. Aitkenhead et al., “Modelling the throughput capacity of a single-accelerator multitreatment room proton therapy centre,” The British Journal of Radiology, vol. 85, no. 1020, pp. e1263–e1272, Dec. 2012.
    DOI: 10.1259/bjr/27428078
    PMid: 23175492
    PMCid: PMC3611733
  2. M. H. Barcellos-Hoff et al., “Concepts and challenges in cancer risk prediction for the space radiation environment,” Life Sciences in Space Research, vol. 6, pp. 92-103, Jul. 2015.
    DOI: 10.1016/j.lssr.2015.07.006
    PMid: 26256633
  3. F. A. Cucinotta, “A New Approach to Reduce Uncertainties in Space Radiation Cancer Risk Predictions,” PLoS ONE, vol. 10, no. 3, p. e0120717, Mar. 2015.
    DOI: 10.1371/journal.pone.0120717
    PMid: 25789764
    PMCid: PMC4366386
  4. M. E. Gaulden, “Biological Dosimetry of Radionuclide and Radiation Hazards,” Journal of Nuclear Medicine, vol. 24, no. 2, pp. 160-164, Feb. 1983.
    PMid: 6822879
  5. J. S. Loeffler, M. Durante, “Charged particle therapy-optimization, challenges and future directions,” Nat. Rev. Clin. Oncol., vol. 10, no. 7, pp. 411-424, Jul. 2013.
    DOI: 10.1038/nrclinonc.2013.79
    PMid: 23689752
  6. S. Brita et al., “Relative biological effectiveness of carbon ions for tumor control, acute skin damage and late radiation-induced fibrosis in a mouse model,” Acta Oncologica, vol. 54, no. 9, pp. 1623–1630, Aug. 2015.
    DOI: 10.3109/0284186X.2015.1069890
    PMid: 26271798
  7. V. Balakin et al., “Hypofractionated irradiation of the solid form of Ehrlich ascites carcinoma in mice by a thin scanning proton beam,” Biophysics, vol. 61, no. 4, pp. 682–686, Jul. 2016.
    DOI: 10.1134/S0006350916040047
  8. M. Durante, “New challenges in high-energy particle radiobiology,” Br. J. Radiol., vol. 87, no. 1035, Mar. 2014.
    DOI: 10.1259/bjr.20130626
    PMid: 24198199
    PMCid: PMC4064605
  9. S. Zaichkina, “Peculiarities of the effect of low-dose-rate radiation simulating high-altitude flight conditions on mice in vivo,” Radiat. Environ. Biophys., vol. 46, no. 2, pp. 131–135, Apr. 2007.
    DOI: 10.1007/s00411-007-0107-2
    PMid: 17415582
  10. W. Schmid, “The micronucleus test,” Mutat. Res., vol. 31, no. 1, pp. 9–15, Feb. 1975.
    DOI: 10.1016/0165-1161(75)90058-8
  11. V. Balakin et al., “Study of cytogenetic effects induced by accelerated (12)C ions with energy of 200 MeV/nucleon in mice,” Dokl. Biochem. Biophys., vol. 439, pp. 192-194, Jul-Aug. 2011.
    DOI: 10.1134/S1607672911040120
    PMid: 21928143
  12. R. Kallman, H. Kohn, “The reaction of the mouse spleen to X-rays measured by changes in organ weight,” Radiat. Res., vol. 3, no. 1, pp. 77-87, Sep. 1955.
    DOI: 10.2307/3570274
    PMid: 13255011
  13. R. Kallman, H. Kohn, “The reaction of the mouse thymus to X-rays measured by changes in organ weight,” Radiat. Res., vol. 2, no. 3, pp. 280-293, May 1955.
    DOI: 10.2307/3570256
    PMid: 14372047
  14. K. Datta et al., “Exposure to Heavy Ion Radiation Induces Persistent Oxidative Stress in Mouse Intestine,” PLoS ONE, vol. 7, no. 8, p. e42224, Aug. 2012.
    DOI: 10.1371/journal.pone.0042224
    PMid: 22936983
    PMCid: PMC3427298
  15. S. Sorokina et al., “Relative biological efficiency of protons at low and therapeutic doses in induction of 53BP1/γH2AX foci in lymphocytes from umbilical cord blood,” Int. J. Radiat. Biol., vol. 89, no. 9, pp. 716-723, Sep. 2013.
    DOI: 10.3109/09553002.2013.797619
    PMid: 23607485

INFLUENCE OF VARIOUS FACTORS ON THE LACTOCOCCUS LACTIS CELLS

L. G. Stoyanova, L. P. Blinkova, Yu. D. Pakhomov, S. Dbar

Pages: 19-24

DOI: 10.21175/RadProc.2017.05

Bacteriocin-producing strains of Lactococcus lactis subsp. lactis of different origion were used in our experiments. UV-Irradiation of cells of bacteriocin-synthesis lactoococci of different origion in dose of 7.6–7600 erg/mm2 followed by their selective growth in MRS medium and selection after UV-rays treatment. Some strain of lactococci had double UV treatment. The novel most active bacteriocin-producing strains were restored after lyophilization and storage. An effective dose of treatment of wide strain 229 should be considered to an exposure of 10 minutes. As a result, No.12 with an antibiotic activity of 3850 IU / mL was selected, which is 54 % higher than the initial one. The study of the physiological and biochemical properties of variants, selected after UV-rays treatment, showed that they somewhat changed the rate of their growth and the accumulation of bactericine. The relative activity in the production of bacteriocine was calculated as the ratio of activity values to the number of produced cells. The inactivated homologous strain biomass and aminoacids were applied as the factors of resuscitation. Control - culture liquid without supplements. VBNC cells of opportunistic strains formed with the first days of incubation. After 1 year of incubation Klebsiella pneumoniae 1954, Alcaligenes faecalis 415, Enterobacter aerogenes 418, Proteus vulgaris HX19222, Salmonella typhimurium value VBNC values were statistically equal (97.1 - 99.9%). The strains of L. lactis after 1 day of stress didn’t form colonies up to 60-80%, after 5 days to 82.1 - 99.6%, after 1 year – 99,9%. Unwashed from the culture fluid the inoculated cells proliferated and passed to VBNC faster. With that inoculation the nisin productive activity of cells was lower at 10 - 78 times, depending on strain of L. lactis. The study of resuscitation factors have shown that supplement of homologous inactivated biomass of L. lactis (0.1%, 0.5%, 1%) was effectively with 1% (a magnification of 2.65 at p<0.05) and 0.5% (magnification of 3.75 at p<0.05) only for strain MSU. For strain F 116 marked 4 fold increase in the ability to the cultivation after the addition of 7 aminoacids: (glutamine, methionine, leucine, isoleucine, histidine, arginine, valine). The quantitative level of VBNC cells, which formed in the first days of incubation, after 1 year was the same for opportunistic and probiotic cultures (97.1% - 99.9%). All studied resuscitation factors were individually effective for bacterial strains.
  1. B. J. Pitonzo, P. S. Amy, M. Pudin, “Effect of gamma radiation on native endolithic microorganisms from a radioactive waste deposit site,” Radiation Research, vol. 152, no. 1, pp. 64 – 70, Jul. 1999.
    DOI: 10.2307/3580050
    PMid: 10381842
  2. S. Saroj, R. Shashidhar, J. Bandekar, “Gamma radiation used as hygienization technique for foods does not induce viable but non-culturable state (VBNC) in Salmonella enterica ssp. Enterica,Curr. Microbiol., vol. 59, no. 4, pp. 420 – 424, Oct. 2009.
    DOI: 10.1007/s 00284-009-9454-3
    PMid: 19641961
  3. M. Parikka, M. M. Hammaren, S. K.Harjula, J. A. Haltpenny et al., “Mycobacterium marinum causes a latent infection that can be reactivated by gamma irradiation in adult zebratish,” Plos pathogens, vol. 8, no. 9, pp. 1 – 14, Sep. 2012.
    DOI: 10.1371/journal.ppat.1002944
    PMid: 23028333
    PMCid: PMC3459992
  4. S. Zhang, C. Ye, H. Lin, L. V. Zu, X. Yu, “UV disinfection induces a VBNC state in Escherichia and Pseudomonas aeruginosa,” Environmental science and technology, vol. 49, no. 3, Jan. 2015.
    DOI: 10.1021/es505211e
  5. L. I. Vorob`eva, N. G. Loiko et al., “Effect of the Reactivating Factor of Luteococcus japonicus subsp. casei on the Expression of SOS Response Genes,” Microbiology, vol. 82, no. 2., pp. 126 – 132, Mar. 2013.
    DOI: 10.1134/S0026261713020094
  6. European Parliament. (Jan. 27, 1997). No 258/97 Concerning novel foods and novel food ingredients.
    Retrieved from: http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31997R0258&from=EN
    Retrieved on: Jan. 18, 2017
  7. N. Bernhom, T. R. Licht et al.,Effects of Lactococcus lactis on Composition of intestinal Microbiota: Role of Nisin,” Applied Environmental Microbiology, vol. 72, no. 1, pp. 1239 – 244, Jan. 2006.
    DOI: 10.1128/AEM.72.1.239-244.2006
    PMid: 16391049
    PMCid: PMC1352298
  8. L. G. Stoyanova, E. A. Ustiugova, A. I. Netrusov, “Antibacterial metabolites of lactic acid bacteria: their diversity and properties,” Appl. Biochem. Microbiol., vol. 48, no. 3, pp. 259 – 275, May 2012.
    DOI: 10.1134/S0003683812030143
    PMid: 22834296
  9. V. C. Trainor, R. K. Udy, P. J. Bremer, G. M. Cook, “Survival of Streptococcus pyogenes under stress and starvation,” FEMS Microbiol. Lett., vol. 176, no. 2, pp. 421 – 428, Jul. 1999.
    DOI: 10.1111/j.1574-6968.1999.tb13692.x
    PMid: 10427725
  10. V. Besnard et al., “Capelier Enviromental and physico‑chemical factors induce VBNC state in Listeria monocytogenes,” Veterinary Research, vol. 33, no. 4, pp. 359 – 370, Jul-Aug. 2002.
    DOI: 10.1051/vetres:2002022
    PMid: 12199363
  11. J. D. Oliver, F. Hite, D. McDougald, N. L. Andon, J. M. Simpson, “Entry into and resuscitation from the viable but nonculturable state Vibrio vulnificus in entuarine environment,” Applied and Environmental Microbiology, vol. 61, no. 7, pp. 2624 – 2630, Jul. 1995.
    PMid: 7618874
    PMCid: PMC167534
  12. D. Oliver, “The viable but nonculturable state in bacteria,” J. Microbiol., vol. 43, pp. 93 – 100, Feb. 2005.
    PMid: 15765062
  13. L. Blinkova, D. M. Martirosyan et al., “Nonculturable bacteria in lyophilized probiotic preparations,” The Journal of Functional Foods in Health and Disease, vol. 4, no. 2, pp. 66 – 76, Feb. 2014.
    Retrieved from: http://ffhdj.com/index.php/ffhd/article/view/29/66
    Retrieved on: Dec. 19, 2016
  14. M. D. Whitesides, J. D. Oliver, “Resuscitation of Vibrio vulnificus from the viable but nonculturable state,” Appl. Environ. Microbiol., vol. 63, no. 3, pp. 1002 – 1005, Mar. 1997.
    PMid: 16535534
    PMCid: PMC1389128
  15. L. P. Blinkova, Yu. D. Pakhomov, N. N. Scorlupkina, “Detection and resuscitation of viable but nonculturable bacteria in vaccines and other biomedical preparations,” presented at the 2016 Int. Conf. “Toolkits for DNA vaccine design, an update”, Moscow, Russia, 2016.
  16. B. Ganesan, M. R. Stuart, B. C. Weiner, “Carbohydrate starvation causes a metabolically active but nonculturable state in Lactococcus lactis,” Appl. Environ. Microbiol., vol. 73, no. 8, pp. 2498 – 2512, Apr. 2007.
    DOI: 10.1128/AEM.01832-06
    PMid: 17293521
    PMCid: PMC1855592
  17. Л. Г. Стоянова, Т. Д. Сультимова, С. Г. Ботина, А. И. Нетрусов, “Выделение и идентификация новых низинобразующих штаммов Lactococcus lactis subsp. Lactis из молока,” Прикл. биохим. Микробиол., т. 42, но. 5, стр. 560 – 568, 2006. (L. G Stoyanova, T. D. Sul`timova, S. G. Botina, A. I. Netrusov, “The establishment of taxonomic state of new perspective bacteriocin-synthesis strains of Lactococci of different origin,” Appl. Biochem. Microbiol., vol. 42, no. 5, pp. 560 – 568, 2006.)
  18. L. G Stoyanova., N. S. Egorov, “Comparative description of new Lactococcus lactis ssp. lactis strains obtained by protoplast fusion methods,” Microbiologiya, vol. 68, no. 2, pp. 235-240, 1999.
  19. M. Z. Nuryshev, L. G. Stoyanova, F. I. Netrusov, “New Probiotic Culture of Lactococcus lactis ssp. Lactis: Effective Opportunities and Prospects,” Journal of Microbial & Biochemical Technology, vol. 8, no. 4, pp. 290-295, Jul. 2016.
    DOI: 10.4172/1948-5948.1000299

THE FOCAL BRAIN PROTON BEAM IRRADIATION INSULT IN RATS – INDUCED MEMORY DISTURBANCE RELATED CHANGE IN ACETYLCHOLINE RECEPTOR BINDING

Nobuhiko Takai, Masatsugu Ohgami, Koichi Ando, Akiko Uzawa, Ryoichi Hirayama, Saori Nakamura, Yoshihito Ohba

Pages: 25-29

DOI: 10.21175/RadProc.2017.06

Cerebral dysfunction is one of the major concerns associated with radiotherapy of brain tumours. However, little is known about the neurochemical basis of brain dysfunction induced by proton irradiation. We here investigated the early consequences of brain damages caused by a proton beam. Brains of male wistar rats were locally irradiated with a 70 MeV proton beam. The irradiation dose was set at level known to produce vascular change followed by necrosis, which appeared the late period after irradiation with 30 Gy. The eight-arm radial maze task in irradiated rats was used. In order to assess the preservation (recall) of memory, the rats that showed the spatial cognition were irradiated. The impairment of the preservation memory was not observed in the irradiated rats compared to the control ones 24 hrs after irradiation. Repeated measures of two-way ANOVA of correct choices and number of errors showed no differences between the control group and 30 Gy irradiated group. In order to assess the acquisition process of memory and working memory for the platform location in the water maze, the task was started on the 24 hrs after irradiation. In the learning task (the acquisition process of memory), there was no difference between the control group and irradiated group in the latency to platform. The rats that memorized the location of the standard position were irradiated, and the impairment of the long-term memory was not observed in the irradiated rats compared to the control ones 24 hrs after irradiation. However, the irradiated rats required a substantially longer time finding out the platform than the control rats when the platform was placed in a non-standard position. From this it follows that a proton dose of 30 Gy impaired the working memory of rats. The function of muscarinic acetylcholine receptors was analyzed by in vivo binding assay using radioligand quinuclidinyl benzilate ([3H]QNB). The irradiated rats were intravenously injected with 5.5 MBq of [3H]QNB on the 24 hrs after the irradiation. Autoradiographic studies showed a transitional increase of [3H]QNB in-vivo binding in the early phase after proton irradiation. On the other hand, no change in in-vitro [3H]QNB binding was seen in the autoradiogram of brain slices from the irradiated rats. The cerebral blood flow and the histopathological change in the brain appeared at 5 or 6 months after irradiation. These results indicate that the relation between behavioral impairment caused by radiation is closely related to the early change in the receptor function which could be detected in in-vivo conditions.
  1. M. Schmidinger et al., “Psychometric- and quality-of-life assessment in long-term glioblastoma survivors.” J. Neurooncol.,vol. 63,no. 1, pp. 55-61, May 2002.
    DOI: 10.1023/A: 1023740303162
  2. J. P. Imperato et al., “Effects of treatment on long-term survivors with malignant astrocytomas,” Ann. Neurol., vol. 28,no. 6, pp. 818-822, Dec. 1990.
    DOI: 10.1002/ana.410280614
    PMid: 2178330
  3. P. Salander et al., “Long-term memory deficits in patients with malignant gliomas,” J. Neuro-Oncology.,vol. 25,no. 3, pp. 227-238, Oct. 1995.
    DOI: 10.1007/BF01053156
    PMid: 8592173
  4. R. J. Packer et al., “A prospective study of cognitive function in children receiving whole-brain radiotherapy and chemotherapy: 2-year results,” J. Neurosurg.,vol. 70,no. 5, pp. 707-713, May 1989.
    DOI: 10.3171/jns.1989.70.5.0707
    PMid: 2709111
  5. C. Eiser et al., “Learning difficulties in children treated for acute lymphoblastic leukaemia (ALL),” Pediatr. Rehabil.,vol. 4,no. 3, pp. 105-118, Jul-Sep. 2001.
    DOI: 10.1080/13638490110064806
    PMid: 11831563
  6. A. Davidson et al., “Functional neurological outcome in leukaemic children receiving repeated cranial irradiation,” Radiother Oncol.,vol. 31,no. 2, pp. 101-109, May 1994.
    DOI: 10.1016/0167-8140(94)90389-1
  7. M. S. Zola et al., “Impaired Recognition Memory in Monkeys after Damage Limited to the Hippocampal Region,” J. Neurosci.,vol. 20,no. 1, pp. 451-463, Jan. 2000.
    Retrieved from: http://www.jneurosci.org/content/20/1/451.long
  8. R. Liscak et al., “Leksell gamma knife lesioning of the rat hippocampus: the relationship between radiation dose and functional and structural damage,” J. Neurosurg.,vol. 97,no. 5, pp. 666-673, Dec. 2002.
    DOI: 10.3171/jns.2002.97.supplement
    PMid: 12507117
  9. M. C. Cheung et al., “Memory impairment in humans after bilateral damage to lateral temporal neocortex,” Neuroreport.,vol. 14,no. 3, pp. 371-374, Mar. 2003.
    DOI: 10.1097/01.wnr.0000057865.05120.f3
    PMid: 12634486
  10. H. S. Reinhold et al., “Development of blood vessel-related radiation damage in the fimbria of the central nervous system,” Int J Radiat Oncol Biol Phys.,vol. 18,no. 1, pp. 37-42, Jan. 1990.
    DOI: 10.1016/0360-3016(90)90264-K
  11. G. J. M. J. van den Aardweg et al., “A new model of radiation-induced myelopathy: A comparison of the response of mature and immature pigs,” Int. J. Radiat. Oncol. Biol. Phys.,vol. 29,no. 4, pp. 763-770, Dec. 1994.
    DOI: 10.1016/0360-3016(94)90564-9
  12. W. Calvo et al., “Time- and dose-related changes in the white matter of the rat brain after single doses of X rays,” Br. J. Radiol.,vol. 61,no. 731, pp. 1043-1052, Nov. 1988.
    DOI: 10.1259/0007-1285-61-731-1043
    PMid: 3208008
  13. H. Hodges et al., “Late behavioural and neuropathological effects of local brain irradiation in the rat,” Behav. Brain Res.,vol. 91,no. 1-2, pp. 99-114, Dec. 1998.
    DOI: 10.1016/S0166-4328(97)00108-3
  14. I. Lamproglou et al., “Radiation-induced cognitive dysfunction: an experimental model in the old rat,” Int. J. Radiat. Oncol. Biol. Phys., vol. 31,no. 1, pp. 65-70, Jan. 1995.
    DOI: 10.1016/0360-3016(94)00332-F
  15. S. Takahashi et al., “Histological and elemental changes in the rat brain after local irradiation with carbon ion beams,” J. Radiat. Res. vol., 43,no. 2, pp. 143-152, Jun. 2002.
    DOI: 10.1269/jrr.43.143
  16. Y. Yoneoka et al., “An experimental study of radiation-induced cognitive dysfunction in an adult rat model,” Br. J. Radiol.,vol. 72,no. 864, pp. 1196-1201, Dec. 1999.
    DOI: 10.1259/bjr.72.864.10703477
    PMid: 10703477
  17. O. Inoue et al., “An increase in [3H] QNB binding by proton-beam irradiation in intact rat brain: an apparent positive cooperativity of binding,” Neurosci. Lett.,vol. 250,no. 1, pp. 33-36, Jun. 1998.
    DOI: 10.1016/S0304-3940(98)00426-1
  18. S. Okada et al., “Histopathological and morphometric study of the late effects of heavy-ion irradiation on the spinal cord of the rat,” Radiat. Res.,vol. 150,no. 3, pp. 304-315, Dec. 1998.
    Retrieved from: http://www.jstor.org/stable/3579980
    Retrieved on: Jan. 19, 2017
  19. S. Mizumatsu et al., “Extreme sensitivity of adult neurogenesis to low doses of X-irradiation,” Cancer. Res.,vol. 63,no. 14, pp. 4021-4027, Jul. 2003.
    Retrieved from: http://cancerres.aacrjournals.org/content/63/14/4021.long
    Retrieved on: Feb. 18, 2017
  20. K. Mishima et al., “The scopolamine-induced impairment of spatial cognition parallels the acetylcholine release in the ventral hippocampus in rats,” Jpn. J. Pharmacol.,vol. 84,no. 2, pp. 163-173, Oct. 2000.
    DOI: 10.1254/jjp.84.163
    PMid: 11128039

Radiation Chemistry

REAGENTLESS CATALYTIC OXIDATION OF ORGANIC HYDRAZINE DERIVATIVES AND Pu (III) BY MEANS OF NITRIC ACID

P. V. Nazarova , V. I. Volk, K. N. Dvoeglazov

Pages: 30-33

DOI: 10.21175/RadProc.2017.07

The recycling process of high-burnt irradiated nuclear fuels requires the organic reductant that is used during the previous stage to be deconstructed and Pu (III) to be oxidized to Pu (IV) before the extraction stage. Because of this, a reagentless method of oxidation using a carbon catalyst was proposed, and a search of different types of carbonic catalysts used in other scientific and technological areas was conducted. These experiments led to the choice of SKN carbon and optimal conditions for conducting reagentless catalytic oxidation of hydrazine derivatives and Pu (III) in nitric acid solutions.
  1. V. I. Marchenko, V. N. Alekseenko, K. N. Dvoeglazov, “Organic reductants of Pu and Np Ions in wet thechnology for spent nuclear fuel reprocessing,” Radiochemistry, vol. 57, no. 4, pp. 366-377, Jul. 2015.
    DOI: 10.1134/S1066362215040050
  2. В. И. Волк, С. Н. Веселов и другие, “Способ разделения урана и плутония в экстракционной технологии переработки отработавшего ядерного топлива,” Патент 2449393, 27.04.2012. (V. I. Volk, S. N. Veselov et al., “Method to separate uranium and plutonium,” Patent RU 2449393 C2, Apr. 27, 2012.)
    Retrieved from: http://www.freepatent.ru/images/patents/10/2449393/patent-2449393.pdf
    Retrieved on: Jan. 24, 2017
  3. М. С. Тюменцев, Т. С. Лапицкая, Г. Б. Быков, А. В. Ананьев, “Каталитическое разложение гидразина на рутениевых и биметаллических Pt-Ru катализаторах в азотнокислых растворах,” VII Росc. конф. по радиохим. Радиохимия 2012,Димитровград, Россия, 2012, стр. 92. (M. S. Tyumentsev, T. S. Lapitskaya, G. L. Bykov, A. V. Ananiev, “Catalytic decomposition of hydrazine to ruthenium and bimetallic Pt-Ru catalysts in nitric acid solutions,” in Proc. VII Russ. Conf. on radiochem. “Radiochemistry – 2012”, Dimitrovgrad, Russia, 2012, p. 92.)
    Retrieved from:
    https://www.researchgate.net/profile/Konstantin_German5/publication/281785055_Svazyvanie_pertehnetat_iona_organiceskimi_ligandami_v_vode/ links/55f880a408aec948c47f87a0/Svazyvanie-pertehnetat-iona-organiceskimi-ligandami-v-vode.pdf
    Retrieved on: Jan. 23, 2017
  4. G. Bhargvagi, B. Sireesha, “Equilibrium and spectral studies on ligational behaviour of N,N’-diformylhydrazine,” Proc. Indian Acad. Sci., vol. 115, no. 1, pp. 23 – 28, 2003.
    DOI: 10.1007/BF02899315

INTERACTION OF Pu(VI) AND Np(VI) WITH CARBOHYDRAZIDE IN NITRIC ACID SOLUTIONS

O. A. Zavalina, K. N. Dvoeglazov, E. Yu. Pavlyukevich, P. V. Nazarova, V. N. Alekseenko

Pages: 34-37

DOI: 10.21175/RadProc.2017.08

The kinetics of Pu(VI) and Np(VI) recovery by carbohydrazide in an aqueous nitric acid solution was researched spectrophotometrically. Regarding to Pu(VI) it was established that in the interval of [HNO3] = 0.75-3.0 M and [CO(N2H3)2] = 0.1-0.4 M, the reaction rate was proportional to the concentration of Pu(VI). The reaction order with respect to carbohydrazide was determined to be 2.3, and -3 to nitric acid. The found activation energy of the reaction was 111 kJ·mol−1. Regarding Np(VI), it was found that in the interval of [HNO3] = 0.75-3.0 M and [CO(N2H3)2] = 0.03-0.12 M, the reaction rate was proportional to the Np(VI) concentration. Reaction order with respect to carbohydrazide was determined to be 1.15, and -1.35 with respect to nitric acid. The found activation energy of the reaction was 85 kJ·mol−1. Based on this kinetic data, a possible fundamental reaction mechanism was theorized
  1. А. Ю. Шадрин, К. Н. Двоеглазов и др, “Взаимодействие модельного нитридного облучённого ядерного топлива с водой и азотной кислотой,”Вопросы радиационной безопасности, т. 72, но. 4, стр. 45 – 54, Июль 2013. (A. Yu. Shadrin, K. N. Dvoeglazov et al., “Interaction between Simulated Nitride Spent Nuclear Fuel and Water and Nitric Acid,” Radiation safety issues, vol. 72, no. 4, pp. 45 – 54, Jul. 2013.)
  2. V. I. Volk, V. I. Marchenko, K. N. Dvoeglazov et al., “Reduction of Pu(IV) and Np(VI) with Carbohydrazide in Nitric Acid Solution,” Radiochemistry, vol. 54, no. 2, pp. 143–148, Apr. 2012.
    DOI: 10.1134/S1066362212020087
  3. V. S. Koltunov, V. G. Pastushyak, E. A. Mezhov, G. V. Koltunov, “Kinetics of Reactions of Np and Pu Ions with Hydrazine Derivatives: XVII. Reaction of Pu(VI) with Hydroxyethylhydrazine,” Radiochemistry, vol. 46, no. 2, pp. 125 - 130, Mar. 2004.
    DOI: 10.1023/B:RACH.0000024936.87231.c0
  4. В. С. Колтунов, Г. И. Журавлева, “Кинетика восстановления плутония гидразином. I. Восстановление плутония(У1),” Радиохимия, т. 15, но. 1, стр. 74 – 77, 1973. (V. S. Koltunov, G. I. Zhuravlyeva, “Kinetics of Plutonium reduction by Hydrazine. I. Recovery of Plutonium(VI),” Radiochemistry, vol. 15, no. 1, pp. 74-77, 1973.)
  5. V. I. Marchenko, V. N. Alekseenko, K. N. Dvoeglazov “Organic reductants of Pu and Np rons in wet technology for spent nuclear fuel reprocessing,” Radiochemistry, vol. 57, no. 4. pp. 366–377, Jul. 2015.
    DOI: 10.1134/S1066362215040050
  6. V. S. Koltunov, “Kinetics and Mechanism of RedOx Reactions of Np and Pu Ions with Several Organic Reductants,” J. Nucl. Sci. and Techn., vol. 39, no. suppl. 3, pp. 347-350, Nov. 2002.
    DOI: 10.1080/00223131.2002.10875480
  7. D. Y. Leshok, V. N. Alekseenko, P. M. Gavrilov et al., “Uranyl tris - (carbohydrazide) nitrate [UO2((N2H3)2CO)3](NO3)2: synthesis, structure and properties,” Radiochimica Acta, vol. 103, no. 3, pp. 477-486, Jul. 2015.
    DOI: 10.1515/ract-2014-2337

Radiation Physics

NEUTRON FLUX MEASUREMENT OF (γ, n)–REACTIONS ON NUCLEI OF ZIRCONIUM

I. F. Myronyuk, H. V. Vasylyeva, O.V. Vasylyev

Pages: 38-42

DOI: 10.21175/RadProc.2017.09

This paper investigates the probability of activation of zirconium atoms under irradiation of Bremsstrahlung gamma-rays with maximum energy of 24 MeV. The neutron flux of (ɤ, n)-reaction on nuclei of zirconium was measured using the method of activation detectors. It is suggested that the activation of zirconium atoms and the isomeric transitions of zirconium isotopes are the main cause of radiation defects in materials containing zirconium.
  1. В. М. Ажажа, И. Н. Бутенко, Б. В. Борц и другие, “Сплав Zr1Nb для атомной энергетики Украины,” Ядерна фiзика та енергетика, т. 3, но. 21, стр. 67 – 75, 2007. (V. M. Azhazha, I. N. Butenko, B. V. Borc et al., “Alloy Zr1Nb for Atomic Energetics of Ukraine,” Nuclear Physics and Atomic Energy, vol. 3, no. 21, pp. 67 – 75, 2007.)
    Retrieved from: http://jnpae.kinr.kiev.ua/21(3)/Articles_PDF/jnpae-2007-3(21)-0067-Azhazha.pdf
    Retrieved on: Dec. 10, 2016
  2. Г. В. Васильєва, В. І. Яковлев, Ю. М. Килівник, “Зміна характеристик поверхні та сорбційних властивостей цирконій силікату при опроміненні гальмівними гамма-квантами,” Фізика і хімія твердого тіла, т. 16, но. 2, стр. 322 – 326, 2015. (H. V. Vasylyeva, V. I. Yakovlev, Yu. M. Kylivnyk, “Variation of surface characteristics and sorption properties of zirconium silicate under irradiation by Bremsstrahlung gamma rays,” Phys. Chem. Solid State, vol. 16, no. 2, pp. 322 – 326, 2015.)
    DOI: 10.15330/pcss.16.2.322-326
  3. Г. В. Рогулич, Г. В. Васильєва, М. Т. Саболчій, “Особливости використання гальмiвних гамма-квантiв для вимipювання виходу 141-Ba в реакцiях фотоподiлу на ядрах урану,” в ІЕФ-2015, Ужгород, Україна, 2015, стор. 258 – 260. (H. V. Rogulych, H. V. Vasylyeva, M. T. Sabolchy, “Features of Bremsstrahlung gamma rays to measure output of 141Ba in photo fission reactions on nuclei of uranium,” in Proc. IEF-2015, Uzhgorod, Ukraine, 2015, pp. 258 – 260.)
  4. J. P Holland, Y. Sheh, J. S. Lewis, “Standartized methods for the production of high-specific activity zirconium -89,” Nuclear medicine and Biology, vol. 36, no. 7, pp. 729 – 739, Oct. 2009.
    DOI: 10.1016/j.nucmedbio.2009.05.007
    PMid: 19720285
    PMCid: PMC2827875
  5. A. L. Wooten, E. Madrid, G. D. Schweitzer, L. A. Lawrence et al. “Routine Production of 89Zr Using Automated Module,” Appl. Sci., vol. 3, no. 3, pp. 593-613, Jul. 2013.
    DOI: 10.3390/app3030593
  6. G. W. Severin, J. W. Engle, R. J. Nickles, T. E. Burton, “89Zr radiochemistry for PET,” Med. Chem., vol. 7, no. 5, pp. 389 – 394, Sep. 2011.
    PMid: 21711221
    PMCid: PMC4568753
  7. Г. Васильєва, В. Яковлев, Ю. Килівник, М. Циба, “Радіаційно-індуковані зміни поруватої структури іонообмінних сорбентів на основі фосфату титану та силікату цирконію,” Фізика і хімія твердого тіла, т. 16, но. 3, стр. 534 – 539, 2015. (H. Vasylyeva, V. Yakovlev, Yu. Kylivnyk, M. Tcyba, “Radiant Changes of Porous Structure of Ion-Exchange Sorbents Based on Titanium Phosphate and Zirconium Silicate,” Phys. Chem. Solid State, vol. 16, no. 3, pp. 534 – 539, 2015.)
    DOI: 10.15330/pcss.16.3.534-539
  8. DT neutron yield measurements using neutron activation of aluminum, Geneseo The State University of New York, Geneseo (NY), USA.
    Retrieved from: https://www.geneseo.edu/nuclear/aluminum-activation-results
    Retrieved on: Dec. 10, 2016
  9. N. Soppera, Nuclear Energy Agency, Paris, France, 2013, JANIS 4.0.
    Retrieved from: https://www.oecd-nea.org/janis/
    Retrieved on: Dec. 10, 2016
  10. В. Д. Нефедов, Е. Н. Текстер, М. А. Торопова, Радиохимия, Москва, СССР: Высшая школа, 1987. (V. D. Nefedov, E. N. Tekcster, M. A. Toropova, Radiochemistry, Moscow, USSR: High School, 1987.)
  11. W. R. Hendee, E. R. Ritenour, “Interactions of Radiation,” Medical Imaging Physics, 4th ed., New York (NY), USA:John Wiley &Sons, 2002, ch. 4, pp. 45-69.
    Retrieved from: https://phyusdb.files.wordpress.com/2013/03/hendee-w-r-medical-imaging-physics-wiley2002.pdf
    Retrieved on: Dec. 10, 2016
  12. Г. В. Васильєва, О. О. Парлаг, В. А. Пилипченко, Основи радіаційної фізики та дозиметрії, Ужгород, Україна, 2016. (H. V. Vasylyeva, O. O. Parlag, V. A. Pylypchenko Fundamentals of Radiational physics and Dosimetry, Uzhgorod, Ukraine, 2016.)
  13. M. A. Deri, B. M. Zeglis, L. C. Francesconi, J. S. Lewis, “PET imaging with ­­89Zr: From radiochemistry to the clinic,” Nucl. Med. Biol., vol. 40, no. 1, pp. 3 – 14, Jan. 2013.
    DOI: 10.1016/j.nucmedbio.2012.08.004
    PMid: 22998840
    PMCid: PMC3517725

Radiation in Medicine

TARGET DEVELOPMENT FOR MEDICAL RADIONUCLIDES CU-67 AND SR-82 PRODUCTION

V. N. Panteleev , A. E. Barzakh, L. Kh. Batist, D. V. Fedorov, V. S. Ivanov, S. A. Krotov, F. V. Moroz, P. L. Molkanov, S. Yu. Orlov, Yu. M. Volkov

Pages: 43-47

DOI: 10.21175/RadProc.2017.10

At PNPI NRC KI (Petersburg Nuclear Physics Institute of National Research Center “Kurchatov Institute”), a high current cyclotron C-80 has been put into operation recently. External proton beam of the energy of 70 MeV and intensity of 100 μA has been obtained. Presently, the work is being carried out to obtain the planned beam parameters: the energy up to 80 MeV and the current up to 200 μA. The main goal of the C-80 is the production of medical radionuclides for diagnostics and therapy. One of the cyclotron beams is intended for the treatment of ophthalmologic diseases by irradiation of malignant eye formation. The radioisotope complex RIC-80 (Radioactive Isotopes at cyclotron C-80) which is constructed at the beam of C-80 will allow us to obtain sources of high activity practically for the whole list of radionuclides produced at accelerators. An essential peculiarity of the RIC-80 is the use of an on-line mass-separator connected to one of the target stations that will allow the production of separated radionuclides of high purity. The target prototypes intended for the production of different radionuclides at the RIC-80 target stations are being studied and developed. The results of different target material tests for the production of 67Cu, 82Sr and other radioisotopes are presented. A new method of a high-temperature separation of the target materials and produced radioactive isotopes has been discussed.
  1. S. M. Qaim, “The present and future of medical radionuclide production,” Radiochim. Acta, vol. 100, no. 8-9, pp. 635-651, Aug. 2012.
    DOI: 10.1524/ract.2012.1966
  2. V. N. Panteleev et al., “Project of the radioisotope facility RIC-80 at PNPI,” in Main Scientific Activities 2007-2012, A. E. Barzakh, D. V. Balin, V. A. Guzey, A. A. Vasilyev, P. A. Kravtsov, Eds., 1st ed., Gatchina, Russia: PNPI of NRC “Kurchatov Institute,” 2013, pp. 278-282.
    Retrieved from: http://hepd.pnpi.spb.ru/hepd/articles/PNPI_2007-2012.pdf
    Retrieved on: Jan. 21, 2017
  3. V. N. Panteleev et al., “The radioisotope complex project “RIC-80” at the Petersburg Nuclear Physics Institute,” Rev. Sci. Instrum., vol. 86, no. 12, p. 123510, Dec. 2015.
    DOI: 10.1063/1.4937620
    PMid: 26724030
  4. S. A. Artamonov et al., “Design features of the 80 MeV H- isochronous cyclotron in Gatchina,” in Main Scientific Activities 2007-2012, A. E. Barzakh, D. V. Balin, V. A. Guzey, A. A. Vasilyev, P. A. Kravtsov, Eds., 1st ed., Gatchina, Russia: PNPI of NRC “Kurchatov Institute,” 2013, pp. 332-338.
    Retrieved from: http://hepd.pnpi.spb.ru/hepd/articles/PNPI_2007-2012.pdf
    Retrieved on: Feb. 10, 2017
  5. В. Н. Пантелеев, “Способ получения радионуклида стронция-82,” Патент на изобретение № 2598089, 30. 8. 2016. (V. N. Panteleev, “The production method of radionuclide strontium-82,” Russian Patent for invention no. 2598089, Aug. 30, 2016.)
    Retrieved from: http://www.findpatent.ru/patent/259/2598089.html
    Retrieved on: Jan. 29, 2017
  6. V. N. Panteleev et al., “Status of the Project of Radioisotope Complex RIC-80 (Radioisotopes at Cyclotron C-80) at PNPI,” Rad. Applic., vol. 1, no. 2, pp. 95 – 100, Oct. 2016.
    DOI: 10.21175/RadJ.2016.02.017

Radiation Measurements

BACKGROUND DOUBLE COINCIDENCES AT A MULTIDETECTOR GAMMA SPECTROMETER

Nevenka M. Antović, Sergey K. Andrukhovich, Nikola Svrkota

Pages: 48-54

DOI: 10.21175/RadProc.2017.11

Double background coincidences at two multidetector spectrometers, which have 6 and 32 NaI(Tl) detectors and registration geometry close to 4π (PRIPYAT-2M and ARGUS), are considered as a sum of true and random ones. They have been analyzed together with the energy resolution and efficiency of 137Cs, 65Zn and 40K (photons with energy of 662 keV, 1116 keV and 1461 keV, respectively) detection in the full absorption peak (individual detectors and the whole spectrometers). The number of detector-duplet combinations registering double coincidences was 15 and 496, respectively (an angle from the spectrometer centers to the detecor centers ranged from 37.38° to ~180°). Double background coincidences in the whole energy range in dependence on the detector arrangement, as well as double coincidences caused by monoenergetic sources in the whole energy range, showed that main contributors to the background double coincidences at the spectrometers PRIPYAT and ARGUS are coinciding photons, which were scattered from detector to detector. In the 32-detector system, the minimum, maximum, arithmetic mean and standard deviation of the background double coincidences counting rates in the whole energy range were found to be 0.034 (detector pairs at 79.19°), 0.142 (37.38°), 0.066, 0.033 cps, respectively. The same values for the background double coincidences counting rates coming from monoenergetic sources were 0.974 (63.43°), 4.646 (41.81°), 3.0724, 1.167 cps, respectively (137Cs), and 0.389 (63.43°), 18.706 (~180°), 2.794, 5.294 cps, respectively (65Zn), while for the background double coincidences counting rates in the photo-peak regions – 0.003 (63.43°), 0.0114 (41.81°), 0.0074, 0.0029 cps, respectively (region 662 keV), and 0.0056 (63.43°), 0.0241 (37.38°), 0.0148, 0.006 cps, respectively (region 1116 keV). In the 6-detector system, average counting rates of the background double coincidences in the whole energy range were 0.539 cps (90°) and 0.544 cps (180°), those of the double coincidences from monoenergetic sources – 0.867 cps (90°) and 0.862 cps (180°) – 137Cs, 1.993 cps (90°) and 1.986 cps (180°) – 40K, and those of the background double coincidences in the photo-peak regions – 0.0825 cps (90°) and 0.0749 cps (180°) – region 662 keV, 0.0426 cps (90°) and 0.0428 cps (180°) – region 1461 keV.
  1. В. И. Калашникова, М. С. Козодаев, Детекторы элементарных частиц, Москва, Россия: Наука, 1966. (V. I. Kalasnikova, M. S. Kozodaev, “Detectors of elementary particles,” Moscow, Russia: Science, 1966.)
    Retrieved from: http://www.studmed.ru/kalashnikova-vi-kozodaev-ms-detektory-elementarnyh-chastic_301256b8e2b.html#
    Retrieved on: Dec. 17, 2016
  2. S. K. Andrukhovich, A. V. Berestov et al., “Investigation of orthopositronium 3g-decay using a multidetector spectrometer,” Nucl. Instrum. Methd. Phys. Res. B, vol. 207, no. 2, pp. 219 – 226, Jun. 2003.
    DOI: 10.1016/S0168-583X (03)00458-0
  3. S. Y. F. Chu, L. P. Ekström, R. B. Firestone, Dept. Phys. Univ. Lund, Lund, Sweden, 1999, The Lund/LBNL Nuclear Data Search ver. 2.0.
    Retrieved from: http://nucleardata.nuclear.lu.se/toi/index.asp
    Retrieved on: Dec. 17, 2016
  4. С. К. Андрухович, А. В. Берестов, Ф. Е. Зязюля, Б. А. Марцынкевич, Э. A. Рудак, А. М. Хильманович, Автоматизированная регистрирующая гамма-установка совпадений (АРГУС), Минск, Беларусь: АН БССР, 1986. (S. K. Andrukhovich, A. V. Berestov, F. E. Zyazyulya, B. A. Marcinkevich, E. A. Rudak, A. M. Hil’manovich, Automated registration gamma coincidence system (ARGCS), Minsk, Belarus: AN BSSR, 1986.)
  5. N. M. Antović, S. K. Andrukhovich, A. V. Berestov, “A contribution of the Compton scattered radiation from Mn-54 to double gamma coincidences spectra at the 32-detector system,” in Proc. Conf. RAD 2014, Niš, Serbia, 2014, pp. 127 – 130.
    Retrieved from: http://www.rad-conference.org/helper/download.php?file=../pdf/Proceedings%20RAD%202014.pdf
    Retrieved on: Jan. 14, 2017
  6. N. M. Antović, S. K. Andrukhovich, A. V. Berestov, “Background in a test of detecting “cooperative” parapositronium annihilation by the 32-crystal spectrometer ARGUS,” in Proc. Conf. RAD 2015, Budva, Montenegro, 2015, pp. 123 – 127.
    Retrieved from: http://www.rad-conference.org/helper/download.php?file=../pdf/Proceedings%20RAD%202015.pdf
    Retrieved on: Jan. 14, 2017
  7. С. К. Андрухович, А. В. Берестов, В. И. Гутко, А. М. Хильманович, Высокочувствительные многодетекторные гамма спектрометры ПРИПЯТЬ, Минск, Беларусь: АН БССР, 1995. (S. K. Andrukhovich, A. V. Berestov, V. I. Gutko, A. M. Hil’manovich, High sensitive multidetector gamma spectrometers PRIPYAT, Minsk, Belarus: AN BSSR, 1995.)
  8. Н. М. Антовић, С. К. Андрухович, А. В. Берестов, “Ефикасност детекције фотона 662 keV 32-детекторским системом типа Crystal Ball – са и без колиматора,” у Зборнику 27. Симпозијума Друштва за заштиту од зрачења Србије и Црне Горе, Врњачка Бања, Србија, 2013, стр. 435 – 438. (N. M. Antovic, S. K. Andrukhovich, A. V. Berestov, “Detection efficiency of the 662 keV photons by the 32-Crystal Ball detector system – with and without collimators,” in Proc. 27th Symp. of the Radiation Protection Society of Serbia and Montenegro, Vrnjačka Banja, Serbia, 2013, pp. 435 – 438.)
    Retrieved from: http://dzz.org.rs/wp-content/uploads/2013/06/2013-Vrnjacka-Banja.pdf
    Retrieved on: Jan. 14, 2017
  9. N. Antovic, N. Svrkota, “Measuring the radium-226 activity using a multidetector g-ray coincidence spectrometer,” J. Environ. Radioactiv., vol. 100, no. 10, pp. 823 – 830, Oct. 2009.
    DOI: 10.1016/j.jenvrad.2009.06.003
    PMid: 19577345

DUST EFFECT ON OPTICALLY STIMULATED LUMINESCENCE DOSIMETRY

Şamil Osman Gürdal, S. Sinan Keskin, Mehmet Tombakoğlu

Pages: 55-58

DOI: 10.21175/RadProc.2017.12

Optically stimulated luminescence dosimetry (OSLD) has been used for dose measurements in many different radiation fields for personal monitoring and medical and industrial applications. One of the most important advantages of the OSLD compared to thermoluminescence dosimetry (TLD) is the light source used to stimulate the crystal. On the other hand, there is a discrimination problem between the light used in a stimulation and the luminescence light obtained as a result of stimulation. To measure the correct dose value, the stimulation and luminescence light have to be discriminated precisely by using different optic filters such as UV blocking, long and short band filters. In addition, the OSL readers are calibrated under fixed conditions (normal operating condition of optic filters, light source, photomultiplier tube, etc). The measured dose values are very sensitive to changes in normal operating conditions. In this work, the dust buildup factor on the optic filters is studied to analyse the response of BeO OSL dosimeter system. The elemental composition of suspended dust was determined by using the literature given for samples obtained from different indoor locations in Turkey and abroad. The light transport algorithm is used to simulate BeO OSL dosimeter system’s response with and without dust buildup by means of Monte Carlo photon transport technique. The Coherent and incoherent scattering of the light, as well as other photon interaction mechanisms, were explicitly modelled in Monte Carlo simulations. The dust buildup effects on OSL spectrum were investigated in detail as a function of dust thickness on the optic filters and elemental composition of the dust.
  1. E. G. Yukihara, S. W. S. McKeever, “Theory and Practical Aspects,” in Optically Stimulated Luminescence: Fundamentals and Applications, Chichester, UK: John Wiley-and Sons Inc., 2011, ch. 2, sec. 2.4.3, pp. 67–68.
    DOI: 10.1002/9780470977064.ch2
  2. OSL Personal Dosimetry System, Landauer Inc., Glenwood (IL), USA.
    Retrieved from: http://www.landauer.com/Industry/Products/Dosimeters/Dosimeters.aspx
    Retrieved on: Nov. 20, 2016
  3. BeOSL Personal Dosimetry System, Dosimetrics GmbH, Munich, Germany.
    Retrieved from: http://www.dosimetrics.de/productsservices/
    Retrieved on: Nov. 20, 2016
  4. J. Henniger et al., “The BeOMaxsystem- Dosimetry using OSL of BeO for several applications,” Radiation Measurements, vol. 56, pp. 324-327, Sep. 2013.
    DOI: 10.1016/j.radmeas.2013.01.069
  5. Microstar ii Medical dosimetry system, Landauer Inc., Glenwood (IL), USA.
    Retrieved from: http://landauer.com/uploadedFiles/special/microSTARiiBrochure.pdf
    Retrieved on: Nov. 20, 2016
  6. Guide to “The Risø TL/OSL reader”, DTU Nutech, Roskilde, Denmark, 2015.
    Retrieved from: http://www.usu.edu/geo/luminlab/Reader.pdf
    Retrieved on: Nov. 20, 2016
  7. “BeOSL Dosimetry System-QA Test Results,” RADKOR Personal Monitoring Lab., Ankara, Turkey, 2016.
  8. Ş. O. Gürdal, “Simulation of Optically Stimulated Luminescence Dosimetry Systems via Monte Carlo Method,” Ph.D. dissertation, Nuclear Eng. Dept., Hacettepe University, Ankara, Turkey, 2016.
  9. O. Schmid et al., “Derivation of the Density and Refractive Index of Organic Matter and Elemental Carbon from Closure between Physical and Chemical Aerosol Properties,” Environmental Science Technology, vol. 43, no. 4, pp. 1166-1172, Feb. 2009.
    DOI: 10.1021/es800570p
    PMid: 19320175
  10. L. Tofful and C. Perrino, “Chemical Composition of Indoor and Outdoor PM2.5 in three Schools in the City of Rome,” Atmosphere, vol. 6, no. 10, pp. 1422-1443, Sep. 2015.
    DOI: 10.3390/atmos6101422
  11. K. Na and D. R. Cocker, “Organic and Elemental Carbon Concentrations in Fine Particulate Matter in Residences, Schoolrooms, and Outdoor Air in Mira Loma, California,” Atmospheric Environment, vol. 39, no. 18, pp. 3325-3333, Jan. 2005.
    DOI: 10.1016/j.atmosenv.2005.01.054
  12. J. L. Mauderly and J. C. Chow, “Health Effects of Organic Aerosols,” Inhalation Toxicology, vol. 20, no. 3, pp. 257-288, Mar. 2008.
    DOI: 10.1080/08958370701866008
    PMid: 18300047
  13. M. Hu et all, “Estimation of Size-Resolved Ambient Particle Density Based on the Measurement of Aerosol Number, Mass and Chemical Size Distributions in the Winter in Beijing,” Environmental Science & Technology, vol. 46, no. 18, pp. 9941-9947, Sep. 2012.
    DOI: 10.1021/es204073t
    PMid: 22458861
  14. S. Kılıç, “Determination of Indoor Air Particulate Matter Mass and Elemental Concentrations in a Selected Hospital,” M.S. thesis, Environmental Eng. Dept., Marmara University, Istanbul, Turkey, 2010.
  15. ENDF/B-VII Incident-Gamma Data, Los Alamos National Lab., Los Alamos (NM), USA.
    Retrieved from: https://t2.lanl.gov/nis/data/endf/endfvii-g.html
    Retrieved on: November. 25, 2016
  16. “BeO OSL Dosimetry System,” Helmholtz Zentrum, Munich, Germany, 2009.

MONTE CARLO SIMULATIONS OF THIN FILMS LOADED WITH OSL DETECTORS

N. Mirzajani, S. O. Souza, F. d’Errico

Pages: 59-63

DOI: 10.21175/RadProc.2017.13

The transport and interactions of gamma-rays in a thin film loaded with optically stimulated luminescence (OSL) nanoparticles (NPs) were studied by Monte Carlo (MC) simulations with the Particle and Heavy Ion Transport code System (PHITS). In the MC input file, the geometry of the thin film was treated as a virtual space using a cubic voxel structure with a lattice of nanoparticles (NPs) of OSL CaF2:Ce. The particles were monodispersed, ranging in size from 50 to 600 nm. The polyvinyl chloride (PVC) film matrix was treated as an array simulating a small sample with an area of 13.8 µm by 13.8 µm and a thickness of 10.2 µm. For the irradiation simulations, we considered a collimated beam of cesium-137 gamma-rays of 662 keV impinging perpendicularly on the piece of thin film (detector). The film was centered on the front face of 30 cm x 30 cm x 15 cm ISO water slab phantom. In the MC simulations, we followed the radiation tracks and calculated the energy deposition from the tracks of electrons produced by the interaction histories of the photons crossing the thin film. The energy deposition in the OSL film is initially fairly constant with grain size and then increases as the CaF2:Ce grains get larger to the point of filling 50% of the voxel volume. For grain sizes up to almost 400 nm, the presence of the grains has minimal impact, i.e., the dose is mainly deposited by secondary electrons generated within the polymer. This allows for the design of tissue-equivalent dosimeters even with embedded OSL materials, such as CaF2, that exhibit a higher Z-value than tissue.
  1. M. Pal et al., “Thermoluminescnce and Optically Stimulated Luminescence Properties of -Irradiated TiO2:Yb Nanoparticles,” J. Nanosci. Nanotechnol.,vol. 9,no. 3, pp. 1851 – 1857, Mar. 2009.
    DOI: 10.1166/jnn.2009.369
    PMid: 19435049
  2. V. S. M. Barros et al., “Thermoluminescent dosimetric properties of CaF2:Tm produced by combustion synthesis,” J. Radiat. Phys. Chem., vol. 121, pp. 75 – 80, Apr. 2016.
    DOI: 10.1016/j.radphyschem.2015.12.017
  3. C. A. Perks et al., “Introduction of the. InLight Monitoring Service,” Radiat. Prot. Dosim., vol. 125, no. 1-4, pp. 220-223, Mar. 2007.
    DOI: 10.1093/rpd/ncl126
    PMid: 17387125
  4. OSL TECHNOLOGY, Landauer, Oxford, UK.
    Retrieved from: http://www.landauer.co.uk/whole_body_osl.html
    Retrieved on: Dec. 12, 2016
  5. S. D. Miller and M. K. Murphy, “Technical performance of the Luxel Al2O3 : C optically stimulated luminescence dosemeter element at radiation oncology and nuclear accident dose levels,” Radiat. Prot. Dosim., vol. 123, no. 4, pp. 435 – 442, Mar. 2007.
    DOI: 10.1093/rpd/ncl500
    PMid: 17164274
  6. T. E. Burlin, “A general theory of cavity ionization,” J. Radiol., vol. 39, no. 466, pp. 727 – 734, Jan. 1966.
    DOI: 10.1259/0007-1285-39-466-727
    PMid: 5927191
  7. O. Nakhaei et al., “Synthesis, characterization and study of optical properties of polyvinyl alcohol/CaF2,Scientia Iranica Transactions, vol. 19, no. 6, pp. 1979 – 1983, Dec. 2012.
    DOI: 10.1016/j.scient.2012.05.008
  8. M. Luszik-Bhadra, “Prediction of neutron-induced signals in OSL materials by track structure calculation,” Radiat. Meas., vol. 46, no. 12, pp. 1694 – 1697, Dec. 2011.
    DOI: 10.1016/j.radmeas.2011.03.041
  9. S. O. Souza et al., “OSL films for in-vivo entrance dose measurements,” Radiat. Meas., press, Jul. 2017.
    DOI: 10.1016/j.radmeas.2017.07.006
  10. B. Azimi et al., “Application of the dry-spinning method to produce poly(ε-caprolactone) fibers containing bovine serum albumin laden gelatin nanoparticles,” J. Appl. Polymer Sci. vol. 133, no. 48, pp. 143 – 148, Dec. 2016.
    DOI: 10.1002/APP.44233
  11. H. Iwase et al., “Development of general-purpose particle and heavy ion transport Monte Carlo code,” J. Nucl. Sci. Technol., vol. 39, no. 11, pp. 1142 – 1151, 2002.
    DOI: 10.1080/18811248.2002.9715305
  12. K. Niita et al., “PHITS- a particle and heavy ion transport code system”, Radiat. Meas., vol. 41, pp.1080-1090, 2006
    DOI: 10.1016/j.radmeas.2006.07.013
  13. Japan Atomic Energy Agency, Tōkai, Japan, PHITS Version 2.64.
    Retrieved from: https://phits.jaea.go.jp
    Retrieved on: Dec. 12, 2016
  14. K. Niita et al., “High-energy particle transport code NMTC/JAM,” J. Nucl. Instrum. Methd. B,vol. 184, no. 3, pp. 406 – 420, Nov. 2001
    DOI:10.1016/S0168-583X(01)00784-4
  15. H. Iwase et al., “Development of heavy ion transport Monte Carlo code”, J. Nucl. Instrum. Methd. B, vol. 183, no. 3-4, pp. 374 – 382, Oct. 2001.
    DOI: 10.1007/978-3-642-18211-2_15

Radiation Protection

IMPACT OF MICROBIOLOGICAL PREPARATIONS ON RADIOACTIVE CESIUM EXCRETION RATE UNDER CONDITION OF ITS CHRONIC INGESTION

Ihar Cheshyk, Diana Suchareva, Aleksander Nikitin

Pages: 64-69

DOI: 10.21175/RadProc.2017.14

The effect of microbiological preparations EM-1 and EMX-Gold on the accumulation and excretion of 137Cs in white laboratory male rats after oral administration of the radionuclide was investigated. The activity of 137Cs in the daily diet was 34.95 ± 5.62 Bq/day. After two months of keeping animals on feed contaminated with 137Cs, equilibrium activity of the radioisotope in the body of animals was reached. It was equal to 210–230 Bq/kg. Eight days after changing the diet to a diet clear from the radioisotope feed, the activity concentration of 137Cs in the bodies of rats decreased by 36–39 %. The effective half-life of 137Cs in the bodies of 8-month-old rats under chronic 2-month ingestion of the radioisotope was 352 ± 69 hours, for 10-month-old animals this index was equal to 394 ± 148 hours. The introduction of EM-1 or EMX-Gold in the diet over a period of 2 months reduced the effective half-life of 137Cs by 16–19 % (p < 0.15). A permanent addition of the microbial preparation EM-1 or EMX-Gold to the drinking water did not alter the rate of excretion of the radionuclide from the body after the 4-month maintenance of male rats on a diet contaminated with radioactive cesium.
  1. М. И. Кузьменко, Г. Г. Поликарпов “Радиоэкология природных вод на стыке тысячелетий,” Гидробиол. журн., т. 36, но. 2. с. 60–76, 2000. (M. I. Kuzmenko, G. G. Polikarpov, “Radioecology of natural waters in the turn of the millennium,” Hidrobiol. J., vol. 36, no. 2, pp. 60—76, 2000.)
  2. В. С. Калистратова и др.,“Радиобиология нуклидов, равномерно распределяющихся в организме,“ в Радиобиология инкорпорированных радионуклидов, Москва, Россия: Изд-во ФМБЦ им. А. И. Бурназяна ФМБА России, 2012, гл. 1, разд. 1.3, с. 41—56 (V. S. Kalistratova et al., ”Radiobiology of nucleids, evenly distributed in the body,” in Radiobiology of incorporated radionuclides, Moscow, Russia: Publishing house FMBC A. I. Burnazyan FMBA of Russia, 2012, ch. 1, sec. 1.3, pp. 41—56.)
    Retrieved from: http://ecoradmod.narod.ru/rus/publication2/RNMonografiya.pdf
    Retrieved on: Jan. 23, 2017.
  3. Л. А. Булдаков, Радиоактивные вещества и человек, Москва, Россия: Энергоатомиздат, 1990., c. 160. (L. A. Buldakov, Radioactive substances and man, Moscow, Russia: Energoatomisdat, 1990, p. 160)
  4. N. Tomioka, H. Uchiyama, O. Yagi, “Isolation and characterization of cesium accumulating bacteria,” Appl. Environ. Microbiol., vol. 58, no. 3, pp. 1019-1023, Mar. 1992.
    PMid: 1575473
    PMCid: PMC195371
  5. N. Tomioka, H. Uchiyama, O. Yagi, “Cesium accumulation and growth characteristics of Rhodococcus erythropolis CS98 and Rhodococcus sp. Strain CS402,” Appl. Environ. Microbiol., vol. 60, no. 7, pp. 2227-2231, Jul. 1994.
    PMid: 16349312
    PMCid: PMC201636
  6. И. Б. Ившина, Т. А. Пешкур, В. П. Коробов, “Эффективное извлечение цезия клетками бактерий рода Rhodococcus,” Микробиология, т. 71, но. 3, с. 418–423, 2002. (I. B. Ivshina, T. A. Peshkur, V. P. Korobov, “Efficient extraction of cesium cells of bacteria of the genus Rhodococcus,” Microbiology, vol. 71, n0. 3, pp. 418-423, 2002.)
  7. E. E. Johnson, A. G. O’Donnell, P. Ineson, “An autoradiographic technique for selecting Cs-137-sorbing microorganisms from soil,” J. Microbiol. Meth., vol. 13, no. 4, pp. 293—298, Aug. 1991.
    DOI: 10.1016/0167-7012(91)90066-Y
  8. C. E. Andersson, S. L. Mowbray, “Activation of ribokinase by monovalent cations,” J. Mol. Biol., vol. 315, no. 3, pp. 409—419, Jan. 2002.
    DOI: 10.1006/jmbi.2001.5248
    PMid: 11786021
  9. P. Jasper, “Potassium transport system of Rhodopseudomonas capsulate,” J. Bacteriol., vol. 133, no. 3, pp. 1314-1322, Mar. 1978.
    PMid: 641010
    PMCid: PMC222168
  10. S. M. Devi, A. C. Archer, P. M. Halami, “Screening, Characterization and In Vitro Evaluation of Probiotic Properties Among Lactic Acid Bacteria Through Comparative Analysis,” Probiotics Antimicrob. Proteins, vol. 7, no. 3, pp. 181—192, Sep. 2015.
    DOI: 10.1007/s12602-015-9195-5
    PMid: 26049925
  11. A. C. L. Safalaoh, “Body weight gain, dressing percentage, abdominal fat and serum cholesterol of broilers supplemented with a microbial preparation,” African Journal of Food, Agriculture, Nutrition and Development, vol. 6, no. 1, pp. 2—10, 2006.
    DOI: 10.4314/ajfand.v6i1.19170
  12. M. Shintani et al., “Anti-Inflammatory and Immunostimulatory Effects of Extract from Culture of Effective Microorganisms (ECEM) Revealed by Functional Genomics and Metabolome Analyses,” Food and Nutrition Sciences, vol. 6, no. 1, pp. 1115—1125, Sep. 2015.
    DOI: 10.4236/fns.2015.612116
  13. J. E. Ballou, R. C. Thompson, “Metabolism of Cesium-137 in the Rat: Comparison of Acute and Chronic Administration Experiments,” Health Physics, vol. 6, no. 1, pp. 85—89, Jan. 1958.
    DOI: 10.1097/00004032-195801000-00013
    PMid: 13598294
  14. D. D. Mahlum, M. R. Sikov, “Comparative metabolism of 137Cs by adult, suckling and prenatal rats,” Comp. Biochem. Physiol., vol. 30, no. 1, pp. 169—175, Jul. 1969.
    DOI: 10.1016/0010-406X(69)91311-5

CASE STUDY ON THE USE OF X-RAY INSPECTION SYSTEM FOR SAFE SCREENING OF PASSENGER VEHICLES AND VANS WITH MINIMAL EFFECT ON THE TRAFFIC FLOW

Fulger Ciupagea, Constantin Sima, Doru Petru Munteanu, Anton Iuliu Demetriu Coroianu, Gabriela Rosca Fartat

Pages: 70-74

DOI: 10.21175/RadProc.2017.15

According to the current ICRP Recommendations, the principles of justification, optimization, and dose limitation for the planned exposure situations are directly applicable to the use of ionizing radiation in the security screening. The use of different X-ray inspection systems is carried out in some States and prohibited in others, and there are no published regulatory decisions on the formal justification of this type of practice. The decision for the use of X-rays involving human imaging for the security screening shall be justified by the government. The aim of this paper is to present the quantitative assessment of the radiation detriments and the expected benefits of a designed screening system, as well as the analysis of the measurements performed to demonstrate the respect of the dose constraints for the members of the public and the conformity with the IAEA recommendations and the applicable standards.
  1. The 2007 Recommendations of the International Commission on Radiological Protection, 1st ed., ICRP, Ottawa, Canada, 2007.
    Retrieved from: http://www.icrp.org/docs/ICRP_Publication_103-Annals_of_the_ICRP_37(2-4)-Free_extract.pdf
    Retrieved on: Jan. 15, 2017
  2. D. A. Cool, E. Lazo, P. Tattersall, G. Simeonov, S. Niu, “Radiological Protection in Security Screening,” Ann. ICRP, vol. 43, no. 2, 2014.
    DOI: 10.1177/0146645313517031
  3. Justification of Practices, Including Non-Medical Human Imaging, 1st ed., IAEA, Vienna, Austria, 2014.
    Retrieved from: http://www-pub.iaea.org/MTCD/publications/PDF/Pub1650web-23654722.pdf
    Retrieved on: Jan. 14, 2017
  4. Basic Anatomical and Physiological Data for Use in Radiological Protection Reference Values, 1st ed., ICRP, Ottawa, Canada, 2002.
    Retrieved from: http://radon-and-life.narod.ru/pub/ICRP_89.pdf
    Retrieved on: Jan. 16, 2017
  5. Installation and Users Manual - TudorScan OCV, MB Telecom Ltd., Ilfov, Romania, 2017.
  6. Technical Specification - TudorScan OCV,MB Telecom Ltd., Ilfov, Romania, 2017.
  7. Radiation Safety for Personnel Security Screening Systems Using X-Ray or Gamma Radiation, ANSI N43.17, Jan. 1, 2009.
  8. List of terrorist incidents in India, Wikipedia, the free encyclopedia.
    Retrieved from: Retrieved from: https://en.wikipedia.org/wiki/List_of_terrorist_incidents_in_India
    Retrieved on: Jan. 15, 2017
  9. Terrorism Attacks in Turkey 1970-2016, DATAGRAVER.
    Retrieved from: http://www.datagraver.com/case/terrorism-attacks-in-turkey-1970-2016
    Retrieved on: Jan. 17, 2017

OCCUPATIONAL SAFETY OF FIREFIGHTERS IN RADIOLOGICAL EMERGENCIES

Viktória Finta, Sándor Rácz

Pages: 75-79

DOI: 10.21175/RadProc.2017.16

Radiological emergencies (RE) are those emergencies which involve radioactive material that is not nuclear but emits ionizing radiation (IR). Although such sources are usually kept and transported shielded and closed, their shielding or packing can be damaged in case of an accident or fire. If the source becomes unshielded or opened, the environmental exposure can increase or even radioactive contamination can occur. Depending on the type and dose, IRs can cause morbidity or even mortality; meanwhile, they can only be detected with special instruments but not our senses. That is why first responders are the most endangered in RE and their radiation protection is the imperative. Thus, even at the initial stage of the intervention, the incident commander (IC) has to tackle several urgent tasks and a huge responsibility on the occupational safety of the interveners. Therefore, beside the technical support, training and education are also essential in the appropriate handling of risks. The paper introduces some issues of this special field and presents a start-up Hungarian research.
  1. Manual for First Responders to a Radiological Emergency, IAEA, Vienna, Austria, 2006.
    Retrieved from: http://www-pub.iaea.org/MTCD/publications/PDF/EPR_FirstResponder_web.pdf
    Retrieved on: Feb. 05, 2017
  2. Radiation Exposure and Contamination, Merck Manuals, Davis (CA), USA, 2013.
    Retrieved from: http://www.merckmanuals.com/professional/injuries-poisoning/radiation-exposure-and-contamination/radiation-exposure-and-contamination
    Retrieved on: Feb. 05, 2017
  3. Országgyűlés. (VIII.1.1996). 1996. évi XXXI. törvény a tűz elleni védekezésről, a műszaki mentésről és a tűzoltóságról. (National Assembly of Hungary. (Aug. 1, 1996). Act XXXI of 1996 on the protection against fire, technical rescue and the Fire Department.)
    Retrieved from: http://samina.hu/munkavedelem/download/jog_tuzvedelem/1996.31_torveny.pdf
    Retrieved on: Feb. 5, 2017
  4. Belügyminisztérium. (XI.15.2011). 39/2011. (XI. 15.) BM rendelet a tűzoltóság tűzoltási és műszaki mentési tevékenységének általános szabályairól. (Ministry of Interior of Hungary. (Nov. 15, 2011). Decree 39/2011. (XI. 15.) on the general rules of firefighting and technical rescue activities of fire brigades.)
    Retrieved from: http://njt.hu/cgi_bin/njt_doc.cgi?docid=138182
    Retrieved on: Feb. 5, 2017
  5. Belügyminisztérium. (VI.24.2016). 6/2016. (VI. 24.) BM OKF utasítás a Tűzoltás-taktikai Szabályzat és a Műszaki Mentési Szabályzat kiadásáról. (Ministry of Interior of Hungary. (Jun. 24, 2016). No. 6/2016 Order on issuing the Fire Fighting Tactical Rules.)
    Retrieved from: http://net.jogtar.hu/jr/gen/hjegy_doc.cgi?docid=A16U0006.OKF&timeshift=fffffff4&txtreferer=00000001.TXT
    Retrieved on: Feb. 5, 2017
  6. Sugáregészségtan, I. Turai, Gy. Köteles, szer., Budapest, Magyarország: Medicina, 2002, pp. 8 – 40, 102 – 137, 224 – 282. (Radiation health science, I. Turai, Gy. Köteles, Eds., Budapest, Hungary: Medicina, 2002, pp. 8 – 40, 102 – 137, 224 – 282.)
  7. Gy. Pátzay, J. Dobor, Ipari tevékenységekből eredő veszélyforrások és elhárításuk, egyetemi jegyzet, Budapest, Magyarország: Nemzeti Közszolgálati Egyetem, 2016, pp. 72-98. (Gy. Pátzay, J. Dobor, Threats of industrial activities and their recovery university notes, Budapest, Hungary: National University of Public Service, 2016, pp. 72-98.)
  8. Magyarország Kormánya. (XII.30.2015). 487/2015. (XII. 30.) Korm. rendelet az ionizáló sugárzás elleni védelemről és a kapcsolódó engedélyezési, jelentési és ellenőrzési rendszerről. (Government of Hungary. (Dec. 30, 2015). Decree 487/2015 (XII.30.) on the protection against ionizing radiation and the corresponding licensing, reporting (notification) and inspection system.)
    Retrieved from: https://net.jogtar.hu/jr/gen/hjegy_doc.cgi?docid=a1500487.kor
    Retrieved on: Feb. 5, 2017
  9. Belügyminisztérium. (I.24,2017). 4/2017 a Katasztrófavédelmi Műveleti Szolgálat, a Katasztrófavédelmi Mobil Labor, valamint a Katasztrófavédelmi Sugárfelderítő Egység tevékenységének szabályozásáról. (Ministry of Interior of Hungary. (Jan. 24, 2017). No. 4/2017 on issuing the Operational Regulations and Methodological Guide of the CBRN Units.)
  10. Á. Restás, “A tűzoltásvezetők döntéseit elősegítő praktikák,” Bolyai Szemle, évf. 22, szám 3, pp. 75 – 90, 2013. (Á. Restás, “Practices supporting decision making of fire fighters”, Bolyai Szemle, vol. 22, no. 3, pp. 75 – 89, 2013.)
  11. P. Pántya, “What could help for the firefighting, technical rescues?” in Advances in Fire, Safety and Security Research 2015, S. Galla, A. Majlingova, B. Toman, Eds., Bratislava, Slovak Republic: FRI Ministry of Interior of the Slovak Republic, 2015, pp. 60 – 65.
    Retrieved from: https://www.researchgate.net/publication/313249863_Advances_in_Fire_Safety_and_Security_Research_2015_-_Scientific_Book
    Retrieved on: Feb. 5, 2017
  12. SOR/T – SOR/R Ambient/LLR and Tactical Electronic Dosimeter, Larus Systems, Ellicott City (MD), USA.
    Retrieved from: http://www.laurussystems.com/products/products_pdf/MGP_SOR.pdf
    Retrieved on: Feb. 5, 2017
  13. V. Finta, S. Rácz, “Tűzoltói beavatkozás radiológiai eseménykezelésnél,” Védelem Tudomány, évf. 1, szám 3, pp. 68 – 77, 2016. (V. Finta, S. Rácz, “Deployment during a radiological event,” Védelem Tudomány, vol. 1, no. 3, pp. 68 – 77, 2016.)
    Retrieved from: http://www.vedelemtudomany.hu/articles/06-finta-racz.pdf
    Retrieved on: Feb. 5, 2017

CALCULATION OF THE EXPECTED DOSE FOR A RADIATION INCIDENT INVOLVING THE THEFT OF RADIOACTIVE SOURCES

Natasha Ivanova, Severina Ivanova

Pages: 80-84

DOI: 10.21175/RadProc.2017.17

On 10 September 2012, the Regional Health Inspectorate (RHI) in Varna received a signal for a radiation incident that occurred in Polimeri AD: three level switches, containing radionuclide cesium 137 had been stolen. The investigators found that the theft was carried out on 2 September 2012 by Roma residents of the residential area Gabena Mahala, Devnya. After the theft, the sources have been dismantled from their protective shielding and hidden in the neighborhood of the thieves. The sources were detected and removed from the living area after a joined action of the police department in Devnya, the Regional Health Inspectorate (RHI) Varna and the Civil Protection - Varna. Later, the radioactive sources were stored in the temporary repository for radioactive waste (RRW) of Polimeri AD. During the radiation incident and the elimination of the consequences the author of the article worked as an inspector physicist in the Department for Radiation Control at the Regional Health Inspectorate Varna and participated directly in all activities regarding the removal of the hidden resources and storing them in the repository for radioactive waste, as well as in all inspections and corrective actions.
  1. В. Тодоров, Медицинска физика, София, България: Bristol-Myers Squibb Company, 2001, стр. 336. (V. Todorov, Medical physics, Sofia, Bulgaria: Bristol-Myers Squibb Company, 2002, р. 336.)
  2. Г. Василев, Основни принципи на радиационната защита, София, България: Тита Консулт, 2008, стр. 73 и 125. (G.Vassilev, Basic principles of radiation protection, Sofia, Bulgaria: Theta Consult, 2008, pр. 73, 125.)
  3. N. Ivanova, S. Ivanova, “Radiation incident in "Polimeri" Devnya, actions and safety measures: a case study,” Ecology & Safety, vol. 10, pp. 515-523, 2016.
    Retrieved from: https://www.scientific-publications.net/get/1000017/1482509635891347.pdf
    Retrieved on: Feb. 12, 2017
  4. Агенция за ядрено регулиране. (05.10.2012.). ПМС № 229 Наредба за Основните норми на радиационна защита. (Bulgarian Nuclear Regulatory Agency. (Oct. 5, 2012). PMS no. 229 Decree on Basic Norms for Radiation Protection.)
    Retrieved from: http://www.bnra.bg/bg/documents/legislation/regulations/reg-onrz-2012.pdf
    Retrieved on: Feb. 12, 2017

MONITORING OF LONG TERM RF RADIATION DUE TO CELLULAR BASE STATIONS

Çetin Kurnaz, Begüm Korunur Engiz, Ahmet Turgut

Pages: 85-89

DOI: 10.21175/RadProc.2017.18

In parallel with technological developments, cellular systems and therefore base stations have begun to take up more space in our daily lives. Since each base station behaves like a radiofrequency electromagnetic field (RF-EMF) source, this increase in base stations leads to an increase in the value of RF-EMF. Therefore, it is very important to measure and evaluate the RF-EMF emitted from the base stations regarding its influence on human health. In this study, RF-EMF measurements were taken in ten different locations (schools, hospitals, homes, shopping malls, etc.) during 24 hours to investigate the time/location dependent changes in RF-EMF. For the measurement, the PMM8053 EMF meter measuring the total RF-EMF in the frequency range of 100 kHz-3 GHz was used, the highest electric field strengths (Emax) in the environment and the average electric field strengths (Eavg) were recorded. The measurement results show that the electric field strengths (E) originating from the base stations change significantly depending on the measurement location and time (usage intensity). The changes in E measured during the daytime in the home environment are softer, while for workplaces they are sharper due to opening/closing time. It is seen from the measurements that the highest Emax is 7.88V/m and the highest Eavg is 2.95V/m. In order to analyze the 24-hour measurements more precisely, four specific time intervals such as morning (6am-12am), afternoon (12am-6pm), evening (6pm-12pm) and night (12pm-6am) were selected. The mean E value for morning is 1.55V/m, while they are 1.94V/m, 1.48V/m and 1.16V/m for afternoon, evening and night respectively. E level at night increases by 67.2% compared to in the afternoon. At the end of the study, daily variations of E values were examined and empirical models were proposed using curve fitting methods. With the use of these models, the E in the environment can be predicted with an accuracy of up to 95%.
  1. Ç. Kurnaz, “An Empirical Modelling of Electromagnetic Pollution on an University Campus,” The Applied Computational Electromagnetic Society Express Journal, vol. 1, no. 2, pp. 76 – 79, Feb. 2016.
    Retrieved from: http://www.aces-society.org/includes/downloadpaper.php?of=ACES_Express_Journal_February_2016&nf=ej-16-2-full
    Retrieved on: Jan. 5, 2017
  2. B. K. Engiz, Ç. Kurnaz, “Long-Term Electromagnetic Field Measurement and Assessment for a Shopping Mall,” Radiation Protection Dosimetry, vol. 175, no. 3, pp. 321 – 329, Nov. 2016.
    DOI: 10.1093/rpd/ncw343
    PMid: 27885087
  3. A. Mousa, “Electromagnetic radiation measurements and safety issues of same cellular base stations in Nablus,” Journal of Engineering Science and Technology Review, vol. 4, no. 1, pp. 35 – 42, Feb. 2011.
    Retrieved from: http://www.jestr.org/downloads/volume4/fulltext072011.pdf
    Retrieved on: Jan. 5, 2017
  4. O. Genç, M. Bayrak and E. Yaldız, “Analysis of the effects of GSM bands to the electromagnetic pollution in the RF spectrum,” Prog. Electromagn. Res. PIER, vol. 101, pp. 17 – 32, 2010.
    DOI: 10.2528/PIER09111004
  5. S. Miclaus and P. Bechet, “Estimated and Measured values of the Radiofrequency Radiation Power Density around Cellular Base Stations,” Rom. J. Phys., vol. 52, no. 3-4, pp. 429 – 440, 2007.
    Retrieved from: http://www.nipne.ro/rjp/2007_52_3-4/0429_0441.pdf
    Retrieved on: Jan. 5, 2017
  6. L. Seyfi, “Measurement of electromagnetic radiation with respect to the hours and days of a week at 100kHz–3GHz frequency band in a Turkish dwelling,” Measurement, vol. 46, no. 9, pp. 3002 – 3009, Nov. 2013.
    DOI: 10.1016/j.measurement.2013.06.021
  7. P. Baltrenas and R. Buckus, “Measurements and analysis of the electromagnetic fields of mobile communication antennas,” Measurement, vol. 46, no. 10, pp. 3942 – 3949, Dec. 2013.
    DOI: 10.1016/j.measurement.2013.08.008
  8. M. Koprivica, V. Slavkovic, N. Neskovic, A. Neskovic, “Statistical Analysis of Electromagnetic Radiation Measurements in the vicinity of GSM/UMTS Base Station Installed on Buildings in Serbia,” Radiation Protection Dosimetry, vol. 168, no. 4, pp. 1 – 14, Jul. 2015.
    DOI: 10.1093/rpd/ncv372
    PMid: 26231558
  9. T. Karadag, M. Yüceer and T. Abbasov, “A Large-Scale Measurement, Analysis And Modelling of Electromagnetic Radiation Levels in the Vicinity of GSM/UMTS Base Stations in an Urban Area,” Radiation Protection Dosimetry, vol. 168, no. 1, pp. 1 – 14, Jan. 2016.
    DOI: 10.1093/rpd/ncv008
    PMid: 25693600
  10. “ICNIRP Guidelines for Limiting Exposure to Time-Varying Electric, Magnetic, and Electromagnetic Fields (up to 300GHz),” Health Physics, vol. 74, no. 4. pp. 494 – 522, 1998.
    Retrieved from: http://www.icnirp.org/cms/upload/publications/ICNIRPemfgdl.pdf
    Retrieved on: Jan. 5, 2017
  11. Bilgi Teknolojileri ve İletişim Kurumundan. (9 Ekim 2015). Sayı 29497 Elektronik haberleşme cihazlarindan kaynaklanan elektromanyetik alan şiddetinin uluslararasi standartlara göre maruziyet limit değerlerinin belirlenmesi, kontrolü ve denetimi hakkinda yönetmelikte değişiklik yapilmasina dair yönetmelik. (Information and Communication Technologies Authority of Turkey. (Oct. 9, 2015). Law no. 29497 Ordinance change on By-Law on Determination, Control and Inspection of the Limit Values of Electromagnetic Field Force from The Electronic Communication Devices According to International Standards.)
  12. Retreieved from: http://www.resmigazete.gov.tr/eskiler/2015/10/20151009-2.htm
    Retrieved on: Jan. 5, 2017
  13. PMM 8053B Field Probes Catalog, Narda Safety Test Solutions, Pfullingen, Germany.
    Retrieved from: http://www.pmm.eu/includes/sendfile.asp?nomep=Field_Probes
    Retrieved on: Feb. 2, 2017

DETERMINATION THE EFFECT OF ESTABLISHMENT OF 4G SYSTEMS ON ELECTROMAGNETIC RADIATION LEVELS IN A PILOT DISTRICT

Çetin Kurnaz, Doğan Yıldız, Serap Karagöl

Pages: 90-94

DOI: 10.21175/RadProc.2017.19

The level of radiofrequency electromagnetic fields (RF-EMF) exposure increases day by day as natural consequences of technological developments. In recent years, the increasing use of cellular systems due to technological developments in wireless communication systems has made it necessary to measure and evaluate RF-EMF originating from base stations which are the basic structure of these systems. In Turkey, as in April 2016, fourth generation of wireless mobile communication technology (4G) has been introduced and additional base stations are continuing to be added to the system. In this study, RF-EMF measurements were taken at four different times in order to examine and evaluate the change of RF-EMF before and after 4G in Atakum district which is one of the most crowded districts of Samsun, Turkey. Two of the measurements were taken before 4G and the remaining measurements were taken after 4G. Each measurement was taken at different times of the day (morning, noon and evening). The measurements were collected from 46 different location using PMM 8053 EMF meter which measures RF-EMF in the broad band from 100 kHz to 3 GHz. In the measurements, the maximum electric field strength (Emax) and the average electric field strength (Eavg) were recorded. The highest values have been noticed in these measurement 9,44 V/m and 17,53 V/m for Eavg and Emax respectively. According to the measurement results, a decrease of 45,95% was observed in the measurement values of the morning hours compared to the measurement values of the evening and noon hours. The average RF-EMF value after 4G introduced has increased by 30,95% compared to before 4G. Apart from these measurements, 24 hour measurements were taken at a location where the highest value was observed and was analyzed to observe the change of RF-EMFs during a day.
  1. Ç. Kurnaz, “An Empirical Modelling of Electromagnetic Pollution on an University Campus,” The Applied Computational Electromagnetic Society Express Journal, vol. 1, no. 2, pp.76-79, Feb. 2016.
    Retrieved from: http://www.aces-society.org/includes/downloadpaper.php?of=ACES_Express_Journal_February_2016_Paper_10&nf=ej-16-2-10
    Retrieved on: Jan. 9, 2017
  2. B. K. Engiz, Ç. Kurnaz, “Long-Term Electromagnetic Field Measurement and Assessment for a Shopping Mall,” Radiation Protection Dosimetry, Nov. 2016.
    DOI: 10.1093/rpd/ncw343
  3. B. K. Gül, Ç. Kurnaz, B. K. Engiz, “Measurement and Evaluation of Electromagnetic Pollution in Ondokuz Mayıs University Kurupelit Campus in Samsun, Turkey,” in Proc. Third International Conference on Advances in Information Processing and Communication Technology, Rome, Italy, 2015, pp.80-84.
    Retrieved from: https://www.researchgate.net/publication/305387736_Measurement_and_Evaluation_of_Electromagnetic_Pollution_in_Ondokuz_Mayis_University_Kurupelit_Campus_in_Samsun_Turkey
    Retrieved on: Jan. 27, 2017
  4. A. Mousa, “Electromagnetic radiation measurements and safety issues of some cellular base stations in Nablus,” Journal of Engineering Science and Technology Review, vol. 4, no. 1, pp. 35-42, Feb. 2011.
    Retrieved from: http://www.jestr.org/downloads/volume4/fulltext072011.pdf
    Retrieved on: Jan. 27, 2017
  5. O. Genç, M. Bayrak, E. Yaldız, “Analysis of the effects of GSM bands to the electromagnetic pollution in the RF spectrum,” Prog. Electromagn. Res. PIER, vol. 101, pp. 17-32, 2010.
    DOI: 10.2528/PIER09111004
  6. S. Miclaus, P. Bechet, “Estimated and Measured values of the Radiofrequency Radiation Power Density around Cellular Base Stations,” Rom. Journ. Phys., vol. 52, no. 3–4, pp. 429–440, 2007.
    Retrieved from: http://www.nipne.ro/rjp/2007_52_3-4/0429_0441.pdf
    Retrieved on: Jan. 7, 2017
  7. L. Seyfi, “Measurement of electromagnetic radiation with respect to the hours and days of a week at 100kHz–3GHz frequency band in a Turkish dwelling,” Measurement, vol. 46, no. 9, pp. 3002-3009, Nov. 2013.
    DOI: 10.1016/j.measurement.2013.06.021
  8. P. Baltrenas, R. Buckus, “Measurements and analysis of the electromagnetic fields of mobile communication antennas,” Measurement, vol. 46, no. 10, pp.3942-3949, Dec. 2013.
    DOI: 10.1016/j.measurement.2013.08.008
  9. M. Koprivica, V. Slavkovic, N. Neskovic, A. Neskovic, “Statistical Analysis of Electromagnetic Radiation Measurements in the Vicinity of GSM/UMTS Base Station Installed on Buildings in Serbia,” Radiation Protection Dosimetry, vol. 168, no. 4, pp. 489-502, Mar. 2016.
    DOI: 10.1093/rpd/ncv372
    PMid: 26231558
  10. T. Karadag, M. Yüceer, T. Abbasov, “A Large-Scale Measurement, Analysis And Modelling of Electromagnetic Radiation Levels in the Vicinity of GSM/UMTS Base Stations in an Urban Area,” Radiation Protection Dosimetry, vol. 168, no. 1, pp. 1-14, Jan. 2016.
    DOI: 10.1093/rpd/ncv008
    PMid: 25693600
  11. International Commission on Non-Ionizing Radiation Protection, “Guidelines for Limiting Exposure to Time-Varying Electric, Magnetic, and Electromagnetic Fields (up to 300GHz),” Health Physics, vol. 74, no. 4, pp. 494-522, 1998.
    Retrieved from: http://www.icnirp.org/cms/upload/publications/ICNIRPemfgdl.pdf
    Retrieved on: Jan. 25, 2017
  12. Information and Communication Technologies Authority of Turkey. (Oct. 9, 2015). Law no. 29497 Ordinance change on By-Law on Determination, Control and Inspection of the Limit Values of Electromagnetic Field Force from The Electronic Communication Devices According to International Standards.
  13. PMM 8053B Field Probes Catalog, Narda Safety Test Solutions, Savona, Italy.
    Retrieved from: www.pmm.eu/includes/sendfile.asp?nomep=Field_Probes
    Retrieved on: Feb. 14, 2017

QUALITY CONTROL IN DENTAL RADIOLOGY IN SERBIA: PRELIMINARY RESULTS

Zoran Mirkov

Pages: 95-98

DOI: 10.21175/RadProc.2017.20

For the purposes of this study, the quality control was carried out on 40 intraoral and 20 panoramic dental x-ray units in use in the public and private sector in Serbia. Parts of the quality control which are derived were: visual inspection of the dental x-ray units and related equipment, performance testing of the dental x-ray units and inspection of the radiation protection facilities for patient, personnel and population. Results show that most of the examined devices (88% intraoral and 95% panoramic x-ray units) operate within regulatory standards. The worst results showed intraoral devices that operate on 50 kV within the repeatability of exposure time and the lack of adequate filtration. The main reason for this is the irregular and insufficient servicing of x-ray units and related equipment.
  1. “UNSCEAR 2008 Report: Sources and effects of ionizing radiation,” UNSCR, New York (NY), USA, Rep. 2008(vol. 1), 2008.
    Retrieved from: http://www.unscear.org/docs/publications/2008/UNSCEAR_2008_Report_Vol.I.pdf
    Retrieved on: Nov. 22, 2016
  2. D. Košutić, P. Božović, “Rendgen aparati u dijagnostičkoj radiologiji na teritoriji Srbije u 2012. Godini,” u Zbornik radova, XXVII Simpozijum DZZ SCG, Vrnjačka Banja, Srbija, 2013, str. 197-199. (D. Košutić, P. Božović, “Distribution of x ray units in Serbia,” in Proc. XXVII Symposium DZZ SCG, Vrnjačka Banja, Serbia, 2013, pp. 197-200.)
    Retrieved from: http://dzz.org.rs/wp-content/uploads/2013/06/2013-Vrnjacka-Banja.pdf
    Retrieved on: Jan. 20, 2017
  3. Правилник о примени извора јонизујућих зрачења у медицини, Сл. Гл. РС (бр. 1/12 од 11.01.2012), Београд, Србија, 2012. (Rulebook on Application of the Radiation Sources in Medicine, Off. Gazett. RS (no. 1/12 from Jan. 11, 2012), Belgrade, Serbia, 2012.).
    Retrieved from: http://www.srbatom.gov.rs/srbatom/zakonska-regulativa.htm
    Retrieved on: Dec. 5, 2016
  4. Vrednovanje i redovna ispitivanja u medicinskim odeljenjima za vizuelizaciju slike - Deo 3-4: Prijemna ispitivanja - Performanse vizuelizacije slike stomatoloških rendgen-aparata, SRPS IEC 61223-3-4:2002, 26.09.2002. (Evaluation and routine tests in medical imaging departments – Part 3-4: Acceptance tests – Imaging performance of dental X-ray equipment, SRPS IEC 61223-3-4:2002, Sep. 26, 2002.)
  5. A. L. C. Kwan, H. Ching et al., “Acceptance Testing and Quality Control of Dental Imaging Equipment,” American Associations of Physics in Medicine, Alexandria (VA), USA, Rep. 175, 2016.
    Retrieved from: http://www.aapm.org/pubs/reports/RPT_175.pdf
    Retrieved on: Jan. 15, 2016.
  6. C. Olivera, D. Kosutic, S. Markovic, “Quality control of conventional diagnostic radiology equipment in Serbia and Montenegro,” in Proc. IRPA Reg. Cong. Rad. Prot. Centr. Eur., Bratislava, Slovakia, 2003, p. VIII._2
    Retrieved from: http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/36/097/36097664.pdf?r=1
    Retrieved on: Jan. 20, 2017
  7. “Cone beam CT for dental and maxillofacial radiology (Evidence-Based Guidelines),” Directorate-General for energy of EC, Luxemburg City, Luxemburg, Rep. 172, 2012.
    Retrieved from: https://ec.europa.eu/energy/sites/ener/files/documents/172.pdf
    Retrieved on: Jan. 20, 2017
  8. Правилник о границама излагања јонизујућим зрачењима и мерењима ради процене нивоа излагања јонизујућим зрачењима, Сл. гл. РС (бр. 86/11 од 18.11.2011), Београд, Србија, 2011. (Rulebook on Limits of Exposure to Ionizing Radiation and Measurements for Assessment of the Exposure Levels, Οff. Gazett. RS (no. 86/11 from Nov. 18, 2011), Belgrade, Serbia, 2011.)
    Retrieved from: http://www.srbatom.gov.rs/srbatom/zakonska-regulativa.htm
    Retrieved on: Jan. 20, 2017
  9. K. Hatziioannou, E. Psarouli et al., “Quality control and diagnostic reference levels in intraoral dental radiographic facilities,” Dentomaxillofacial Radiology, vol. 34, no. 5, pp. 304–307, Sep. 2005.
    DOI: 10.1259/dmfr/38802780
    PMid: 16120881
  10. D. Arandjić, D. Košutić, Đ. Lazarević, “Patient Protection in Dental Radiology: Influence of Exposure Time on Patient Dose,” Serbian Journal of Electr. Eng.,vol. 6, no. 3, pp. 489 – 494, Dec. 2009.
    DOI: 10.2298/SJEE0903489A
  11. Z. Mirkov, O. Ciraj, “Preliminarna ispitivanja nivoa doze za pacijente u intraoralnoj stomatološkoj radiologiji u Republici Srbiji,” u Zbornik radova, XXVIII Simpozijum DZZ SCG, Vršac, Srbija, 2015, str. 301 – 306. (Z. Mirkov, O. Ciraj, “Preliminary testing the level of patient doses of intraoral dental radiology in Serbia,’’ in Proc. XXVIII Symposium DZZ SCG, Vršac, Serbia, 2015, pp. 301 – 306.)
    Retrieved from: http://dzz.org.rs/wp-content/uploads/2013/06/2015-XXVIII-DZZSCG-Vrsac.pdf
    Retrieved on: Jan. 20, 2017

RADIATION HAZARDS AND RADIATION PROTECTION PRACTICES OBSERVED FROM DIFFERENT PERSPECTIVES

Stevan Musicki, Dejan Vasovic, Srdjan Markovic

Pages: 99-103

DOI: 10.21175/RadProc.2017.21

The term of radiation hazards is connected to the hazardous levels of ionizing radiation that could be harmful to the living tissue. Reflecting the contemporary lifestyle the World Health Organization (WHO), stated that as the use of ionizing radiation increases, so does the potential for health hazards if not properly used or contained. The increased rate of ionizing radiation can be attributed to the variety of anthropogenic activities, ranging from ore extraction, medical services, and energy production to military installations. At the other hand, radiation protection practices term indicates the measures directed to the protection of humans, at the first place, and other living organism from the harmful effects of exposure to ionizing radiation. In that sense, efficient and effective radiation protection from the perspective of society usually involves minimizing costs and capital commitment in any way. On the other hand, effective and efficient radiation protection management activities from the perspective of the army involve broader radiation protection measures during peacetime, emergencies and even wartime. The aim of this paper is to help development of an integrative review for radiation protection, addressing the contemporary needs within the different but prominent stakeholders: civil and military structures. The paper offers an in-depth analysis of related core terms: radiation protection principles and modalities of protection. The applied methodology consists of comparative structure analysis and evaluation of available data. Obtained results are intended to be used in further implementation processes regarding the radiation protection practices both in civil and military structures.
  1. Министарство Одбране Републике Србије. (1.04.2009). Стратегија националне безбедности Републике Србије. (Ministry of Defence of Republic of Serbia. (Apr. 1, 2009). National security strategy og the Republic of Serbia.).
    Retrieved from: http://www.mod.gov.rs/multimedia/file/staticki_sadrzaj/dokumenta/strategije/
    Strategija%20nacionalne%20bezbednosti%20Republike%20Srbije.pdf

    Retrieved on: Dec. 15, 2016
  2. Народна скупштина Републике Србије. (6.10.2012). Бр. 93/2012 Закон о ванредним ситуацијама. (National Assembly of the Republic of Serbia. (Oct. 6, 2012) No. 93/2012 Law on emergency situations.)
    Retrieved from: http://prezentacije.mup.gov.rs/svs/html/Zakon%20o%20VS.pdf
    Retrieved on: Dec. 15, 2016
  3. Народна скупштина Републике Србије. (18.11.2011). Бр. 86/2011 Национална стратегија заштите и спасаванја у ванредним ситуацијама. (National Assemby of the Republic of Serbia. (Nov. 18, 2011). No. 86/2011 National strategy for protection and rescue procedures in emergency situations.)
    Retrieved from: http://www.rsjp.gov.rs/malodrvo/bazastrategija/2_javna_bezbednost/
    2_4_nacionalna_strategija_zatite_i_spasavanja_u_vanrednim_situacijama/2.4_nacionalna_strategija_zastite_i_spasavanja_u_vanrednim_situacijama.pdf

    Retrieved on: Dec. 15, 2016
  4. Народна скупштина Републике Србије. (28.09.2012). Бр. 93/2012 Закон о заштити од јонизујућег зрачења и нуклеарној сигурности. (National Assembly of the Republic of Serbia. (Sep. 28. 2012) No. 93/2012 Law on the ionizing radiation protection and nuclear safety.)
    Retrieved from: http://www.mpn.gov.rs/wp-content/uploads/2015/08/zastita_jonizujuca_zracenja_nuklearna_sigurnost_cir.pdf
    Retrieved on: Dec. 15, 2016
  5. Званични сајт Агенције за заштиту од јонизујућег зрачења, Агенција за заштиту од јонизујућег зрачења, Београд, Србија. (Official website of the Agency for ionizing radiation protection, Belgrade, Serbia.)
    Retrieved from: http://www.srbatom.gov.rs/srbatom/
    Retrieved on: Dec. 16, 2016
  6. Организациона шема сектора за ванредне ситуације, Министарство унутрашњих послова Републике Србије, Београд, Србија. (Organizational scheme of the Sector for emergency situations, Ministry of the interior, Belgrade, Serbia.)
    Retrieved from: http://prezentacije.mup.gov.rs/svs/HTML/organizacija.html
    Retrieved on: Dec. 16, 2016
  7. Foto Duro, “Serbia – Nato defence cooperation,” Belgrade Centre for Security Policy, Belgrade, Serbia, 2015.
    Retrieved from: http://www.bezbednost.org/upload/document/nato-serbia_police_coop_%5Bweb%5D.pdf
    Retrieved on: Dec. 16, 2016
  8. Организација и структура Копнене војске Републике Србије, Команда Koпнене војске РС, Ниш, Србија. (Organization and structure of Serbian Army, Serbian Army Command, Niš, Serbia.)
    Retrieved from: http://www.vs.rs/index.php?content=7bc6bb5d-f71a-102b-bdc2-a0672172d7df
    Retrieved on: Dec. 16, 2016

QUANTIFICATION OF THE RISK-REFLECTING STOCHASTIC AND DETERMINISTIC RADIATION EFFECTS

Jozef Sabol, Bedřich Šesták

Pages: 104-108

DOI: 10.21175/RadProc.2017.22

The purpose of radiation protection is to protect workers, patients and members of the general public against any excessive impact of exposure to ionizing radiation, and to control the radioactive contamination of the environment in accordance with the strict regulatory standards. In order to adopt any measures to regulate the exposure from various sources, it is necessary to introduce a reliable and consistent system of the quantification of radiation exposure due to external and internal sources. Only very low doses (comparable with the natural radiation background) are encountered under normal circumstances. Such exposures may result in stochastic (delayed) effects, where the probability of their occurrence is proportional to the magnitude of the effective dose expressed in Sv (sievert). While for the stochastic effects only the unit of Sv can be used, for the quantification of deterministic effects (tissue reaction), which occur at rather higher doses, other quantities and units are more appropriate. In this case, one relies on a new quantity, namely RBE-weighted dose with a unit of Eq-Gy (equivalent gray). The paper offers some original illustrations of the system of quantities for assessing both stochastic and deterministic harmful effects of ionizing radiation.
  1. J. Sabol, “Do we all understand the ambient dose equivalent in the same way?” Radiat. Prot. Dosimetry, vol. 142, no. 2-4, pp. 385-386, Sep. 2010.
    DOI: 10.1093/rpd/ncq221
    PMid: 20823038
  2. J. Sabol, B. Šesták, “Education in radiation protection and radiation risk communication to the public,” in Proc. RAD Conference, Niš, Serbia, 2016,vol. 1, pp. 58-64.
    DOI: 10.21175/radproc.2016.15
  3. S. Mattsson, M. Söderberg, “Dose quantities and units for radiation protection,” in Radiation protection in nuclear medicine, S. Mattson and C. Hoeschen, Eds., Berlin, Germany: Springer-Verlag, 2013, ch. 2, pp. 7-18.
    DOI: 10.1007/978-3-642-31167-3_2
  4. Historical evolution of radiation quantities and units, Quizlet.
    Retrieved from: https://quizlet.com/53852689/historical-evolution-of-radiation-quantities-and-units-flash-cards/
    Retrieved on: Jan. 24, 2017.
  5. W. A. Jennings, “Evolution over the past century of quantities and units in radiation dosimetry,” J. of Radiological Protection, vol. 27, pp. 5-16, Mar. 2007.
    DOI: 10.1088/0952-4746/27/1/R01
    PMid: 17341801
  6. “Sources, Effects and Risks of Ionizing Radiation,” United Nations Scientific Committee on the Effects of Atomic Radiation, New York (NY), USA, Rep. 46 (A/67/46), 2015.
    Retrieved from: http://www.unscear.org/docs/reports/2012/UNSCEAR2012Report_15-08936_eBook_website.pdf
    Retrieved on: Jan. 25, 2017
  7. The 2007 Recommendations of the International Commission on Radiological Protection, 1st ed., ICRP, Ottawa, Canada, 2007.
    Retrieved from: https://edisciplinas.usp.br/pluginfile.php/235351/mod_resource/content/1/ICRP_103_todo.pdf
    Retrieved on: Jan. 25, 2017
  8. European Commission. (Oct. 16, 2015). 2015-IMP-MSG-15 EU general risk assessment methodology (Action 5 of Multi-Annual Action Plan for the surveillance of products in the EU (COM(2013)76)).
    Retrieved from: http://ec.europa.eu/DocsRoom/documents/17107/attachments/1/translations/en/renditions/pdf
    Retrieved on: Feb. 1, 2017
  9. “RBE weighted absorbed dose,”panel discussion at the Joint IES-ICRP Symposium, Aomori, Japan, Oct. 4, 2016.
    Retrieved from: http://www.icrp.org/docs/2016aomori/7%20Real.pdf
    Retrieved on: Jan. 25, 2017

Radioecology

NATURAL RADIOACTIVITY IN DRINKING WATER SOURCES OF THE REPUBLIC OF MOLDOVA

Liuba Corețchi, Irina Plăvan, Serghei Virlan, Ion Ursulean, Ion Bahnarel

Pages: 109-114

DOI: 10.21175/RadProc.2017.23

Pollution and contamination of drinking water potentially cause severe problems to health so the water quality management addresses both national and international action to assess and prevent associated hazards. A survey to study natural radioactivity in drinking water was carried out in the Republic of Moldova. Approximately 3111 samples of drinking water were analyzed between 1985-1999 and 2011-2015. The samples were categorized according to their origin: bottled or public supply. The samples were analyzed for gross beta, 220Rn, 222Rn, 137Cs and 90Sr activity. The activity concentration for gross beta was found to range from 0.41 to 1.53 Bq/L. The gross beta activity content in the majority of the samples is due to 40K. Average concentrations of 137Cs and 90Sr activity in the studied waters ranged respectively from 0.02 to 3.2 Bq/L and 0.012 to 2.2 Bq/L. Regarding radon detection, the results showed that the average concentration of radon in artesian wells was 1.93 Bq/m3; in the aqueduct water – 3.12 Bq/m3; in the spring waters – 6.17 Bq/m3; in wells – 3.87 Bq/m3, in bottled water – 0.1 Bq/l, in mine water – 0.93 Bq/l and in the surface water ─ about 1 Bq/m3. It was stated that 222Rn concentrations in the surveyed waters did not exceed the permissible values according to national rules and Directive 2013/59/EURATOM.
  1. Government of the Republic of Ireland. (Apr. 15, 2016). S. I. No. 160 of 2016 European Union (Radioactive Substances in Drinking Water) Regulations.
    Retrieved from: https://www.fsai.ie/uploadedFiles/Legislation/Food_Legisation_Links/Water/SI160_2016.pdf
    Retrieved on: Jan. 11, 2017.
  2. Republica Moldova, Ministreul Sănătății. (27.02.2001.). Nr. 065334 Norme fundamentale de radioprotecţie. Cerinţe şi reguli igienice. (Republic of Moldova, Ministry of Health. (Feb. 27, 2001). No. 065334 Radioprotection fundamental norms. Hygienic requirements and rules.)
  3. M. S. Al-Masri, R. Blackburn, “Radon-222 and related activities in surface waters of the English Lake District,” Appl. Radiat. Isot, vol. 50, no. 6, pp. 1137–1143, Apr. 1999.
    DOI: 10.1016/S0969-8043(98)00135-3
  4. K. Somlai et al., “Rn-222 concentrations of water in the Balaton Highland and in the southern part of Hungary, and the assessment of the resulting dose,” Radiat. Meas, vol. 42, no. 3, pp. 491–495, Mar. 2007.
    DOI: 10.1016/j.radmeas.2006.11.005
  5. O. Baykara, M. Dogru, “Measurement of radon and uranium concentration in water and soil samples from East Anatolian Active Fault Systems (Turkey),” Radiat. Meas, vol. 41, no. 3, pp. 362, Mar. 2006.
    DOI: 10.1016/j.radmeas.2005.06.016
  6. H. A. Khan, “Usefulness of radon measurements in earth sciences,” Nucl. Tracks. Radiat. Meas, vol. 22, no. 1–4, pp. 355–364, 1993.
    DOI: 10.1016/0969-8078(93)90085-I
  7. H. Alonso et al., “Radon in groundwater of the northeastern Gran Canaria aquifer.” Water, vol. 7, no. 6, pp. 2575-2590, May 2015.
    DOI: 10.3390/w7062575
  8. Y. Fakhri et al., “Effective dose of radon 222 bottled water in different age groups humans: Bandar Abbas City, Iran,” Glob. J. Health Sci., vol. 8, no. 2, pp. 64-71, Feb 2016.
    DOI: 10.5539/gjhs.v8n2p64
    PMid: 26383192
    PMCiD: PMC4803962
  9. Guidelines for drinking-water quality, Vol. 1: Recommendations, 3rd ed. World Health Organization, Geneva, 2004.
    Retrieved from: http://www.who.int/water_sanitation_health/dwq/GDWQ2004web.pdf
    Retrieved on: Dec. 15, 2016.
  10. Y. Fakhri et al., “Effective dose of radon 222 of the tap water in children and adults people; Minab City, Iran,” Glob. J. Health Sci., vol. 8, no. 4, pp. 234-243, Apr. 2016.
    DOI: 10.5539/gjhs.v8n4p234
    PMid: 26573047
    PMCiD: PMC4873584
  11. “Sources and effects of ionizing Radiation,” United Nations Scientific Committee on the Effects of Atomic Radiation, New York, (NY), USA, Rep. 46 (A/55/46), 2000.
    Retrieved from: http://www.unscear.org/docs/publications/2000/UNSCEAR_2000_Report_Vol.I.pdf
    Retrieved on: Jan. 12, 2017.
  12. Home Buyer′s and Seller′s Guide to Radon, United States Environmental Protection Agency, Washington, (DC), USA, 2006.
    Retrieved from: https://www.epa.gov/radon
    Retrieved on: Jan. 12, 2017.
  13. H. Al Zabadi et al., “Exposure assessment of radon in the drinking water supplies: A descriptive study in Palestine,” BMC Res. Notes, vol. 5, no. 29, pp. 1-8, Jan. 2012.
    DOI: 10.1186/1756-0500-5-29
  14. W. Yun-Yun et al., “Radon concentrations in drinking water in Beijing City, China and contribution to radiation dose.” Int. J. Environ. Res. Public Health, vol. 11, no. 11, pp. 11121-11131, Oct. 2014.
    DOI: 10.3390/ijerph111111121
    PMid: 25350007
    PMCiD: PMC4245603
  15. H. Bem et al., “Radon (222Rn) in underground drinking water supplies of the Southern Greater Poland Region,” J. Radioanal. Nucl. Chem., vol. 299, no. 3, pp. 1307–1312, Jan. 2014.
    DOI: 10.1007/s10967-013-2912-1
    PMid: 26224959
    PMCiD: PMC4514460
  16. Toxicologie de l`environnement bâti. Qu`est-ce que le radon? Etat de Gèneve, Gèneve, Suisse. (Toxicology of the built environment. What is radon? Canton of Geneva, Geneva, Switzerland.)
    Retrieved from: http://etat.geneve.ch/dt/toxicologie-pollutions/radon-747-3699%208414.html
    Retrieved on: Aug. 29, 2016.
  17. R. L. Rudnick, S. Gao, “Composition of the continental crust,” in Treatise on Geochemistry, vol. 3, R. L. Rudnick, H. D. Holand, K. K. Turekian, Eds., 1st ed., Amsterdam, Netherlands: Elsevier, 2003, ch. 1, pp. 1−64.
    DOI: 10.1016/B0-08-043751-6/03016-4
  18. J. D. Ayotte, S. M. Flanagan, W. S. Morrow, “Occurrence of uranium and 222Radon in glacial and bedrock aquifers in the northern United States, 1993−2003,” U.S. Geological Survey Scientific Investigations Report, Washington, (DC), USA, Rep. 2007-5037, 2007.
    Retrieved from: https://pubs.usgs.gov/sir/2007/5037/pdf/SIR2007-5037.pdf
    Retrieved on: Jan. 13, 2017.
  19. R. B. Wanty, R. Schoen, “A review of the chemical processes affecting the mobility of radionuclides in natural waters, with applications,” in Field Studies of radon in rocks, soils, and water, vol. 1, L. C. S. Gundersen, R. B. Wanty, Eds., 1st ed., Washington, (DC), USA: U.S. Government Printing Office, 1991, ch. 2, sec. 1, pp. 183-192.
    Retrieved from: https://pubs.usgs.gov/bul/1971/report.pdf
    Retrieved on: Jan. 12, 2017.
  20. H. B. Jung et al., “Redox behavior of uranium at the nanoporous aluminum oxide-water interface: Implications for uranium remediation,” Environ. Sci. Technol., vol. 46, no. 13, pp. 7301−7309, Jun. 2012.
    DOI: 10.1021/es2044163
    PMid: 22681597
  21. Radiation Effects and Sources, United Nations Effects and Programme, Austria, 2016.
    Retrieved from: http://www.ansto.gov.au/cs/groups/corporate/documents/document/mdaw/mdu2/~edisp/acs106214.pdf
    Retrieved on: Dec. 18, 2016.
  22. V. Pintilie et al., “Natural radioactivity in drinking water from Galati and Vrancea areas, Romania,” Radiation and Applications, vol. 1, no. 3, pp. 165 – 170, Dec. 2016.
    DOI: 10.21175/radj.2016.03.031
  23. C. Cosma, T. Jurcut, Radonul si mediul înconjurător, Cluj-Napoca, Romania: Editura Dacia, 1996. (C. Cosma, T. Jurcut, “Radon and environment,” Cluj-Napoca, Romania: Dacia Publishing House, 1996.)
  24. R. B. Wanty, E. P. Lawrence, L. C. S. Gundersen, “A theoretical model for the flux of radon from rock to ground water,” Geol. Soc. Am. Spec. Pap., vol. 271, pp. 73−78, Apr. 1992.
    DOI: 10.1130/SPE271-p73
  25. L. Corețchi și colab., “Monitoringul concentrațiilor de Radon pe teritoriul Republicii Moldova.” Sănătate Publică, Economie și Management în Medicină,vol. 3, no. 42, pp. 19-23, 2012. (L. Corețchi et al., “Monitoring of Radon concentrations in the Republic of Moldova territory.” Public Health, Economics and Management in Medicine, vol. 3, no. 42, pp. 19-23, 2012.)
    Retrieved from: http://public-health.md/uploads/docs/reviste/CM3_42_2012.pdf
    Retrieved on: Jan. 15, 2017.
  26. The Council of European Union. (Dec. 5, 2013). Council Directive 2013/59/EURATOM laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom.
    Retrieved from: http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32013L0059&from=EN
    Retrieved on: Dec. 16, 2016.

THE ECOTOXICOLOGICAL IMPACT OF THE NUCLEAR FACILITIES’ EFFLUENT AND CS-137 ON THE TEST ORGANISM LEPIDIUM SATIVUM

O. Jefanova, E. D. Marčiulionienė, D. Montvydienė, Z. Žukauskaitė, B. Lukšienė, J. Mažeika

Pages: 115-120

DOI: 10.21175/RadProc.2017.24

The aim of this study is to assess the impact of nuclear facility effluent during decommissioning process on the seed germination and growth of the test organism Lepidium sativum, as well as to assess the biological effect of Cs-137 on the roots (meristematic cells) and sprouts (cells of parenchyma) of the test organism Lepidium sativum.The investigations were performed on water and the bottom sediment from the monitoring station of Lake Drūkšiai (the cooling-pond of the Ignalina NPP), as well as from the Ignalina NPP's effluent channels IRD-1,2 (industrial rain drainage channel) and TWO (technical water outlet channel) before the INPP shutdown (2007–2009) and after (2010–2015). The 137Cs impact on the test organism using the low activity concentration solutions of 25 and 250 Bq/L was also investigated.
  1. Д. Марчюлёнене, Р. Душаускене-Дуж, Э. Мотеюнене, Р. Швобене, Радиохемоэкологическая ситуация в оз. Друкшяй – водоёме-охладителе Игналиской АЭС, Вильнюс, Литва: Academia, 1992. (D. Marčiulionienė, R. Dušauskienė-Duž, E. Motiejūnienė, R. Švobienė, Radio-chemical-ecological situation of Lake Drukshiai, the cooling-pond of the Ignalina NPP, Vilnius, Lithuania: Academia, 1992.)
  2. А. В. Трапезников, И. В. Молчанова, Е. Н. Караваева, В. Н. Трапезникова, Миграция радионуклидов в пресноводных и наземных экосистемах, т. 1, Екатеринбург, Россия: УРАЛ. УН-ТА, 2007. (A. V. Trapeznikov, I. V. Molchanova, E. N. Karavaeva, V. N. Trapeznikova, Radionuclide Migration in Freshwater and Terrestrial Ecosystems, vol. 1, Yekaterinburg, Russia: University of Ural, 2007.)
  3. D. Chicea, M. Raciuciu, “On the effects of low doses (0-1,2 Gy) beta radiation on Zea mays seeds on 12 days plantlets,” Rom. Journ. Phys., vol. 52, no. 5-7, pp. 633 – 640, 2007.
    Retrieved from: http://www.nipne.ro/rjp/2007_52_5-6/0633_0641.pdf
    Retrieved on: Dec. 9, 2016
  4. О. В. Орлова, В. С. Сухов, В. А. Воденеев, “Анализ возможности использования разности электрических потенциалов для оценки влияния повышенного радиационного фона на солеустойчивость проростков пшеницы,” Вестник Нижегородского университета им. Н. И. Лобачевского, но. 5, стр. 118 – 122, 2009. (O. V. Orlova, V. S. Suhov, V. A. Vodeneev, “The Analysis of Possibility to use the Difference of Electric Potential for Evaluation of Impact and Increased Radiation to salt tolerance of wheat seedlings,” J. Lobachevsky Univ. N. Novgorod, no. 5, pp. 118 – 122, 2009.)
    Retrieved from: https://cyberleninka.ru/article/v/analiz-vozmozhnosti-ispolzovaniya-raznosti-elektricheskih-potentsialov-dlya-
    otsenki-vliyaniya-povyshennogo-radiatsionnogo-fona-na

    Retrieved on: Dec. 9, 2016
  5. S. A. Geras`kin, A. A. Oudalova, J. K. Kim, V. G. Dikarev, N. S. Dikareva, “Cytogenetic effect of low dose gamma-radiation in Hordeum vulgare seedlings: non-linear dose-effect relationship,” Radiat. env. biophys., vol. 46, no. 1, pp. 31 – 41, Mar. 2007.
    DOI: 10.1007/s00411-006-0082-z
    PMid: 17171549
  6. S. Geras`kin, T. Evseeva, A. Oudalova, “Effects of long-term chronic exposure to radionuclides in plant populations,” J. Environ. Radioact., vol. 121, pp. 22 – 32, Jul. 2013.
    DOI: 10.1016/j.jenvrad.2012.03.007
    PMid: 22483340
  7. D. K. Gupta, F. Tawussi, L. Hamann, C. Walther, “Moderate Uranium Disturbs the Nutritional Status and Induces Oxidative Stress in Pisum sativum L.,” J. Plant Physiol. Pathol., vol. 4, no. 1, Mar. 2016.
    DOI: 10.4172/2329-955X.1000142
  8. П. Ю. Волкова, С. А. Гераськин, “Анализ полиморфизма супероксиддисмутазы в хронически облучаемых популяциях сосны обыкновенной,” Радиационная биология. Радиоэкология, т. 52, но. 4, стр. 370 – 380, 2012. (P. Yu. Volkova, S. A. Geras`kin, “The Analysis of Superoxide Dismutase’s Polymorphism in Chronically Exposed Populations of Pinus sylvestris,” Radiational Biology. Radioecology, vol. 52, no. 4, pp. 370 – 380, 2012.)
    Retrieved from: http://libryansk.ru/files/projectimage/eco/text/volkova_analiz.pdf
    Retrieved on: Dec. 9, 2016
  9. T. Evseeva, T. Majstrenko, S. Geras`kin, J. E. Brown, E. Belykh, “Estimation of ionizing radiation impact on natural Vicia cracca populations inhabiting areas contaminated with uranium mill tailings and radium production wastes,” Science of the Total Environment, vol. 407, no. 20, pp. 5335 – 5343, Oct. 2009.
    DOI: 10.1016/j.scitotenv.2009.06.037
    PMid: 19640568
  10. K. Jokšas, A. Galkus, R. Stakėnienė, “Drūkšių ežero dugno nuosėdų medžiaginė sudėtis ir poliutantų kaupimasi ypatumai,” in Ignalinos AE poveikis gamtai ir visuomenei, Vilnius, Lietuva: Geologijos ir geografijos institutas, 1995, psl. 36 – 44. (K. Jokšas, A. Galkus, R. Stakėnienė, “The Composition’s Texture of Bottom Sediment in Lake Drūkšiai and the Feature of Pollutant‘s Accumulation,” in The Impact of the Ignalina NPP on the Environment and Society, Vilnius, Lithuania: Institute of Geography and Geology, 1995, pp. 36 – 44.)
  11. A. Galkus, “Drūkšių ežeras kaip sedimentologenetinė erdvė,” Geografija, tom. 33, psl. 45 – 52, 1997. (A. Galkus, “Lake Drūkšiai as space for sediment-genesis,” Geografija, vol. 33, pp. 45 – 52, 1997.)
  12. J. Mažeika, Radionuclides in Geoenvironment of Lithuania, Vilnius, Lithuania: Institute of Geology, 2002.
  13. A. Gudelis, V. Remeikis, A. Plukis, D. Lukauskas, “Efficiency calibration of HPGe detectors for measuring environmental samples,” Environ. Chem. Phys., vol. 22, no. 3-4, pp. 117 – 125, 2000.
  14. И. Г. Магоне, “Биоиндикация фитотоксичности выбросов автотранспорта,” в Воздействие выбросов автотранспорта на природную среду, О. Л. Качалова, ред., Рига, СССР: Зинатние, 1989, стр. 108 – 116. (I. G. Magone, “Bioindication of toxicity of transport emission,” in Bioindication of toxicity of transport emissions in the impact of highway emissions on natural environment, O. L. Kachalova, Ed., Riga, USSR: Zinatne, 1989, pp. 108–116.)
  15. Wang W. “Use of Plants for the Assessment of Environmental Contaminants,” Reviews of Environmental Contamination and Toxicology, vol. 126, pp. 88 – 127, 1992.
    DOI: 10.1007/978-1-4613-9748-9_2
  16. Г. Г. Поликарпов, Радиоэкология морских организмов, Москва, Россия: Атомиздат, 1964. (G. G. Polikarpov, The Radioecology of marine organisms, Moscow, Russia, 1964.)
  17. D. Marčiulionienė, J. Mažeika, R. Paškauskas, O. Jefanova, “Specific patterns of 137Cs, 60Co, and 54Mn accumulation by macrophytes and bottom sediments,” Zoology and ecology, vol. 24, no. 2, pp. 168 – 177, Jul. 2014.
    Retrieved from: https://www.researchgate.net/publication/263703121_11_Specific_patterns_of_137Cs_60Co_and_54Mn_accumulation_
    by_macrophytes_and_bottom_sediments

    Retrieved from: Dec. 12, 2016
  18. H. Marschner, Mineral nutrition of higher plants, 2nd ed., London, UK: Academic, 1995.
  19. D. Marčiulionienė, B. Lukšienė et al., “Radiocesium Phytotoxicity to Single Cell and Higher Plants,” in Impact of Cesium on Plants and the Environment, D. Gupta, C. Walther, Eds., Cham, Switzerland: Springer IP, 2017, ch. 12, pp. 209 – 230.
    DOI: 10.1007/978-3-319-41525-3
  20. D. Marčiulionienė, B. Lukšienė, D. Montvydienė, G. Maksimov, J. Darginavičienė, V. Gavelienė, “Influence of 137Cs and 90Sr on vegetative and generative organs of Lepidium sativum and Tradescantia clone 02,” Nukleonika, vol. 51, no. 4, pp. 193 – 201, Nov. 2006.
    Retrieved from: http://www.nukleonika.pl/www/back/full/vol51_2006/v51n4p193f.pdf
    Retrieved on: Dec. 16, 2016

RADIOACTIVITY IN MONOCALCIUM PHOSPHATE AND COMPLETE FEED MIXTURES FOR PIGS

Borjana Vranješ, Branislava Mitrović, Velibor Andrić, Jelena Ajtić, Mila Vranješ

Pages: 121-125

DOI: 10.21175/RadProc.2017.25

Mineral additives, such as monocalcium phosphate, that are commonly used on pig farms, are obtained by processing phosphate mineral ore, and can contain high levels of 238U. Since ingestion is the main route of radioactive contamination of both animals and humans, the goal of this paper is to measure specific activity of natural and artificial radionuclides in monocalcium phosphate and complete feed mixtures for pigs. Mineral additives with high levels of natural radionuclides can contaminate complete feed mixtures making them unsuitable for use. Samples were collected from three different farms, and in total fifteen samples of monocalcium and forty five samples of complete feed mixture were measured. Samples of monocalcium phosphate show the 238U activity concentration of 13.2-2097Bq/kg. Other naturally occurring radionuclides are measured in monocalcium and the results give: 21.4-25.5 Bq/kg for 40K, 1.5 -12.1 Bq/kg for 226Ra, 1.5-2.9 Bq/kg for 232Th, and 1.5-10.8 Bq/kg for 214Bi. These radionuclides are further measured in complete feed mixtures and only one sample shows elevated concentrations of 238U (3.1 Bq/kg) and 226Ra (3.5 Bq/kg). Potassium-40 is detected in all samples, with the specific activity range 208-329 Bq/kg, while other naturally occurring radionuclides and artificial radioceasium are below the detection limits.
  1. 1. L. Saračević, Veterinarska radiobiologija sa radijacionom higijenom, Sarajevo, Bosna i Hercegovina: DES Sarajevo, 1999. (L.Saračević, Veterinary radiobiology with radiation hygiene, Sarajevo, Bosnia and Herzegovina, DES Sarajevo, 1999.)
  2. “Evaluation of Guidelines for Exposures to Technologically Enhanced Naturally Occurring Radioactive Materials,” Committee on Evaluation of EPA Guidelines for Exposure to Naturally Occurring Radioactive Materials, Washington DC, USA, 1999.
    Retrieved from: https://www.nap.edu/catalog/6360/evaluation-of-guidelines-for-exposures-to-technologically
    -enhanced-naturally-occurring-radioactive-materials

    Retrieved on: Sep. 10, 2016.
  3. Toxicological profile for uranium, U.S. Department of Health and Human Services, Agency for Toxic Substances and Disease Registry, Atlanta, (GE), USA, 2013.
    Retrieved from: https://www.atsdr.cdc.gov/toxprofiles/tp150.pdf
    Retrieved on: Sep. 10, 2016.
  4. B. Mitrović et al., “Uranium distribution in broiler organs and possibilities for protection”, Radiation and Environmental Biophysics, vol. 53, no. 1, pp 151-157, Mar. 2014.
    DOI: 10.1007/s00411-013-0496-3
    PMid: 24096927
  5. Toxicological profile for thorium, U.S. Department of Health and Human Services, Agency for Toxic Substances and Disease Registry, Atlanta, (GE), USA, 1990.
    Retrieved from: https://www.atsdr.cdc.gov/toxprofiles/tp147.pdf
    Retrieved on: April 14, 2017
  6. M. Momčilović, S. Dragović, “Radioaktivnost zemljišta severozapadnog dela stare planine,” u Zbornik radova XXIV simpozijuma za zaštitu od zračenja Srbije i Crne Gore, Zlatibor, Srbija, 2007, pp 29-32. (M. Momčilović, S. Dragović, “Radioactivity of soils from north-west side of Stara planina mountain,” in Proc. of the XXIV Symposium on Radiation Protection of Serbia and Montenegro,Zlatibor, Serbia, 2007, pp 29-32.)
    Retrieved from: http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/39/066/39066543.pdf
    Retrieved on: Jan. 25, 2017.
  7. G. Porêba, A. Bluszcz, Z. Śnieszko, “Concentration and vetrtical distribution of 137Cs in agricultural and undisturbed soils from Chechło and Czarnocin areas,” Geochronometria - Journal on Methods and Applications of Absolute Chronology, vol. 22, pp. 67-72, 2003.
    Retrieved from: http://www.geochronometria.pl/pdf/geo_22/Geo22_9.pdf
    Retrieved on: Sep. 15, 2016.
  8. B. Petrović, R. Mitrović, Radijaciona zaštita u biotehnologiji, Beograd, Jugoslavija: DP Institut za mlekarstvo, 1994. (B. Petrović, R. Mitrović, Radiation protection in biotechnology, Belgrade, Yugoslavia: DP Institute for dairy, 1994.)
  9. N. Ševković, S. Pribićević, I. Rajić, Ishrana domaćih životinja, Beograd, Jugoslavija: Naučna knjiga, 1991. (N. Ševković, S. Pribićević, I. Rajić, Nutrition of domestic animals, Belgrade, Yugoslavia: Naučna knjiga, 1991.)
  10. V. Stojić, “Energetski i kvantitativni metabolizam,” u Veterinarska fiziologija, Beograd, Srbija: Naučna KMD, 2004, gl. 7, od. 7, str. 314-343. (V. Stojić, “Energy and quantitative metabolism,” in Veterinary physiology, Belgrade, Serbia: Naučna KMD, 2004, ch. 7, sec. 7, pp. 314-343.)
  11. Pravilnik o granici sadržaja radionuklida u vodi za piće, životnim namirnicama, stočnoj hrani, lekovima, predmetima opšte upotrebe, građevinskom materijalu i drugoj robi koja se stavlja u promet, Službeni glasnik Republike Srbije (br. 86/11 i 97/13, od 18.11.2011. i 6.11.2013), Beograd, Srbija, 2013. (Rulebook on limits of radionuclides content in drinking water, foodstuffs, feeding stuffs, medicines, general use products, construction materials and other goods that are put on market, Official Gazette of Republic of Serbia (no. 86/2011 and 97/2013, from Nov. 18, 2011 and Nov. 6, 2013.), Belgrade, Serbia, 2013.)
    Retrieved from: http://www.srbatom.gov.rs/srbatom/doc/vazeca_akta/PRAVILNIK%20O%20GRANICAMA%20
    SADRZAJA%20RADIONUKLIDA%20U%20...%20(Sl.%20glasnik%20RS,%20br.%2086-2011%20i%2097-2013)%20-%20LAT.pdf

    Retrived on: Sep. 10. 2016.
  12. Pravilnik o granicama radioaktivne kontaminacije lica, radne i životne sredine i načinu sprovođenja dekontaminacije, Službeni glasnik Republike Srbije (br. 38/11 od 31.05.2011), Beograd, Srbija, 2011. (Rulebook on limits of radioactive contamination of people, work and living environment and ways of performing decontamination, Official Gazette of the Republic of Serbia (no. 38/2011, from May 31, 2011.), Belgrade, Serbia, 2011.)
    Retrieved from: http://www.srbatom.gov.rs/srbatom/doc/vazeca_akta/PRAVILNIK%20O%20GRANICAMA%20RADIOAKTIVNE%20
    KONTAMINACIJE%20LICA,%20RADNE%20I%20ZIVOTNE%20SREDINE
    %20I%20NACINU%20SPROVODJENJA%20DEKONTAMINACIJE%20(Sl.%20glasnik%20RS,%20br.%2038-2011)%20-%20LAT.pdf

    Retrieved on: Sep. 10, 2016.
  13. B. Mitrović, G. Vitorović, M. Stojanović, D. Vitorović, “Radioaktivnost fosfatnih mineralnih proizvoda”, Vet. Glasnik, vol. 65, no. 1-2, pp. 133 -140, 2011. (B. Mitrović, G. Vitorović, M. Stojanović, D. Vitorović, “Radioactivity of phosphate mineral products,” Vet. Gazette, vol. 65, no. 1-2, pp. 133 -140, 2011.)
    DOI: 10.2298/vetgl1102133M
  14. J. D. T. Arruda-Neto et al., “Long-term accumulation and microdistribution of uranium in bone and marrow of beagle dogs”, International Jurnal of Radiation Biology, vol. 80, no. 8, pp 565-575, Apr. 2004.
    DOI: 10.1080/09553000410001723884
    PMid: 15370968

RADIOACTIVE ATMOSPHERIC DISCHARGES OF THE EUROPEAN AND RUSSIAN NUCLEAR POWER PLANTS

Michael Zhukovsky, Aleksey Vasilyev, Aleksey Ekidin, Maksim Vasyanovich, Maria Pyshkina, Maksim Semenov, Ekaterina Murashova, Ivan Kapustin

Pages: 126-131

DOI: 10.21175/RadProc.2017.26

Comparison of radionuclide specific indicators in airborne discharges to atmosphere from European and Russian nuclear power plants was carried out. The performed analysis allows determining airborne discharge structure and the environmental impact of nuclear power plant with different types of reactor. Analysis of experimental data on radioactive airborne discharges from Russian nuclear power plants is carried out. The nuclear power plants with three different kinds of reactors are investigated. The performed analysis allows determining the list of radionuclides in airborne discharges, which give from 84 to 99 % of radiation exposure population.
  1. A. A. Ekidin, M. V. Zhukovskii, M. E. Vasyanovich, “Identification of the Main Dose-Forming Radionuclides in NPP emissions,” Atomic Energy, vol. 120, no. 2, pp. 134–137, May. 2016.
    DOI: 10.1007/s10512-016-0107-x
  2. S. I. Spiridonov, E. I. Karpenko, and L. A. Sharpan, “Ranking of radionuclides and pathways according to their contribution to the dose burden to the population resulting from NPP releases,” Rad. Biol. Radioecol., vol. 53, no. 4 pp. 401–410, Aug. 2013.
    PMid: 25427373
  3. INPRO Methodology for Sustainability Assessment of Nuclear Energy Systems: Environmental Impact of Stressors, International Atomic Energy Agency, Vienna, Austria, 2016.
    Retrieved from: http://www-pub.iaea.org/MTCD/Publications/PDF/Pub1733_web.pdf
    Retrieved on: Feb. 11, 2017.
  4. Правительство Российской Федерации. (июль 8, 2015). N 1316-р Перечнь загрязняющих веществ, в отношении которых применяются меры государственного регулирования в области охраны окружающей среды. (Government of the Russian Federation. (Jul. 8, 2015). N 1316-p List of pollutants, which are subject to state regulation measures in the field of environmental protection.)
    Retrieved from: https://rg.ru/2015/07/13/pollutanty-site-dok.html
    Retrieved on: Feb. 11, 2017.
  5. Радиационная обстановка на территории России и сопредельных государств в 2006 – 2015 годах, Научно-производственное объединение «Тайфун», Обнинск, Россия,2007-2016 (Radiation conditions on the territory of Russia and adjoining states in 2006-2015, Scientific and Industrial Association Taifun, Obninsk, Russia (2007-2015)).
    Retrieved from: http://www.rpatyphoon.ru/products/pollution-media.php
    Retrieved on: Feb. 11, 2017.
  6. Radioactive Discharges Database, European Commission, Brussels, Belgium, 2016.
    Retrieved from: http://europa.eu/radd/nuclideDischargeOverview.dox?pageID=NuclideDischargeOverview
    Retrieved on: Feb. 5, 2016.
  7. The Database on Nuclear Power Reactors, International Atomic Energy Agency, Vienna, Austria, 2016.
    Retrieved from: https://www.iaea.org/PRIS/
    Retrieved on: Apr. 10, 2016
  8. Trinity Engineering Associates, Cincinnati (OH), USA, 2014, CAP88-PC Version 4.0.
    Retrieved from: https://www.epa.gov/radiation/cap-88-cap-88-pc#tab-2
    Retrieved on: Feb. 11, 2017.

Radon and Thoron

MERITS AND DEMERITS OF DIFFERENT METHODS FOR RADON EXHALATION MEASUREMENTS FOR BUILDING MATERIALS

A. Awhida, P. Ujić, P. Kolarž, I. Čeliković, M. Milinčić, A. Lončar, B. Lončar

Pages: 132-136

DOI: 10.21175/RadProc.2017.27

With an increase in the awareness of the need to save energy, residents tend to live in dwellings with increasingly tight windows and doors, thus reducing the ventilation rate of indoor air which leads to an increased accumulation of radon indoors. Having in mind that a dose from an exposure to inhaled radon and its progenies can be higher than a dose received from radium in building materials, it is suggested that radon exhalation measurements should receive due attention. In this contribution, the authors compare results gathered using a few methods for radon exhalation measurement and discuss its merits and demerits.
  1. “Sources and effects of ionizing radiation,” UNSCR, New York (NY), USA, Rep. Rep. 46 (A/55/46), 2000.
    Retrieved from: http://www.unscear.org/docs/publications/2000/UNSCEAR_2000_Report_Vol.I.pdf
    Retrieved on: Jan. 9, 2017
  2. S. Darby et al., “Radon in homes and risk of lung cancer: collaborative analysis of individual data from 13 European case-control studies,” BMJ, vol. 330, no. 7485, pp. 223-1 – 223-6, Jan. 2005.
    DOI: 10.1136/bmj.38308.477650.63
  3. D. Krewski et al., “A combined analysis of North American case-control studies of residential radon and lung cancer,” J. Toxicol. Environ. Health A, vol. 69, no. 7-8, pp. 533 – 597, Apr. 2006.
    DOI: 10.1080/15287390500260945
    PMid: 16608828
  4. J. H. Lubin et al., “Risk of lung cancer and residential radon in China: pooled results of two studies,” Int. J. Cancer, vol. 109, no. 1, pp. 132 – 137, Mar. 2004.
    DOI: 10.1002/ijc.11683
    PMid: 14735479
  5. WHO Handbook on Indoor Radon: a Public Health Perspective, World Health Organization, Geneva, Switzerland, 2009.
    Retrieved from: http://apps.who.int/iris/bitstream/10665/44149/1/9789241547673_eng.pdf
    Retrieved on: Jan. 17, 2017
  6. M. M. Janković, D. J. Todorović, J. D. Nikolić, “Analysis of natural radionuclides in coal, slag and ash in coal-fired power plants in Serbia,” J. Min. Metall. Sect. B – Metall. vol. 47, no. 2, pp. 149 – 155, May 2011.
    DOI: 10.2298/JMMB110208008J
  7. “Effects of ionizing radiation Volume II,” United Nations Scientific Committee on Effects of Atomic Radiation, New York (NY), USA, Rep. A/61/46, 2006.
    Retrieved from: http://www.unscear.org/docs/publications/2006/UNSCEAR_2006_Report_Vol.II.pdf
    Retrieved on: Jan. 9, 2017
  8. I. V. Yarmoshenko, A. V. Vasilyev, A. D. Onishchenko, S. M. Kiselev, M. V. Zhukovsky, “Indoor radon problem in energy efficient multi-storey buildings,” Radiat. Prot. Dosim., vol. 160 no. 1-3, pp. 53 – 56, Apr. 2014.
    DOI: 10.1093/rpd/ncu110
    PMid: 24723188
  9. EC Directorate General Environment, Nuclear Safety and Civil Protection. (Jun. 8, 1999). Radiation protection 112 Radiological Protection Principles Concerning the Natural Radioactivity of Building Materials.
    Retrieved from: https://ec.europa.eu/energy/sites/ener/files/documents/112.pdf
    Retrieved on: Jan. 15, 2017
  10. Naturally Occurring Radioactivity in the Nordic Countries – Recommendations, The Radiation Protection Authorities in Denmark, Finland, Iceland, Norway and Sweden, Stockholm, Sweden, 2000.
    Retrieved from: https://www.sst.dk/~/media/593F6353688A4B3BB8C8F88691248AB7.ashx
    Retrieved on: Jan. 9, 2017
  11. P. Ujić, I. Čeliković, A. Kandić, I. Vukanac, M. Đurašević, D. Dragosavac, Z. S. Žunić, “Internal exposure from building materials exhaling 222 Rn and 220 Rn as compared to external exposure due to their natural radioactivity content,” Appl. Radiat. Isot., vol. 68, no. 1, pp. 201 – 206, Jan. 2010.
    DOI: 10.1016/j.apradiso.2009.10.003
    PMid: 19880324
  12. N. P. Petropoulos, M. J Anagnostakis, S. E. Simopoulos, “Building materials radon exhalation rate: ERRICCA intercomparison exercise results,” Science of The Total Environment, vol. 272, no. 1-3, pp. 109 – 118, May 2001.
    DOI: 10.1016/S0048-9697(01)00674-X
  13. F. A. Abu-Jarad, “Application of nuclear track detectors for radon related measurements,” Nucl. Tracks Radiat. Meas.,vol. 15, no. 1-4, pp. 525-534, 1988.
    DOI: 10.1016/1359-0189(88)90195-1
  14. A. Awhida, P. Ujić, I. Vukanac, M. Đurašević, A. Kandić, I. Čeliković, B. Lončar, P. Kolarž, “Novel method of measurement of radon exhalation from building materials,” Journal of Environmental Radioactivity, vol. 164, pp. 337 – 343, Nov. 2016.
    DOI: 10.1016/j.jenvrad.2016.08.009
    PMid: 27552657
  15. P. Ujić, I. Čeliković, A. Kandić, Z. Žunić, “Standardization and difficulties of the thoron exhalation rate measurements using an accumulation chamber,” Radiat. Meas., vol. 43 no. 8, pp. 1396 – 1401, Sep. 2008.
    DOI: 10.1016/j.radmeas.2008.03.003
  16. P. Tuccimei, M. Moroni, D. Norcia, “Simultaneous determination of 222Rn and 220Rn exhalation rates from building materials used in Central Italy with accumulation chambers and a continuous solid state alpha detector: influence of particle size, humidity and precursors concentration,” Appl. Radiat. Isot., vol. 64, no. 2, pp. 254 – 263, Feb. 2006.
    DOI: 10.1016/j.apradiso.2005.07.016
    PMid: 16154752
  17. T. Vidmar, “EFFTRAN - a Monte Carlo efficiency transfer code for gamma-ray spectrometry,” Nucl. Instrum. Methods A, vol. 550, no. 3, pp. 603 – 608, Sep. 2005.
    DOI: 10.1016/j.nima.2005.05.055

OUTDOOR AND INDOOR AMBIENT DOSE EQUIVALENT RATES IN BERANE TOWN, MONTENEGRO

Ljiljana Gulan, Lidija Spasović

Pages: 137-140

DOI: 10.21175/RadProc.2017.28

This paper presents the results of ambient dose rate measurements conducted in the air of Berane town, Republic of Montenegro. Measurements were performed by Geiger-Müller counter - Radex RD1503+, in the middle of October 2015. An average daily value of 114.8 nSv/h of ambient dose equivalent rate was obtained, spanning from 50-160 nSv/h in the morning and 70-177 nSv/h in the evening. Analysis of the impact of spatial variations on gamma radiation levels shows a very weak correlation between indoor ambient dose rate and outdoor ambient dose rate measured either in the morning (r = 0.09) or in the evening (r = 0.19). Building materials or stuff in buildings do not contribute additionally to ambient dose rates. Due to the lack of published data of dose rates, these results are the first measurements of radiation levels in Berane town.
  1. “UNSCEAR 2000 Report: Sources and effects of ionizing radiation,” UNSCR, New York, (NY), USA, Rep. 2000(vol. 1), 2000.
    Retrieved from: http://www.unscear.org/docs/publications/2000/UNSCEAR_2000_Report_Vol.I.pdf
    Retrieved on: Jan. 12, 2017.
  2. “UNSCEAR 1993 Report: Sources and effects of ionizing radiation,” UNSCR, New York, (NY), USA, Rep. 1993, 1993.
    Retrieved from: http://www.unscear.org/docs/publications/1993/UNSCEAR_1993_Report.pdf
    Retrieved on: Jan. 12, 2017.
  3. The 2007 Recommendations of the International Commission on Radiological Protection, 1st ed., ICRP, Ottawa, Canada, 2007, pp. 247-322.
    Retrieved from: https://edisciplinas.usp.br/pluginfile.php/235351/mod_resource/content/1/ICRP_103_todo.pdf
    Retrieved on: Jan. 19, 2017.
  4. Depleted uranium: Sources, exposures and health effects, 1st ed., Dpt. of protection of the Human Environment of WHO, Geneva, Switzerland, 2001.
    Retrieved from: http://apps.who.int/iris/bitstream/10665/66930/1/WHO_SDE_PHE_01.1.pdf
    Retrieved on: Jan. 19, 2017.
  5. “UNSCEAR 2008 Report: Sources and effects of ionizing radiation, Annex B - Exposures of the public and workers from various sources of radiation,” UNSCR, New York, (NY), USA, Rep. 2008(vol. 1), 2008.
    Retrieved from: http://www.unscear.org/docs/reports/2008/09-86753_Report_2008_Annex_B.pdf
    Retrieved on: Jan. 17, 2017.
  6. Општина Беране, Википедија – слободна енциклопедија, Сан Франциско, САД. (Municipality of Berane, Wikipedia the free encyclopedia, San Francisko, (CA), USA.)
    Retrieved from: https://sr.wikipedia.org/sr/Општина_Беране
    Retrieved on: Sep. 05, 2016.
  7. М. Лутовац, Иванградска (Беранска) котлина: Регионално-географска испитивања, Београд, СФРЈ: Географски институт САН, 1957. (M. Lutovac, Ivangrad (Berane) basin: Regional geographic examinations, Belgrade, SFRY: Institute of Geography SAS, 1957.)
  8. Radiation Detector RADEX RD1503+, Quarta-Rad, Moscow, Russia.
    Retrieved from: https://www.quarta-rad.ru/en/catalog/dozimetr-radiometr-radon/dozimetr-radex-rd1503/
    Retrieved on: Apr. 26, 2017
  9. P. Bossew, G. Cinelli, M. Hernandez-Ceballos et al., “Estimating the terrestrial gamma dose rate by decomposition of the ambient dose equivalent rate,” Journal of Environmental Radioactivity, vol. 166, pp. 296-308, Jan. 2017.
    DOI: 10.1016/j.jenvrad.2016.02.013
    PMid: 26926960
  10. Извештај о излагању становништва јонизујућем зрачењу у 2015. год,” Агенција за заштиту од јонизујућих зрачења и нуклеарну сигурност Србије, Београд, Србија, 2016. (“Annual Report of population exposure to ionizing radiation in 2015,” Serbian Radiation Protection and Nuclear Safety Agency, Belgrade, Serbia, 2016.)
    Retrieved from: http://www.srbatom.gov.rs/srbatom/doc/Izvestaj%20Monitoring%202015.pdf
    Retrieved on: Jan. 13, 2017.
  11. Conversion Coefficients for use in Radiological Protection against External Radiation, 1st ed., ICRP, Ottawa, Canada, 1996.
  12. Lj. Gulan, Z. S. Zunic, G. Milic, T. Ishikawa, Y. Omori, B. Vuckovic,D. Nikezic, D. Krstic, P. Bossew, “First step of indoor thoron mapping of Kosovo and Metohija” Radiat. Prot. Dosimetry, vol. 162, no. 1-2, pp. 157-162, Nov. 2014.
    DOI: 10.1093/rpd/ncu250
    PMid: 25080438
  13. М. В. Жуковский, В. Б. Гурвич, И. В. Ярмошенко, Радоновая безопасность зданий, Екатеринбург, Россия: УрО РАН, 2000. (M. V. Zhukovsky, V. B. Gurvich, I. V. Yarmoshenko, Radon Building Safety, Yekaterinburg, Russia: UB RAS, 2000.)

VARIABILITY OF INDOOR RADON LEVEL ACCUMULATION: A STUDY IN PORTUGUESE THERMAL SPAS

A. S. Silva, M. L. Dinis

Pages: 141-148

DOI: 10.21175/RadProc.2017.29

The aim of this work was to measure the concentration of the indoor radon in 16 Portuguese thermal spas (38% of the thermal spas in Portugal) and assess its variability within each establishment as well as its contribution to the effective dose. The measurements were performed with CR-39 passive detectors placed at different workplaces within each thermal spa, for an average period of 42 days, in different seasons of the year. The indoor radon concentrations ranged from 68 to 4335 Bq/m3 with a geometric mean of 437 Bq/m3 and an arithmetic mean of 702 Bq/m3. Geological factors that can lead to such behaviour are discussed. The results showed that the EU reference level of 300 Bq/m3 (Directive 2013/59/EURATOM) was exceeded in several cases. No significant differences were observed among measurements taken during different seasons of the year, however, large differences of radon concentrations in different rooms of the same thermal establishment were noted as well as significant difference when comparing to other thermal establishments. The effective dose resulting from the inhalation of radon ranged between 2 and 32 mSv/y. In 43% of the thermal spas, the effective dose is likely to be higher than 6 mSv/y, which means that the exposure should be managed as a “planned exposure situation” according to the European Directive 2013/59/EURATOM. Also, in 19% of the cases, the annual effective dose exceeds 20 mSv/y, and in these cases, monitoring and radiological protection is required as laid down in the European Directive 2013/59/EURATOM.
  1. Radão – um gás radioativo de origem natural, Instituto Tecnológico e Nuclear, Lisboa, Portugal, 2010. (Radon - a radioactive gas of natural origin, Technological and Nuclear Institute, Lisbon, Portugal, 2010.)
    Retrieved from: http://www.itn.pt/docum/relat/radao/itn_gas_radao.pps
    Retrieved on: Dec. 20, 2016
  2. “Sources and effects of ionizing Radiation,” United Nations Scientific Committee on the Effects of Atomic Radiation, New York (NY), USA, Rep. 46 (A/55/46), 2000.
    Retrieved from: http://www.unscear.org/docs/publications/2000/UNSCEAR_2000_Report_Vol.I.pdf
    Retrieved on: Dec. 20, 2016
  3. Cadernos da Direcção-Geral da Saúde, vol. 1, Lisboa, Portugal: Direcção-Geral da Saúde, 2002. (Notebooks of Directorate-General for Health, vol. 1, Lisbon, Portugal: Directorate-General for Health, 2002.)
    Retrieved from: https://www.dgs.pt/upload/membro.id/ficheiros/i005519.pdf
    Retrieved on: Dec. 14, 2016
  4. “Radiation Protection against Radon in Workplaces other than Mines,” IAEA and ILO, Vienna, Austria, Rep. 33, 2003.
    Retrieved from: http://www-pub.iaea.org/MTCD/publications/PDF/Pub1168_web.pdf
    Retrieved on: Dec. 14, 2016
  5. Radon and health, WHO, Geneva, Switzerland, 2007.
    Retrieved from: http://www.who.int/mediacentre/factsheets/fs291/en/
    Retrieved on: Dec. 14, 2016
  6. Handbook of indoor radon: A public health perspective, WHO, Geneva, Switzerland, 2009.
    Retrieved from: http://apps.who.int/iris/bitstream/10665/44149/1/9789241547673_eng.pdf
    Retrieved on: Dec. 14, 2016
  7. Consumer’s Guide to Radon Reduction: How to fix your home, United States Environmental Protection Agency, Washington (DC), USA, 2016.
    Retrieved from: https://www.epa.gov/sites/production/files/2016-12/documents/2016_consumers_guide_to_radon_reduction.pdf
    Retrieved on: Dec. 14, 2016
  8. J. Nikolov, N. Todorović, I. Bikit et al., “Radon in thermal waters in south-east part of Serbia,” Radiation Protection Dosimetry, vol. 160, no. 1-3, pp. 239 – 243, Jul. 2014.
    DOI: 10.1093/rpd/ncu094
    PMid: 24707000
  9. A. Kumar, R. P. Chauhan, M. Joshi, P. Aggarwal, “Implications of variability in Indoor radon/thoron levels: a study of dwellings in Haryana, India,” Environ. Earth. Sci., vol. 73, no. 8, pp. 4033 – 4042, 2015.
    DOI: 10.1007/s12665-014-3688-5
  10. G. M. Kendall, T. J. Smith, “Doses to organs and tissues from radon and its decay products,” J. Radiol. Prot., vol. 22, no. 4, pp. 389 – 406, Dec. 2002.
    DOI: 10.1088/0952-4746/22/4/304
    PMid: 12546226
  11. F. Lamonaca, V. Nastro, A. Nastro, D. Grimaldi, “Monitoring of indoor radon pollution,” Measurement, vol. 47, pp. 228 – 233, Jan. 2014.
    DOI: 10.1016/j.measurement.2013.08.058
  12. M. S. Khan, D. S. Srivastav,a, A. Aza, “Study of radium content and radon exhalation rates in soil samples of northern India,” Environ. Earth Sci., vol. 67, no. 5, pp. 1363 – 1371, 2012.
    DOI: 10.1007/s12665-012-1581-7
  13. V. Meht, A. Kumar, S. P. Singh, R. P. Chauhan, G. S. Mudaha,r, “Measurement of indoor radon, thoron and their progeny levels in dwellings of Union Territory Chandigarh, India: correlation with radon exhalation rates,” Rom. J. Phys., vol. 59, no. 7-8, pp. 834 – 845, 2014.
    Retrieved from: http://www.nipne.ro/rjp/2014_59_7-8/0834_0845.pdf
    Retrieved on: Dec. 14, 2016
  14. A. S. Silva, M. L. Dinis, A. J. S. C. Pereira, “Assessment of indoor radon levels in Portuguese thermal spas,” in Proc. Conf. RAD 2015, Budva, Montenegro, 2015, pp. 331 – 335.
    Retrieved from: http://www.rad-conference.org/helper/download.php?file=../pdf/Proceedings%20RAD%202015.pdf
    Retrieved on: Dec. 15, 2016
  15. Ministério das Obras Públicas, Transportes e Comunicações. (4.4.2006). Decreto-Lei n.° 79/2006. (Ministry of Public Works, Transport and Communications. (Apr. 4, 2006). Law-Decree no. 79/2006. )
    Retrieved from: https://www.bosch-certificacao-energetica.pt/files/201208131407270.RSECE_DL79_2006.pdf
    Retrieved on: Dec. 15, 2006
  16. A. S. Silva, M. L. Dinis, “Measurements of indoor radon and total gamma dose rate in Portuguese thermal spas,” in Occupational Safety and Hygiene IV, P. Arezes, J. S. Baptista, M. Barroso, P. Carneiro, P. Cordeiro, N. Costa, R. Melo, A. S. Miguel, G. Perestrelo, Eds., London, UK: Taylor & Francis, 2016, ch. 92, pp. 485 – 489.
    DOI: 10.1201/b21172-93
  17. The Council of European Union. (May 13, 1996). Council Directive 96/29/EURATOM Laying down safety standards for the protection of the health of workers and the general public against the dangers arising from ionizing radiation.
    Retrieved from: http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31996L0029&from=EN
    Retrieved on: Dec. 15, 2016
  18. C. Teixeira, A. C. Medeiros, A. P. Fernandes, “Notícia Explicativa da Carta Geológica de Portugal Folha 16-B, escala 1/ 50 000,” Instituto Geológico e Mineiro, Lisboa, Portugal, 1969. (C. Teixeira, A. C. Medeiros, A. P. Fernandes, “Explanatory Notice of the Geological Chart of Portugal, Sheet 16-B, scale 1/50 000,” Institute of Geology and Mining, Lisbon, Portugal, 1969.)
  19. N. Ferreira, P. Castro, “Notícia Explicativa da Carta Geológica de Portugal, Folha 17-A (Viseu), escala 1/ 50 000,” Instituto Geológico e Mineiro, Lisboa, Portugal, 2009. (N. Ferreira, P. Castro, “Explanatory Notice of the Geological Chart of Portugal, Sheet 17-A (Viseu), scale 1/50 000,” Institute of Geology and Mining, Lisbon, Portugal, 2009.)
  20. C. Teixeira, L. H. B. Carvalho et al., “Notícia Explicativa da Carta Geológica de Portugal, Folha 17-C (Santa Comba Dão), escala 1/ 50 000,” Serviços Geológicos de Portugal, Lisboa, Portugal, 1961. (C. Teixeira, L. H. B. Carvalho, “Explanatory Notice of the Portuguese Geological Chart, Sheet 17-C (Santa Comba Dão), scale 1/50 000,” Geological Services of Portugal, Lisbon, Portugal, 1961.)
  21. A. F. Silva, J. A. Rebelo, M. L. Ribeiro, “Notícia Explicativa da Carta Geológica de Portugal, Folha 11-C (Torre de Moncorvo), escala 1/ 50 000,” Instituto Geológico e Mineiro, Lisboa, Portugal, 1988. (A. F. Silva, J. A. Rebelo, M. L. Ribeiro, “Explanatory Notice of the Geological Chart of Portugal, Sheet 11-C (Torre de Moncorvo), scale 1/50 000,” Institute of Geology and Mining, Lisbon, Portugal, 1988.)
  22. C. Teixeira, A. C. Medeiros, J. T. Lopes, “Notícia Explicativa da Carta Geológica de Portugal, Folha 05-B (Ponte da Barca), escala 1/ 50 000,” Instituto Geológico e Mineiro. Lisboa, Portugal, 1974. (C. Teixeira, A. C. Medeiros, J. T. Lopes, “Explanatory Notice of the Geological Chart of Portugal, Sheet 05-B (Ponte da Barca), scale 1/50 000,” Institute of Geology and Mining, Lisbon, Portugal, 1974.)
  23. A. C. Medeiros, Notícia Explicativa da Carta Geológica de Portugal, Folha 13-B (Castelo de Paiva), escala 1/ 50 000,” Instituto Geológico e Mineiro, Lisboa, Portugal, 1963. (A. C. Medeiros, “Explanatory Notice of the Geological Chart of Portugal, Sheet 13-B (Castelo de Paiva), scale 1/50 000,” Institute of Geology and Mining, Lisbon, Portugal, 1963.)
  24. C. Teixeira, H. Carvalho, J. P. Santos, “Notícia Explicativa da Carta Geológica de Portugal, Folha 20-B (Covilhã), escala 1/ 50 000,” Instituto Geológico e Mineiro, Lisboa, Portugal, 1975. (C. Teixeira, H. Carvalho, J. P. Santos, “Explanatory Notice of the Geological Chart of Portugal, Sheet 20-B (Covilhã), scale 1/50 000,” Institute of Geology and Mining, Lisbon, Portugal, 1975.)
  25. C. Teixeira, J. A. Martins, A. C. Medeiros, L. Pilar, L. P. Mesquita, M. N. Ferro, A. Rocha, “Notícia Explicativa da Carta Geológica de Portugal, Folha 18-C (Guarda), escala 1/ 50 000,” Serviços Geológicos de Portugal, Lisboa, Portugal, 1963. (C. Teixeira, J. A. Martins, A. C. Medeiros, L. Pilar, L. P. Mesquita, M. N. Ferro, A. Rocha, “Explanatory Notice of the Portuguese Geological Chart, Sheet 18-C (Guarda), scale 1/50 000,” Geological Services of Portugal, Lisbon, Portugal, 1963.)
  26. A. F. Silva, A. Ribeiro, M. L. Ribeiro, “Notícia Explicativa da Carta Geológica de Portugal, Folha 15-A (Vila Nova da Foz Côa), escala 1/ 50 000,” Instituto Geológico e Mineiro, Lisboa, Portugal, 1990. (A. F. Silva, A. Ribeiro, M. L. Ribeiro, “Explanatory Notice of the Geological Chart of Portugal, Sheet 15-A (Vila Nova da Foz Côa), scale 1/50 000,” Institute of Geology and Mining, Lisbon, Portugal, 1990.)
  27. M. M. Andrade, F. Noronha, A. Rocha, “Notícia Explicativa da Carta Geológica de Portugal, Folha 09-B (Guimarães), escala 1/ 50 000,” Instituto Geológico e Mineiro, Lisboa, Portugal, 1986. (M. M. Andrade, F. Noronha, A. Rocha, “Explanatory Notice of the Geological Chart of Portugal, Sheet 09-B (Guimarães), scale 1/50 000,” Institute of Geology and Mining, Lisbon, Portugal, 1986.)
  28. C. Teixeira, A. C. Medeiros, J. R. Macedo, “Notícia Explicativa da Carta Geológica de Portugal, Folha 5-D (Braga), escala 1/ 50 000,” Serviços Geológicos de Portugal, Lisboa, Portugal, 1973. (C. Teixeira, A. C. Medeiros, J. R. Macedo, “Explanatory Notice of the Geological Chart of Portugal, Folha 5-D (Braga), scale 1/50 000,” Geological Services of Portugal, Lisbon, Portugal, 1973.)
  29. A. Moreira, “Notícia Explicativa da Carta Geológica de Portugal, Folha 01-B (Monção), escala 1/ 50 000,” Instituto Geológico e Mineiro, Lisboa Portugal, 1985. (A. Moreira, “Explanatory Notice of the Geological Chart of Portugal, Sheet 01-B (Monção), scale 1/50 000,” Institute of Geology and Mining, Lisbon, Portugal, 1985.)
  30. A. S. Silva, M. L. Dinis, A. J. S. C. Pereira, “Assessment of indoor radon levels in Portuguese thermal spa,” Radioprotection, vol. 51, no. 4, pp. 249 – 254, Oct-Dec. 2016.
    DOI: 10.1051/radiopro/2016077
  31. Standard Test Method for Radon in Drinking Water, ASTM D5072 – 09e1, 2009.
    DOI: 10.1520/D5072
  32. M. A. Jayjock, J. R. Lynch, D. I. Nelson, Risk Assessment Principles for Hygienist, Fairfax (VA), USA: AIHA Press, 2000.

Radiation Detectors

STRUCTURAL AND OPTICAL PROPERTIES OF CdTe THIN FILMS OBTAINED BY ELECTRODEPOSITION

Atanas Tanushevski, Dragan Sokolovski

Pages: 149-154

DOI: 10.21175/RadProc.2017.30

Thin films of CdTe have been obtained by electrodeposition in presence of tartaric acid on fluorine-doped tin oxide (FTO)-coated glass substrates, under constant voltage of 1.40 V. In order to determine the deposition parameters of CdTe, cyclic voltammetry has been performed. The films were annealed at Т= 200 oС, Т= 300 oС, Т= 400 oС and Т= 450 oС, in air atmosphere. The X-ray diffractograms show that the films obtained at 90 oC are nanocrystal with cubic structure and with grain size of 6 nm. The thermal treatment of CdTe films contributes to grain growth and obtaining polycrystalline films. Atomic Force Microscope shows that the films are smooth and uniform with columnar grains. The optical properties of the CdTe films have been investigated by measurements of wavelength-dependent transmission. The optical band gap of as-deposited films is 1.48 eV and is decreasing up to 1.45 eV, for films annealed at temperature of 300 оС, and increasing again at temperature of 450 оС. Lastly, SnO2-CdS-CdTe-electrolyte-graphite type photoelectrochemical solar cells have been made, using the 0.1 М NaOH-Na2Sx electrolyte. From the measured current-voltage characteristics, open circuit voltage of Voc= 500 mV and short circuit current of Isc= 1.2 mA/cm2 have been determined.
  1. A. V. Kokate, M. R. Asabe, P. P. Hankare, B. K. Chougule, “Effect of annealing on properties of electrochemically deposited CdTe thin films,” Journal of Physics and Chemistry of Solids, vol. 68, no. 1, pp. 53–58, 2007.
    DOI: 10.1016/j.jpcs.2006.09.018
  2. D. L. Bätzner, A. Romeo, M. Terheggen, M. Döbeli, H. Zogg, A. N. Tiwari, “Stability aspects in CdTe/CdS solar cells,” Thin Solid Films, vol. 451–452, pp. 536–543, Mar. 2004.
    DOI: 10.1016/j.tsf.2003.10.141
  3. A. K. Fedotov, A. A. Ronassi et al., “Electrical, photoelectrical, and photoelectrochemical properties of electrodeposited CdTe films subjected to high-energy irradiation,” Thin Solid Films, vol 519, pp. 7149–7152, Aug. 2011.
    DOI: 10.1016/j.tsf.2010.12.221
  4. I. M. Dharmadasa, P. A. Bingham, O. K. Echendu et al., “Fabrication of CdS/CdTe-Based Thin Film Solar Cells Using an Electrochemical Technique,” Coatings, vol. 4, no. 3, pp. 380-415, Jun. 2014.
    DOI: 10.3390/coatings4030380
  5. S. Lalitha, S. Zh. Karazhanov, P. Ravindran et al., “Electronic structure, structural and optical properties of thermally evaporated CdTe thin films,” Physica B, vol. 387, no. 1-2, pp. 227–238, Jan. 2007.
    DOI: 10.1016/j.physb.2006.04.008
  6. Xian-Feng Gao, Hong-Bo Li, Wen-Tao Sun et al., “CdTe Quantum Dots-Sensitized TiO2 Nanotube Array Photoelectrodes,” J. Phys. Chem. C, vol. 113, no. 18, pp. 7531–7535, Apr. 2009.
    DOI: 10.1021/jp810727n
  7. X. Mathew, P. J. Sebastian, A. Sanchez, J. Campos, “Structural and opto-electronic properties of electrodeposited CdTe on stainless steel foil,” Solar Energy Materials & Solar Cells, vol. 59, no. 1-2, pp. 99-114, Sep. 1999.
    DOI: 10.1016/S0927-0248(99)00035-5
  8. M. E. Calixto, J. C. McClure, V. P. Singh, A. Bronson, P. J. Sebastian, X. Mathew, “Electrodeposition and characterization of CdTe thin films on Mo foils using a two voltage technique,” Solar Energy Materials & Solar Cells, vol. 63, no. 4, pp. 325-334, Aug. 2000.
    DOI: 10.1016/S0927-0248(00)00052-0
  9. S. Marsillac, V. Y. Parikh, A. D. Compaan, “Ultra-thin bifacial CdTe solar cell,” Solar Energy Materials & Solar Cells, vol. 91, no. 15-16, pp. 1398–1402, Sep. 2007.
    DOI: 10.1016/j.solmat.2007.04.025
  10. N. Romeo, A. Bosio, R. Tedeschi, A. Romeo, V. Canevari, “A highly efficient and stable CdTe/CdS thin film solar cell,” Solar Energy Materials & Solar Cells, vol. 58, no. 2, pp. 209- 218, Jun. 1999.
    DOI: 10.1016/S0927-0248(98)00204-9
  11. A. Romeo, G. Khrypunov, F. Kurdesau et al., “High-efficiency flexible CdTe solar cells on polymer substrates,” Solar Energy Materials & Solar Cells, vol. 90, no. 18-19, pp. 3407–3415, Nov. 2006.
    DOI: 10.1016/j.solmat.2005.09.020
  12. A. Bosio, N. R. S. Mazzamuto, V. Canevari, “Polycrystalline CdTe thin films for photovoltaic applications,” Progress in Crystal Growth and Characterization of Materials, vol. 52, no. 4, pp. 247-279, Dec. 2006.
    DOI: 10.1016/j.pcrysgrow.2006.09.001
  13. Q. Jiang, D. P. Haliday, B. K. Tanner et al., “Thick epitaxial CdTe films grown by close space sublimation on Ge substrates,” J. Phys. D: Appl. Phys., vol. 42, no. 1, pp. 012004-1 – 012004-4, Dec. 2008.
    DOI: 10.1088/0022-3727/42/1/012004
  14. N. A. Shah, A. Ali, Z. Ali, A. Maqsood, A. K. S. Aqili, “Properties of Te-rich cadmium telluride thin films fabricated by closed space sublimation technique,” Journal of Crystal Growth, vol. 284, no. 3-4, pp. 477–485, Nov. 2005.
    DOI: 10.1016/j.jcrysgro.2005.08.005
  15. R. Tena-Zaera, T. A. Katty, S. Bastide et al., “ZnO/CdTe/CuSCN, a promising heterostructure to act as inorganic eta-solar cell,” Thin Solid Films, vol. 483, no. 1-2, pp. 372– 377, Jul. 2005.
    DOI: 10.1016/j.tsf.2005.01.010
  16. M. G. Panthani, J. M. Kurley, R. W. Crisp et al., “High Efficiency Solution Processed Sintered CdTe Nanocrystal Solar Cells: The Role of Interfaces,” Nano Lett., vol. 14, no. 2, pp. 670−675, Dec. 2013.
    DOI: 10.1021/nl403912w
    PMid: 24364381
  17. S. Del Sordo, L. Abbene, E. Caroli et al., “Progress in the Development of CdTe and CdZnTe Semiconductor Radiation Detectors for Astrophysical and Medical Applications,” Sensors, vol. 9, no. 5, pp. 3491-3526, May 2009.
    DOI: 10.3390/s90503491
    PMid: 22412323
    PMCid: PMC3297127
  18. R. K. Pandey, S. Mishra, S. Tiwari, P. Sahu, B. P. Chandra, “Comparative study of performance of CdTe, CdSe and CdS thin films-based photoelectrochemical solar cells,” Solar Energy Materials & Solar Cells, vol. 60, no. 1, pp. 59-72, Jan. 2000.
    DOI: 10.1016/S0927-0248(99)00063-X
  19. K. Uosaki, M. Takahashi, H. Kita, “The photoelectrochemical Behaviour of electrochemically deposited CdTe films,” Electrochimica acta, vol. 29, no. 2, pp 279-281, Feb. 1984.
    DOI: 10.1016/0013-4686(84)87060-7
  20. P. V. Kamat, K. Tvrdy, D. R. Baker, J. G. Radich, “Beyond photovoltaics: semiconductor nanoarchitectures for liquid-junction solar cells,” Chem. Rev., vol. 110, no. 11, pp. 6664–6688, Oct. 2010.
    DOI: 10.1021/cr100243p
    PMid: 20973544
  21. X. F. Gao, H. B. Li, W. T. Sun et al., “CdTe Quantum Dots-Sensitized TiO2 Nanotube Array Photoelectrodes,” J. Phys. Chem. C, vol. 113, no. 18, pp. 7531-7535, Apr. 2009.
    DOI: 10.1021/jp810727n
  22. Zh. Li, W. Luo, M. Zhang, J. Feng, Zh. Zou, “Photoelectrochemical cells for solar hydrogen production: current state of promising photoelectrodes, methods to improve their properties, and outlook,” Energy & Environmental Science, vol. 6, no. 2, pp. 347–370, Dec. 2012.
    DOI: 10.1039/C2EE22618A
  23. N. Novkovski, A. Tanusevski, D. Gracin, “Refined analysis of absorption spectra of CdS thin films,” J. Phys. D: Appl. Phys., vol. 48, no. 39, pp. 395105-1 – 395105-9, Sep. 2015.
    DOI: 10.1088/0022-3727/48/39/395105
  24. M. P. R. Panicker, M. Knaster, F. A. Kroger, “Cathodic Deposition of CdTe from Aqueous Electrolytes,” J. Electrochem. Soc., vol. 125, no. 4, pp. 566-572, 1978.
    DOI: 10.1149/1.2131499
  25. A. Y. Shenouda, El Sayed M. El Sayed, “Electrodeposition, characterization and photo electrochemical properties of CdSe and CdTe,” Ain Shams Engineering Journal, vol. 6, no. 1, pp. 341–346, Mar. 2015.
    DOI: 10.1016/j.asej.2014.07.010
  26. M. M. El-Nahass, G. M. Youssef, S. Z. Noby, “Structural and optical characterization of CdTe quantum dots thin films,” Journal of Alloys and Compounds, vol. 604, pp. 253–259, Aug. 2014.
    DOI: 10.1016/j.jallcom.2014.03.104
  27. J. P. Enríquez, “Effects of annealing time and temperature on structural, optical and electrical properties of CdS films deposited by CBD,” Chalcogenide Letters, vol. 10, pp. 45–53, Feb. 2013.
    Retrieved from: http://chalcogen.ro/45_Pantoja.pdf
    Retrieved on: Feb. 12, 2017.
  28. H. I. Salim, V. Patel, A. Abbas, J. M. Walls, I. M. Dharmadasa, “Electrodeposition of CdTe thin films using nitrate precursor for applications in solar cells,” J. Mat. Sci: Materials in Electronics, vol. 26, no. 5, pp. 3119-3128, May 2015.
    DOI: 10.1007/s10854-015-2805-x.
  29. S. J. Lade, M. D. Uplane, C. D. Lokhande, “Photoelectrochemical properties of CdX (XDS, Se, Te) films electrodeposited from aqueous and non-aqueous baths,” Materials Chemistry and Physics, vol. 68, no. 1-3, pp. 36–41, Feb. 2001.
    DOI: 10.1016/S0254-0584(00)00280-7

Radiation Effects

GENETIC STABILITY OF HUMAN MESENCHYMAL STEM CELLS EXPOSED TO X-RAYS OR HEAT SHOCK IN CULTURE

Mariia Shilina, Zoya Kovaleva, Nikolay Nikolsky, Tatiana Grinchuk

Pages: 155-158

DOI: 10.21175/RadProc.2017.31

The aim of this study was the cytogenetic assay of endometrial mesenchymal stem cells (eMSC) in vitro after exposure to sublethal dose of X-rays and sublethal heat shock (HS). For the analysis of chromosomes we used the G-banding technique. We showed that both types of stress caused similar changes in eMSC karyotype structure. In both cases 80% of the cell population had karyotype abnormalities. The main types of rearrangements were aneuploidy and chromosomal breaks. Chromosomes 1 and 4 were involved in breaks more often than other chromosomes. The number of chromosomes involved in the restructuring as a result of HS was more than after X-rays. eMSC survived stress entered the replicative senescence in different time: at the 4th passage after X-rays and 20th passage after heat shock.
  1. B. V. Harmon, A. M. Corder et al., “Cell death induced in a murine mastocytoma by 42-47 degrees C˚ heating in vitro: evidence that the form of death changes from apoptosis to necrosis above a critical heat load,” Int. J. Radiat. Biol., vol. 58, no. 5, pp. 845 – 858, May 1990.
    DOI: 10.1080/09553009014552221
    PMid: 1977828
  2. R. K. Gupta, U. K. Srinivas, “Heat shock induces chromosomal instability in near-tetraploid embryonal carcinoma cells,” Cancer Biol. Ther., vol. 7 no. 9, pp. 1471 – 1480, Sep. 2008.
    DOI: 10.4161/cbt.7.9.6428
    PMid: 18769133
  3. L. L. Alekseenko, V. I. Zemelko et al., “Heat shock induces apoptosis in human embryonic stem cells but a premature senescence phenotype in their differentiated progeny,” Cell Cycle, vol. 11, no. 17, pp. 3260 – 3269, Aug. 2012.
    DOI: 10.4161/cc.21595
    PMid: 22895173
    PMCid: PMC3466525
  4. T. M. Grinchuk, M. A. Shilina, L. L. Alekseenko, “Long-term cultivation of Chinese hamster fibroblasts V-79 RJK under elevated temperature results in karyotype destabilization,” Cell and Tissue Biology, vol. 9, no. 2, pp. 119 – 126, Mar. 2015.
    DOI: 10.1134/S1990519X15020078
  5. L. Stoilov, M. Georgieva, V. Manova, L. Liu, K. Gecheff, “Karyotype reconstruction modulates the sensitivity of barley genome to radiation-induced DNA and chromosomal damage,” Mutagenesis, vol. 28, no. 2, pp. 153 – 160, Mar. 2013.
    DOI: 10.1093/mutage/ges065
    PMid: 23221036
  6. M. Nakano, Y. Kodama et al., “Detection of stable chromosome aberrations by FISH in A-bomb survivors: Comparison with previous solid Giemsa staining data on the same 230 individuals,” International Journal of Radiation Biology, vol. 77, no. 9, pp. 971 – 977, Sep. 2001.
    DOI: 10.1080/09553000110050065
    PMid: 11576457
  7. Y. Kodama, D. Pawel, et al., “Stable chromosome aberrations in atomic bomb survivors: Results from 25 years of investigation,” Radiation Research, vol. 156, no. 4, pp. 337 – 346, Jun. 2001.
    DOI: 10.1667/0033-7587(2001)156[0337:SCAIAB]2.0.CO;2
  8. K. Ohtaki, Y. Kodama et al., “Human fetuses do not register chromosome damage inflicted by radiation exposure in lymphoid precursor cells except for a small but significant effect at low doses,” Radiat. Res., vol. 161, no. 4, pp. 373 – 379, Oct. 2004.
    DOI: 10.1667/3147
    PMid: 15038761
  9. P. Bhatti, M. M. Doody, “Increased frequency of chromosome translocations associated with diagnostic X-ray examinations,” Radiat. Res., vol. 170, no. 2, pp. 149 – 155, Aug. 2008.
    DOI: 10.1667/RR1422.1
    PMid: 18666821
    PMCid: PMC2766815
  10. C. Plamadeala, A. Wojcik, C. Dorina, “Micronuclei versus chromosomal aberrations induced by X-ray in radiosensitive mammalian cells,” Iran J. Public Health, vol. 44, no. 3, pp. 325 – 331, 2015.
    PMid: 25905075
    PMCid: PMC4402410
  11. В. И. Земелько, Т. М. Гринчук и другие, “Мультипотентные мезенхимные стволовые клетки десквамированного эндометрия. Выделение, характеристика и использование в качестве фидерного слоя для культивирования эмбриональных стволовых линий человека,” Цитология, т. 53, но. 12, стр. 919 – 929, 2011. (V. I. Zemel’ko, T. M. Grinchuk et al., “Multipotent mesenchymal stem cells of desquamated endometrium: isolation, characterization and use as feeder layer for maintenance of human embryonic stem cell lines,” Tsitologiya, vol. 53, no. 12, pp. 919 – 929, 2011.)
    PMid: 22359950
  12. С. Е. Мамаева, Атлас хромосом постоянных клеточных линий человека и животных, Москва, Россия: Научный Мир, 2002. (S. E. Mamaeva, Atlas chromosomes permanent cell lines of human and animals, Moscow, Russia: Sci. World, 2002.) ISCN 1995: an International system for human cytogenetic nomenclature, F. Mitelman, Ed., Basel, Switzerland: Karger, 1995.
  13. G. J. Todaro, H. Green, “Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines,” J. Cell Biol., vol. 17, no. 2, pp. 299 – 313, May, 1963.
    DOI: 10.1083/jcb.17.2.299
    PMid: 13985244
    PMCid: PMC2106200
  14. S. R. Romanov, B. K. Kozakiewicz, “Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes,” Nature, vol. 409, no. 6820, pp. 633 – 637, Feb. 2001.
    DOI: 10.1038/35054579
    PMid: 11214324
  15. F. Miura, N. Kawaguchi, “A large-scale full-length cDNA analysis to explore the budding yeast transcriptome,” Proc. Natl. Acad. Sci. USA, vol. 103, no. 47, pp. 17846 – 17851, Nov. 2006.
    DOI: 10.1073/pnas.0605645103
    PMid: 17101987
    PMCid: PMC1693835
  16. N. I. Enukashvily, R. Donev, I. S. R. Waisertreiger, O. I. Podgornaya, “Human chromosome 1 satellite 3 DNA is decondensed, demethylated and transcribed in senescentcells and in A431 epithelial carcinoma cells,” Cytogenetic and Genome Research, vol. 118, no. 1, pp. 42 – 54, Sep. 2007.
    DOI: 10.1159/000106440
    PMid: 17901699
  17. A. Eymery, M. Callanan, C. Vourc’h, “The secret message of heterochromatin: New insights into the mechanisms and function of centromeric and pericentric repeat sequence transcription,” Int. J. Dev. Biol., vol. 53, no. 2-3, pp. 259 – 268, 2009.
    DOI: 10.1387/ijdb.082673ae
    PMid: 19412885
  18. S. Knehr, H. Zitzelsberger, H. Braselmann, U. Nahrstedt, M. Bauchinger, “Chromosome analysis by fluorescence in situ hybridisation: further indications for a non-DNA-proportional involvement of single chromosomes in radiation-induced structural aberrations,” Int. J. Radiat. Biol.,no. 70, no. 4, pp. 385 – 392, Oct. 1996.
    DOI: 10.1080/095530096144851
    PMid: 8862449
  19. J. J. W. A. Boei, S. Vermeulen, A. T. Natarajan, “Different involvement of chromosomes 1 and 4 in the formation of chromosomal aberrations in human lymphocytes after X-irradiation,” Int. J. Radiat. Biol., vol.72, no. 2, pp. 139 – 145, Aug. 1997.
    DOI: 10.1080/095530097143356
    PMid: 9269306
  20. G. Stephan, S. Pressl, “Chromosome aberrations in human lymphocytes analysed by fluorescence in situ hybridisation after in vivo irradiation, and in radiation workers, 11 years after an accidental radiation exposure,” Int. J. Radiat. Biol., vol. 71, no. 3, pp. 293 – 299, Mar. 1997.
    DOI: 10.1080/095530097144175
    PMid: 9134019
  21. А. Н. Богомазова, “Изучение стабильных и нестабильных хромосомных аберраций у лиц, пострадавших в результате аварии на ЧАЭС, в отдаленный пострадиационный период,” Канд. наук диссертация, МЗ РФ Центр рентгенорадиологии, Санкт-Петербург, Россия, 2000. (A. N. Bogomazova, “The study of stable and unstable chromosomal aberrations in persons affected by the Chernobyl accident in the remote post-radiation period,” Sci. Can. Dissirtation, MH RF Center for X-Ray Radiography, St-Petersburg, Russia, 2000.)

BEHAVIOR OF MODERN INTEGRATED CIRCUITS AFTER LATCH-UP PARRYING

P. K. Skorobogatov, G. G. Davydov, A. A. Pechenkin, D. V. Boychenko

Pages: 159-162

DOI: 10.21175/RadProc.2017.32

The work is devoted to the research of the single and multiple latch-up impact on the subsequent behavior of electrical parameters and operability of modern integrated circuits. The impact of interrupted SEL amount on subsequent behavior of IC is introduced. An approach to the estimation of the maximum time in the latch-up state is formulated to ensure IC’s fault-free operation after SEL.
  1. R. H. Maurer, M. E. Fraeman, M. N. Martin, D. R. Roth, “Harsh Environments: Space Radiation Environment, Effects, and Mitigation,” Johns Hopkins APL Technical Digest, vol. 28, no. 1, 2008.
    Retrieved from: http://www.jhuapl.edu/techdigest/TD/td2801/Maurer.pdf
    Retrieved on: Jan. 13, 2017.
  2. S. Duzellier, G. Hopkinson, J. C. RodriguezRadiation effects analysis (subdivided into total ionising dose, displacement, damage, and single-event effects),” presented at the RADECS-2003 short course, Noordwijk, The Netherlands, 2003.
  3. K. LaBel, L. Cohn, “Radiation Testing and Evaluation Issues for Modern Integrated Circuits,” in Proc. RADECS-2005, Cap d`Agde, France, 2005.
    Retrieved from: https://radhome.gsfc.nasa.gov/radhome/papers/radecs05_sc.pdf
    Retrieved on: Feb. 3, 2017.
  4. H. N. Becker, T. F. Miyahira, A. H. Johnston, “Latent Damage From Single-Event Latchup,” in Proc. Single Event Effects Symposium, Manhattan Beach (CA), USA, 2002.
    Retrieved from: https://trs.jpl.nasa.gov/bitstream/handle/2014/8510/02-1001.pdf?sequence=1&isAllowed=y
    Retrieved on: Feb. 5, 2017.
  5. S. H. Voldman, Latchup, 1st ed., Chichester, UK: J. Wiley and Sons, 2007.
    DOI: 10.1002/9780470516171
  6. Hi-Rel Latchup Current Limiter, 3D plus, Buc, France, 2013.
    Retrieved from: http://www.3d-plus.com/data/doc/products/references/3dfp_0608_5.pdf
    Retrieved on: Feb. 5, 2017.
  7. A. A. Pechenkin, “SEE radiation hardness assurance procedure of electronic components and systems,” in RADECS-2015 short course, Moscow, Russia, 2015, PXI Advisor - National Instruments, National Instruments, Austin (TX), USA.
  8. Retrieved from: http://ohm.ni.com/advisors/pxi/pages/common/intro.xhtml
    Retrieved on: Feb. 3, 2017.

Medical Physics

COMPARTMENT BIOKINETIC MODEL FOR 90Y-DOTATOC

Marija Ž. Jeremić, Milovan Matović, Suzana Pantović, Dragoslav Nikezić, Goran Ristić, Dragana Krstić

Pages: 163-166

DOI: 10.21175/RadProc.2017.33

Biokinetic of 90Y-DOTATOC in human body during treatment of neuroendocrine and medullary thyroid tumors is described in this work. For this purpose, the human body may be represented by 4 compartments: blood, kidneys, urinary bladder and tumor. System of differential equations was developed a whose solution is presented in this paper. The aim is the determination of transfer coefficients between individual compartments for a better estimation of the dose in the tumor and other organs of the human body. A computer program is written in standard Fortran90 programming language.
  1. I. Virgolini, T. Traub-Weidinger, C. Decristoforo, “Nuclear medicine in the detection and management of pancreatic islet-cell tumours,” Best Practice & Research Clinical Endocrinology & Metabolism, vol. 19, no. 2, pp. 213-227, Jun. 2005.
    DOI: 10.1016/j.beem.2004.09.001
    PMid: 15763696
  2. A. Otte, R. Hermann, A. Heppeler, M. Behe, E. Jermann, P. Powell, H. R. Maecke, J. Muller, “Yttrium-90. DOTATOC: first clinical results,” Eur. J. Nucl. Medicine, vol. 26, no. 11, pp. 1439-1447, Oct. 1999.
    DOI: 10.1007/s002590050476
    PMid: 10552085
  3. J. J. Zaknun, L. Bodei et al., “The joint IAEA, EANM, and SNMMI practical guidance on peptide receptor radionuclide therapy (PRRNT) in neuroendocrine tumors,” Eur. J. Nucl. Med. Mol. Imaging, vol. 40, no. 5, pp. 800-816, May 2013.
    DOI: 10.1007/s00259-012-2330-6
    PMid: 23389427
    PMCid: PMC3622744
  4. P. Kletting, B. Muller et al., “Differences in predicted and actually absorbed doses in peptide receptor radionuclide therapy,” Med. Phys., vol. 39, no. 9, pp. 5708–5717, Sep. 2012.
    DOI: 10.1118/1.4747266
  5. J. J. Grudzinski, W. Tome, J. P. Weichert, J. Jeraj, “The biological effectiveness of targeted radionuclide therapy based on a whole-body pharmacokinetic model,” Phys. Med. Biol.,vol. 55, no. 19, pp. 5723-5734, Oct. 2010.
    DOI: 10.1088/0031-9155/55/19/007
    PMid: 20826898
    PMCid: PMC3835526
  6. F. Guerriero, M. E. Ferrari, et al., “Kidney dossimetry in 177Lu and 90Y peptide receptor radionuclide therapy: influence of image timining, Time-activity integration method, and risk factors,” Bio. Med. Research International, vol. 2013, 2013.
    Retrieved from: https://www.hindawi.com/journals/bmri/2013/935351/
    Retrieved on: Jan. 19, 2017
  7. E. J. Rolleman, M. Melis et al., “Kidney protection during peptide receptor radionuclide therapy with somatostatin analogues,” Eur. J. Nucl. Med. Mol. Imaging, vol. 37, no. 5, pp. 1018–1031, May 2010.
    DOI: 10.1007/s00259-009-1282-y
    PMid: 19915842
  8. L. Bodei, M. Kidd et al., “Long-term tolerability of PRRT in 807 patients with neuroendocrine tumors: the value and limitations of clinical factors,” Eur. J. Nucl. Med. Mol. Imaging, vol. 42, no. 1, pp. 5-19, Jan. 2015.
    DOI: 10.1007/s00259-014-2893-5
    PMid: 25273832
  9. M. Matovic, “Peptide receptor radionuclide therapy of neuroendocrine tumors: Case series,” Arch. Oncol. vol. 20, no. 3-4, pp. 143-148, 2012.
    DOI: 10.2298/AOO1204143M
  10. M. Cremonesi, M. Ferrari et al., “Biokinetics and dosimetry in patients administered with 111In-DOTA-Tyr3-Octreotide: Implications for internal radiotherapy with 90Y-DOTATOC,” Eur. J. Nucl. Med., vol. 26, no. 8, pp. 877-886, Jul. 1999.
    DOI: 10.1007/s002590050462

SPECIFIC APPROACHES TO PLANNING OF PATIENTS WITH PRIMARY AND SECONDARY BRAIN TUMORS USING THE TOMOTHERAPY PLANNING SYSTEM

S. P. Odarchenko, M. B. Gumeniuk, K. V. Gumeniuk, O. V. Zinvaliuk, D. S. Sinchuk

Pages: 167-172

DOI: 10.21175/RadProc.2017.34

Nowadays only several medical centers of Ukraine are equipped with special linear accelerators for treating patients using Image-Guided Radiation Therapy (IGRT) and Intensity-Modulated Radiotherapy (IMRT), apart from 3DCRT methods. Sequential (SEQ) and Simultaneous Integrated Boost (SIB) are common IMRT techniques for whole brain irradiation and metastasis treatment using TomoTherapy system TomoHD. The radiotherapy system, mentioned above, is innovation for oncological diseases treatment in Ukraine as well as in post Soviet Union countries in general. Thus, one of main goals of the work is to define the quality of different therapeutic plans, to identify and describe the main features of treatment plans preparation and creating and to describe some specific approaches for SIB and SEQ techniques in planning of patients with brain tumors using the TomoTherapy Planning System.
  1. K. Tejinder et al., “Homogeneity Index: An objective tool for assessment of conformal radiation treatments,” J. Med. Phys., vol. 37, no. 4, pp. 207–213, Oct-Dec. 2010.
    DOI: 10.4103/0971-6203.103606
    PMid: 23293452
    PMCid: PMC3532749
  2. I. Paddick, “A simple scoring ratio to index the conformity of Conformity index,” J. Neurosurg., vol. 93, no. suppl. 3, pp. 219 – 222, Dec. 2000.
    DOI: 10.3171/jns.2000.93.supplement
    PMid: 11143252
  3. M. S. Arie van’t Riet, A. C. Mak, M. A. Moerland, L. H. Elders, W. van der Zee, “A conformation number to quantify the degree of conformality in brachytherapy and external beam irradiation: application to the prostate,” Int. J. Radiation Oncology Biol. Phys., vol. 37, no. 3, pp. 731-736, Feb. 1997.
    DOI: 10.1016/S0360-3016(96)00601-3
    PMid: 9112473
  4. L. B. Marks, E. D. Yorke et al., ”Use of normal tissue complication probability models in the clinic,” Int. J. Radiat. Oncol. Biol. Phys., vol. 76, no. 3, pp. 10-19, Mar. 2010.
    DOI: 10.1016/j.ijrobp.2009.07.1754
    PMid: 20171502
    PMCid: PMC4041542
  5. T. Murai, A. Hayashi, Y. Manabe et al., “Efficacy of stereotactic radiotherapy for brain metastases using dynamic jaws technology in the helical tomotherapy system,” Br. J. Radiol., vol. 89, no. 1066, Oct. 2016.
    DOI: 10.1259/bjr.20160374
    PMid: 27556639
    PMCid: PMC5124807

TOMOTHERAPY IN UKRAINE – GENERAL ANALYSIS OF FIRST TREATMENT RESULTS

S. P. Odarchenko, K. V. Gumeniuk, M. B. Gumeniuk, O. V. Zinvaliuk, D. S. Synchuk

Pages: 173-177

DOI: 10.21175/RadProc.2017.35

The work presents first results of radiation therapy with using Tomotherapy TomoHD. For the high quality of patients’ treatment, modern methods of radiotherapy, such as IGRT, IMRT and adaptive radiotherapy are used. Regular performing of machine quality assurance procedures are done according to the local program of QA. A good stability of different machine parameters provides a high quality of patients’ treatment. After the end of the treatment, the partial resorption of targeted lesions and the absence or minimization of early reactions are observed. Tomotherapy provides a fundamentally new and effective treatment for all cancer locations.
  1. T.Piotrowski, M. Skórska, A. Jodda, R. Ryczkowski, “Tomotherapy – a different way of dose delivery in radiotherapy,” Contemp Oncol (Pozn), vol. 16, no. 1, pp. 16 – 25, Jan. 2012.
    DOI: 10.5114/wo.2012.27332
    PMid: 23788850
    PMCid: PMC3687380
  2. T. R. Mackie, T. W. Holmes, S. Swerdloff, P. Reckwerdt, J. O. Deasy, et al., “Tomotherapy: a new concept in the delivery of dynamic conformal radiotherapy,” Med. Phys., vol. 20, no. 6, pp. 1709-1719, Nov-Dec. 1993.
    DOI: 10.1118/1.596958
    PMid: 8309444
  3. T. R. Mackie et al., “Image guidance for precise conformal radiotherapy,” Int. J. Radiat. Oncol. Biol. Phys., vol. 56, no. 1, pp. 89–105, May 2003.
    DOI: 10.1016/S0360-3016(03)00090-7
    PMid: 12694827
  4. L. B. Marks, E. D. Yorke et al., “Use of normal tissue complication probability models in the clinic,” Int. J. Radiat. Oncol. Biol. Phys., vol. 76, no. 3, pp. 10 – 19, Mar. 2010.
    DOI: 10.1016/j.ijrobp.2009.07.1754
    PMid: 20171502
    PMCid: PMC4041542
  5. Langen et al., “QA for helical tomotherapy: Report of the AAPM Task Group 148,” Med. Phys., vol. 37, no. 9, pp. 4817 – 4853, Sep. 2010.
    DOI: 10.1118/1.3462971
    PMid: 20964201
  6. “Response assessment in solid tumours (RECIST): Version 1.1 and Supporting Papers,” European Journal of Cancer, vol. 45, no. 2, pp. 225 – 310, Jan. 2009.
    Retrieved from: http://www.sciencedirect.com/science/journal/09598049/45/2?sdc=1
    Retrieved on: Jan. 24, 2017

Radiology

RELATIONSHIP BETWEEN IMPAIRMENTS OF FEF50% AND LUNG EMPHYSEMA AMONG WORKERS EXPOSED TO MINERAL DUSTS

E. Petrova

Pages: 178-180

DOI: 10.21175/RadProc.2017.36

The aim of the study is to analyze the relationship between the decreases of FEF50% - on the one hand, and radiologically verified compensatory lung emphysema among workers, exposed to mineral dust at the work place - on the other. A case control study among 480 quartz-exposed underground miners, 120 asbestos-exposed workers, and 121 individuals without dust exposure was performed. The average age of the examined workers was 42.82 years, and the average duration of the dust exposure was 14.01 years. A clinical examination, as well as a chest radiography (by ILO’80), and spyrometry of all persons were done. We used SPSS software and one-way ANOVA. There was a significant decrease of the mean of FEF50% in cases with lung emphysema, accounted on the chest radiography (by ILO’80). We assume that the compensatory emphysema and reduction of FEF50% is associated with the formation of initial interstitial pulmonary fibrosis among workers exposed to mineral dust over a long period and in patients with pneumoconiosis. Conclusion 1. The decrease of FEF50% is related to radiologically established compensatory lung emphysema. 2. The investigation of FEF50%, combined with chest X-ray, is an appropriate constellation for periodical preventive medical check ups and assessment of health status for workers exposed to mineral dust.
  1. Е. Петрова, “Късни форми на силикоза и силикотуберкулоза,” дисертация за дм, Mедицинска академия, София, 1988. (E. Petrova, “Late forms of silicosis and silicotuberculosis,” Ph.D. Dissertation, Medical Academy, Sofia, 1988.)
  2. Е. Петрова, “Динамика на вентилаторната недостатъчност при пациенти със силикоза и силикотуберкулоза,” Хигиена и здравеопазване, № 5, 36 – 38, 1990. (E. Petrova, “Dynamics of the ventilatory insufficiency in patients with silicosis and silicotuberculosis,” Hygiene and Health, no. 5, pp. 36 – 38, 1990.)
  3. Е. Петрова, “Характеристика на неработоспособността при силикозно болни, заболели след прекъсване на професионалната им експозиция,” Хигиена и здравеопазване, № 4, 1991. (E. Petrova, “Characteristics of the disability in silicosis patients, occurring after the discontinuation of their occupational exposure,” Hygiene and Health, no. 4, 1991.)
  4. Е. Петрова, “Фактори повлияващи трайната неработоспособност при силикозно болни,” Хигиена и здравеопазване, № 4, 1991. (E. Petrova, “Factors influencing the permanent disability of silicosis patients,” Hygiene and Health, no. 4, 1991.)
  5. Е. Петрова, “Функционални нарушения при миньори с краткотрайна експозиция в мина Бухово,” Хигиена и здравеопазване, № 2, с. 27 – 28, 1994. (E. Petrova, “Functional impairments in miners with short occupational exposure in the Buhovo mine,” Hygiene and Health, no. 2, pp. 27 - 28, 1994.)
  6. E. Petrova, “Respiratory functional impairments in dust-exposed individuals,” in Proc. Twelfth National Conference of Young Specialists from the Hygienic and Epidemiological Services, Varna, Bulgaria, 1995.
  7. Early detection of Occupational Diseases, World Health Organisation, Geneva, Switzerland, 1986.
    Retrieved from: http://apps.who.int/iris/bitstream/10665/37912/1/924154211X.pdf
    Retrieved on: Jan. 21, 2017.
  8. R. S. Fraser, J. A. P. Pare, R. G. Fraser, P. D. Pare, “Pleuropulmonary diseases caused by inhalation of inorganic dust,” in Synopsis of Diseases of the Chest, R. S. Fraser, J. A. P. Pare, R. G. Fraser, P. D. Pare, Eds., 2nd ed., Philadelphia, (PN), USA: Saunders, 1994, pp. 705 – 739.
    DOI: 10.1016/0954-6111(95)90239-2
  9. A. Miller, R. Lilis, J. Godbold, E. Chan, X. Wu, I. J. Selikoff, “Spirometric impairments in long-term insulators. Relationships to duration of exposure, smoking, and radiographic abnormalities,” Chest, vol. 105, no. 1, pp. 175 – 182, Jan. 1994.
    DOI: 10.1378/chest.105.1.175
    PMid: 8275729
  10. A. S. Trapido, N. P. Mqoqi, B. G. Williams, N. W. White, A. Solomon, R. H. Goode, C. M. Macheke, A. J. Davies, C. Panter, “Prevalence of occupational lung disease in a random sample of former mineworkers,” Am. J. Ind. Med., vol. 34, no. 4, pp. 305 – 313, Oct, 1998.
    DOI: 10.1002/(SICI)1097-0274(199810)34:4<305::AID-AJIM2>3.0.CO;2-R
  11. B. Ulvestad, B. Bakke, E. Melbostad, P. Fuglerud, J. Kongerud, M. B. Lund, “Increased risk of obstructive pulmonary disease in tunnel workers,” Thorax, vol. 55, no. 4, pp. 277 – 282, Apr. 2000.
    DOI: 10.1136/thorax.55.4.277
    PMid: 10722766
    PMCid: PMC1745731
  12. X. Wang, E. Yano, “Pulmonary dysfunction in silica-exposed workers: a relationship to radiographic signs of silicosis and emphysema,” Am. J. Ind. Med., vol. 36, no. 2, pp. 299 – 306, Aug. 1999.
    DOI: 10.1002/(SICI)1097-0274(199908)36:2<299::AID-AJIM9>3.0.CO;2-W
  13. X. Wang, I. T. Yu, T. W. Wong, E. Yano, “Respiratory symptoms and pulmonary function in coal miners: looking into the effects of simple pneumoconiosis,” Am. J. Ind. Med., vol. 35, no. 2, pp. 124 – 131, Feb. 1999.
    DOI: 10.1002/(SICI)1097-0274(199908)36:2<299::AID-AJIM9>3.0.CO;2-W
  14. X. R. Wang, D. C. Christiani, “Respiratory symptoms and functional status in workers exposed to silica, asbestos, and coal mine dusts,” J. Occup. Environ. Med., vol. 42, no. 11, pp. 1076 -1084, Nov. 2000.
    DOI: 10.1097/00043764-200011000-00009
    PMid: 11094786

Radiotherapy

THE ESTIMATION OF THE RADIATION DOSE TO THE LEFT LUNG FOR VARIOUS MODES OF CONFORMAL RADIATION TREATMENT OF THE BREAST CANCER PATIENTS

L.I. Korytova, E.A.Maslyukova, A.V. Bondarenko, O.V.Korytov, E.M.Muravnik

Pages: 181-184

DOI: 10.21175/RadProc.2017.37

Lowest dose detection per ipsilateral lung versus various dosimetric irradiation plans for the left mammary gland is investigated. The study involves dosimetric radiotherapeutic (RT) plans of 20 female patients with left BC (breast cancer). Pre-irradiation preparation included 3 sessions of CT scan: patient in standard dorsal position with tidal respiration (STR), in dorsal position with controlled breathhold on top inspiration (DBH) and in prone position with tidal respiration (PTR). Three CT-sessions were followed by 3D-plan dosimetric calculations. Dose-volumetric measures for organs at risk (OAR) were assessed for every irradiation option. Contoured left lung volume in all studied variants varied within 757.1 cm3 – 2923.8 cm3, mean volume 1751.6 cm3. The best values, such as V25lung (when α/β=3.1) and V28lung (when α/β=9), average doses per ipsilateral lung were received using the PTR method (V25lung (α/β=3.1) – 10.19%, V28lung (α/β=9) – 9.19%; Dmean lung 7.42 Gy) versus the STR method (V25lung (α/β=3.1) – 20.72%, V28lung (α/β=9) – 19.6%; D mean 10.42 Gy) and DBH-position (V25lung (α/β=3.1) – 20.17%, V28lung (α/β=9) – 19.01%; Dmean lung 10.11 Gy) included in MG volume and axillary LN with V25lung (α/β=3.1) - Р=0.00000**, V28lung (α/β=9) – Р=0.00000**; D mean - p=0.00002**. No preferences in dosimetry were detected for the addition of supraclavicular and infraclavicular lymph nodes (LN) in irradiation volume using STR and DBH methods: DBH (V25lung (α/β=3.1) – 21.49%, V28lung (α/β=9) – 20.17%; Dmean lung 10.85 Gy) versus STR method (V25lung (α/β=3.1) – 23.07%, V28lung (α/β=9) – 21.64%; Dmean lung 11.72 Gy). V25lung (α/β=3.1) - р=0.438, V28lung (α/β=9) – р=0.461; Dmean lung р=0.2964. Based on our investigation, the lowest doses per ipsilateral lung were received in prone position with tidal respiration including axillary lymph nodes (LN) in MG volume. These findings were associated with the results of few international studies. No statistically significant difference in left lung radiation exposure was detected during the comparison of STR and DBH methods with the additional irradiation of supraclavicular and infraclavicular LN.

  1. L. Bissoli, V. Di Francesco, F. Valbusa et al., “A case of bronchiolitis obliterans organising pneumoniae (BOOP) after nine months post-operative irradiation for breast cancer,” Age Ageing, vol. 37, no. 2, p. 235, Jan. 2008.
    DOI: 10.1093/ageing/afn010
    PMid: 18349018
  2. G. R. Epler, “Post-breast cancer radiotherapy bronchiolitis obliterans organizing pneumonia,” Expert. Rev. Respir. Med., vol. 7, no. 2, pp.109–112, Apr. 2013.
    DOI: 10.1586/ers.13.1
    PMid: 23547987
  3. D. E. Stover, F. Milite, M. Zakowski, “A newly recognized syndrome – radiation-related bronchiolitis obliterans and organizing pneumonia. A case report and literature review,” Respiration, vol.68, no. 5, pp. 540-544, Oct. 2001. DOI: 10.1159/000050566
    PMid: 11694821
  4. А. В Бондаренко, Л. И. Корытова, Е. А. Маслюкова, О. В. Корытов, Е. М. Муравник, “Результаты сравнения лучевой нагрузки на сердце и левую переднюю нисходящую коронарную артерию при разных вариантах облучения рака молочной железы,” Опухоли женской репродуктивной системы, т. 12, № 3, стр. 10-16, 2016. (A. V. Bondarenko, L. I. Korytova, E. A. Maslyukova, O. V. Korytov, E. M. Muravnik, “The comparison of the radiation load to the heart and the left anterior descending coronary artery for various models of radiation treatment of the breast cancer patients,” Women Reproductive System Tumors, vol. 12, no. 3, pp. 10-16, 2016.)
    DOI: 10.17650/1994-4098-2016-12-3-10-16
  5. D. P. Penney, P. Rubin, “Specific early fine structural changes in the lung irradiation,” Int. J. Radiat. Oncol. Biol. Phys., vol. 2, no. 11-12, pp. 1123-1132, Nov-Dec. 1977.
    DOI: 10.1016/0360-3016(77)90119-5
  6. P. A. Lind, G. Svane, G. Gagliardi C. Svensson, “Abnormalities by pulmonary regions studied with computer tomography following local or local-regional radiotherapy for breast cancer,” Int. J. Radiat. Oncol. Biol. Phys., vol. 43, no. 3, pp. 489-496, Feb. 1999.
    DOI: 10.1016/S0360-3016(98)00414-3
    PMid: 10078627
  7. E. K. Chie, K. H. Shin, D. Y. Kim et al., “Radiation Pneumonitis after Adjuvant Radiotherapy for Breast Cancer: A Volumetric Analysis Using CT Simulator,” J. Breast Cancer, vol. 12, no. 2, pp. 73-78, Jun 2009.
    DOI: 10.4048/jbc.2009.12.2.73
  8. L. Pierce, A. Lewin, M. Abdel-Wahab et al., “Early radiation-induced lung injury in a patient with prior diagnosis of bronchiolitis obliterans organizing pneumonitis,” J. Natl. Med. Assoc., vol. 100, no. 12, pp. 1474 – 1476, Dec. 2008.
    DOI: 10.1016/S0027-9684(15)31551-0
  9. U. B. Goldman, B. Wennberg, G. Svane, “Reduction of radiation pneumonitis by V20-constraints in breast cancer,” Radiation Oncology, vol. 5, no. 99, pp. 1-6, Oct. 2010.
    DOI: 10.1186/1748-717X-5-99
    PMid: 21034456
    PMCid: PMC2987943
  10. J. Vikström, M. H. Hjelstuen, I. Mjaaland et al., “Cardiac and pulmonary dose reduction for tangentially irradiated breast cancer, utilizing deep inspiration breath-hold with audio-visual guidance, without compromising target coverage,” Acta Oncol., vol. 50, no. 1, pp. 42-50, Jan. 2011.
    DOI: 10.3109/0284186X.2010.512923
    PMid: 20843181

Radiation Oncology

A PENCIL BEAM KERNEL MODEL FOR FLATTENING FILTER-FREE X-RAY BEAM

Mehmet Ertuğrul Ertürk, Cemil Kocar, Salih Gürdall, Mehmet Tombakoğlu

Pages: 186-190

DOI: 10.21175/RadProc.2017.38

Fast and accurate dose computation is an important requirement for algorithms that are often used in optimization schemes. Decreasing the number of variables and parameters and the amount of tabulated data can reduce computation time. Flattening Filter-Free (FFF) beams provide reduced profile shape variations with depth relative to flattened beams. Therefore, the pencil beam kernel of a FFF beam must exhibit the reduced variation with depth when compared to the kernel of flattened beams. In this paper, a kernel with a minimal number of parameters is derived for the FFF beams. Moreover, some of the parameters are defined as depth independent. A finite-size pencil beam dose calculation model was used for kernel generation. The grid size for the dose calculation was set to 2.5 mm. During the kernel generation, the parameters (pre-exponential constants and exponential constants) of the kernel were determined in such a way that the difference between the computed and measured profiles is minimized by the global gamma analysis technique. The criteria for this technique were 1 % dose difference at distance of 1 mm with a 10 % threshold. Profiles for each field (5 x 5 cm2, 10 x 10 cm2, and 20 x 20 cm2) at five standard depths (dmax, 5 cm, 10 cm, 20 cm, and 30 cm), a total of 15 profiles, were used to generate the kernels. The multi-objective, non-derivative, unconstrained, non-linear optimization method in the programming package MATLAB (Mathworks, Natick, MA) optimization toolbox was used to generate kernel parameters. Commissioning of the model was performed for the static fields and the intensity-modulated radiation therapy (IMRT) fields. In static fields and dynamic IMRT fields, more than 95 % of data points satisfied the criteria defined in the global gamma analysis with 3 % and 3 mm. There was a good agreement between modelled and measured data in both cases. It is demonstrated that the pencil beam model developed in this study could be used for FFF x-ray beams. Pencil beam kernel parameters do not need to be defined at each depth.
  1. A. Boyer and E. Mok, “A photon dose distribution model employing convolution calculations,” Med. Phys.,vol. 12,no. 2, pp. 169 – 177, Mar. 1985.
    DOI: 10.1118/1.595772
    PMid: 4000072
  2. A. L. Boyer, “Shortening the calculation time of photon dose distributions in an inhomogeneous medium,” Med. Phys.,vol. 11,no. 4, pp. 552 – 554, Jul. 1984.
    DOI: 10.1118/1.595526
    PMid: 6482848
  3. R. Mohan and C. S. Chui, “Use of fast Fourier transforms in calculating dose distributions for irregularly shaped fields for three-dimensional treatment planning,” Med. Phys., vol. 14, no. 1, pp. 70 – 77, Jan. 1987.
    DOI: 10.1118/1.596097
    PMid: 3104741
  4. A. Ahnesjö, M. Saxner and A. Trepp, “A pencil beam model for photon dose -calculation,” Med. Phys., vol. 19, no. 2, pp. 263 – 273, Mar. 1992.
    DOI: 10.1118/1.596856
    PMid: 1584117
  5. C. S. Chui and R. Mohan, “Extraction of pencil beam kernels by the deconvolution method,” Med. Phys., vol. 15, no. 2, pp. 138 – 144, Mar. 1988.
    DOI: 10.1118/1.596267
    PMid: 3386581
  6. C. P. Ceberg, B. E. Bjärngard and T. C. Zhu, “Experimental determination of the dose kernel in high-energy x-ray beams,” Med. Phy., vol. 23, no. 4, pp. 505 – 511, Apr. 1996.
    DOI: 10.1118/1.597807
    PMid: 9157261
  7. L. Dong et al., “A pencil-beam photon dose algorithm for stereotactic radiosurgery using a miniature multileaf collimator,” Med. Phys., vol. 25, no. 6, pp. 841 – 850, Jun. 1998.
    DOI: 10.1118/1.598294
    PMid: 9650171
  8. U. Jeleń et al., “A finite size pencil beam for IMRT dose optimization,” Phys. Med. Biol., vol. 50, no. 8, pp. 1747 – 1766, Apr. 2005.
    DOI: 10.1088/0031-9155/50/8/009
    PMid: 15815094
  9. U. Jeleń and M. Alber, “A finite size pencil beam algorithm for IMRT dose optimization: density corrections,” Phys. Med. Biol., vol. 52, no. 3, pp. 617 – 633, Jan. 2007.
    DOI: 10.1088/0031-9155/52/3/006
    PMid: 17228109
  10. J. C. Lagarias et al., “Convergence properties of the Nelder-Mead Simplex Method in low dimensions,” SIAM Journal of Optimization, vol. 9, no. 1, pp. 112 – 147, Dec. 1998.
    DOI: 10.1137/S1052623496303470
  11. D. A. Low and J. F. Dempsey, “Evaluation of the gamma dose distribution comparison method,” Med. Phys., vol. 30, no. 9, pp. 2455 – 2464, Sep. 2003.
    DOI: 10.1118/1.1598711
    PMid: 14528967
  12. T. Bortfeld, W. Schlegel and B. Rhein, “Decomposition of pencil beam kernels for fast dose calculations in three-dimensional treatment planning,” Med. Phys., vol. 20, no. 2, pp. 311 – 318, Mar. 1993.
    DOI: 10.1118/1.597070
    PMid: 8497215
  13. D. W. Rogers, B. A. Faddegon, G. X. Ding, C. M. Ma, J. We, T. R. Mackie, “BEAM: A Monte Carlo code to simulate radiotherapy treatment units,” Med. Phys., vol. 22, no. 5, pp. 503 – 524, May 1995.
    DOI: 10.1118/1.597552
    PMid: 7643786
  14. J. D. Azcona et al., “Experimental pencil beam kernels derivation for 3D dose calculation in flattening filter free modulated fields,” Phys. Med. Biol., vol. 61, no. 1, pp. 50 – 66, Jan. 2016.
    DOI: 10.1088/0031-9155/61/1/50
    PMid: 26611490
  15. W. Ulmer, D. Harder, “A Triple Gaussian Pencil Beam Model for Photon Beam Treatment Planning,” Z. Med. Phys., vol. 5, no. 1, pp. 25 – 30, Jan. 1995.
    DOI: 10.1016/S0939-3889(15)70758-0

Microwave, Laser, RF and UV radiations

A PERSPECTIVE VIEW OVER O3 AND NO2 EVOLUTION ABOVE SEVERAL IMPORTANT CITIES DURING 2005-2016 USING UV-VIS OBSERVATIONS FROM SPACE

Lucian Dimitrievici, Daniel-Eduard Constantin, Adrian Rosu, Luminita Moraru

Pages: 191-194

DOI: 10.21175/RadProc.2017.39

In this work, we present the evolution of the atmospheric ozone (O3) and nitrogen dioxide (NO2) over the worldwide during 2005 - 2016. For this purpose, nine important locations over the globe were selected: Bucharest (44.43°N, 26.10°E), Bremen (53.08°N, 8.8°E), Athena (23.73°E, 37.98°N), Toronto (79.39°W, 43.66°N), St. Petersburg (30.702°E, 59.953°N), Cairo (31.28°E, 30.08°N), Mexico City (99.18°W, 19.33°N), Nairobi (36.81°E, 1.28°S), and New Delhi (77.21°E, 28.65°N). The O3 and NO2 remote sensing observations were provided by the space UV-VIs instrument OMI (Ozone Monitoring Instrument) onboard the AURA satellite. Data regarding O3 and NO2 were obtained from the Tropospheric Emission Monitoring Internet Service (TEMIS) database. Also, correlations between NO2 and O3 columns are presented in this work.
  1. S. Beirle, U. Platt, R. Von Glasow, M. Wenig, T. Wagner, “Estimate of nitrogen oxide emissions from shipping by satellite remote sensing,” Geophysical Research Letters, vol. 31, no. 18, Sep. 2004.
    Retrieved from: http://onlinelibrary.wiley.com/doi/10.1029/2004GL020312/epdf
    Retrieved on: Jan. 12, 2017.
  2. L. Dimitrievici, D. E. Constantin, L. Moraru, “The analysis of the correlations between NO2 column, O3 column and UV radiation at global level using space observations,” in AIP Conf. Proc. 1796, pp. 030009-1–030009-4.
    Retrieved from: http://aip.scitation.org/doi/pdf/10.1063/1.4972374
    Retrieved on: Jan. 13, 2017.
  3. R. W. Portmann, J. S. Daniel, A. R. Ravishankara, "Stratospheric ozone depletion due to nitrous oxide: influences of other gases," Phil. Trans. R. Soc. B. Biol. Sci., vol. 367, no. 1593, pp. 1256-1264, May 2012.
    DOI: 10.1098/rstb.2011.0377
    PMid: 22451111
    PMCid: PMC3306630
  4. E. C. Weatherhead, S. B. Andersen, "The search for signs of recovery of the ozone layer," Nature, vol. 441, no. 7089, pp. 39-45, May 2006.
    DOI: 10.1038/nature04746
    PMid: 16672963
  5. R. Werner, I. Kostadinov, D. Valev, A. Hempelmann, et al., “NO2 column amount and total ozone in Stara Zagora (42° N, 25° E) and their response to the solar rotational activity variation,” Advances in Space Research, vol. 37, no. 8, pp. 1614-1620, 2006.
    DOI: 10.1016/j.asr.2005.12.002
  6. L. N. Lamsal, R. V. Martin, D. D. Parrish, N. A. Krotkov, “Scaling relationship for NO2 pollution and urban population size: a satellite perspective,” Environmental science & technology, vol. 47, no. 14, pp. 7855-7861, Jun. 2013.
    DOI: 10.1021/es400744g
    PMid: 23763377
  7. G. Bylin, T. Lindvall, T. Rehn, B. Sundin, “Effects of short-term exposure to ambient nitrogen dioxide concentration on bronchial reactivity and lung function,” European journal of respiratory diseases, vol. 66, no. 3, pp. 205-217, Mar. 1985.
    PMid: 3979486
  8. U. Ackermann-Liebrich, R. Rapp, “Epidemiological Effects of Oxides of Nitrogen, Especially NO2-25,” in Air Pollution and Health, S. T. Holgate, J. M. Samet, H. S. Koren, R. L. Maynard, Eds., 1st ed., Amsterdam, Netherlands: Elsevier Ltd., 1999. ch. 25, pp. 561-584.
    DOI: 10.1016/B978-012352335-8/50100-9
  9. U. Platt, “Differential optical absorption spectroscopy (DOAS),” in Air monitoring by Spectroscopic Techniques, M. Sigrist, Ed., 1st ed., Toronto, Canada: John Wiley and Sons, 1994, ch, 2, pp. 27–84.
  10. U. Platt, J. Stutz, Differential Optical Absorption Spectroscopy: Principles and Applications, 1st ed., Heidelberg, Germany: Springer Verlag, 2008.
  11. D. E. Constantin, M. Voiculescu, L. Georgescu, “Satellite Observations of NO2 Trend over Romania,” The Scientific World Journal, vol. 2013, Nov. 2013.
    DOI: 10.1155/2013/261634

ESTIMATION OF SOLAR RADIATION MODEL USING MEASURED DATA IN A SPECIFIC REGION

Bulent Yaniktepe, Osman Kara, Coskun Ozalp

Pages: 195-197

DOI: 10.21175/RadProc.2017.40

Nowadays, the use of solar radiation is very important for some applications. Knowledge of global solar radiation distribution is needed for the design of solar energy systems of these applications. Many parameters affect the production of the solar energy and conversion efficiencies and location conditions of PV panels. One of the most vital parameters is the number of solar radiation values. The main objective of this study is to determine the predicting solar radiation by using meteorological measurements. In this study, two empirical models (linear and second-order polynomial equation) are analyzed according to correlation coefficients for a month. For the global solar radiation on horizontal surface in Osmaniye and a new quadratic model has been developed for Osmaniye.
  1. T. Khatib, A. Mohamed, K. Sopian, “A review of solar energy modeling techniques,” Renewable and Sustainable Energy Reviews, vol. 16, no. 5, pp. 2864 – 2869, Jun. 2012.
    DOI: 10.1016/j.rser.2012.01.064
  2. J. Almorox and C. Hontoria, “Global solar radiation estimation using sunshine duration in Spain,” Energy Conversion and Management, vol. 45, no. 9-10, pp. 1529 – 1535, Jun. 2004.
    DOI: 10.1016/j.enconman.2003.08.022
  3. S. Janjai, P. Praditwong, C. Moonin, “A new model for computing monthly average daily diffuse radiation for Bangkok,” Renew Energy, vol. 9, no. 1-4, pp. 1283 – 1286, Sep-Dec. 1996.
    DOI: 10.1016/0960-1481(96)88511-9
  4. Z. Sben and E.Tan, “Simple models of solar radiation data for northwestern part of Turkey,” Energy Convers Manage, vol. 42, no. 5, pp. 587 – 598, Mar. 2001.
    DOI: 10.1016/S0196-8904(00)00083-2
  5. S. Top, U. Dilma, Z. Aslan, “Study of hourly solar radiation data in Istanbul,” Renew Energy, vol. 6, no. 2, pp. 171 – 174, Mar. 1995.
    DOI: 10.1016/0960-1481(94)00057-D
  6. R. Benson, M. Paris, J. Sherry, C. Justus, “Estimation of daily and monthly direct, diffuse and global solar radiation from sunshine duration measurements,” Sol. Energy, vol. 32, no. 4, pp. 523 – 535, 1984.
    DOI: 10.1016/0038-092X (84)90267-6
  7. K. Reddy and M. Ranjan, “Solar resource estimation using artificial neural net-works and comparison with other correlation models,” Energy Convers Manage, vol. 44, no. 15, pp. 2519 – 2530, Sep. 2003.
    DOI: 10.1016/S0196-8904(03)00009-8
  8. A. S. S. Dorvio, J. A. Jervase, A. Al-Lawati, “Solar radiation estimation using artificial neural networks,” Appl. Energy, vol. 71, no. 4, pp. 307 – 319, Apr. 2002.
    DOI: 10.1016/S0306-2619(02)00016-8
  9. L. Zarzalejo, L. Ramirez, J. Polo, “Artificial intelligence techniques applied to hourly global irradiance estimation from satellite-derived cloud index,” Energy, vol. 30, no. 9, pp. 1685 – 1697, Jul. 2005.
    DOI: 10.1016/j.energy.2004.04.047
  10. J. Zhang, L. Zhao, S. Deng, W. Xu, Y. Zhang, “A critical review of the models used to estimate solar radiation,” Renewable and Sustainable Energy Reviews, vol. 70, pp. 314 – 329, Apr. 2017.
    DOI: 10.1016/j.rser.2016.11.124
  11. A. Angstrom, “Solar and terrestrial radiation,” Q. J. R. Meteor Soc., vol. 50, no. 210, pp. 121 – 125, Apr. 1924.
    DOI: 10.1002/qj.49705021008
  12. B. G. Akinoglu and A. Ecevit, “Construction of a quadratic model using modified Angstrom coefficients to estimate global solar radiation,” Solar Energy, vol. 45, no. 2, pp. 85 – 92, 1990.
    DOI: 10.1016/0038-092X (90)90032-8
  13. V. Bahel, H. Bakhsh and R. Srinivasan, “A correlation for estimation of global solar radiation,” Energy, vol. 12, no. 2, pp. 131 – 135, Feb. 1987.
    DOI: 10.1016/0360-5442(87)90117-4
  14. F. J. Newland, “A study of solar radiation models for the coastal region of South China,” Solar Energy, vol. 43, no. 4, pp. 227 – 235, Jan. 1989.
    DOI: 10.1016/0038-092X (89)90022-4
  15. K. Bakirci, “Correlations for estimation of daily global solar radiation with hours of bright sunshine in Turkey,” Energy, vol. 34, no. 4, pp. 485 – 501, Apr. 2009.
    DOI: 10.1016/j.energy.2009.02.005
  16. B. Yanıktepe, Y. A. Genc, “Establishing new model for predicting the global solar radiation on horizontal surface,” International Journal of Hydrogen Energy, vol. 40, no. 44, pp. 15278 – 15283, Nov. 2015.
    DOI: 10.1016/j.ijhydene.2015.02.064
  17. B. G. Akinoglu and A. Ecevit, “A further comparison and discussion of sunshine based models to estimate global solar radiation,” Energy, vol. 15, no. 10, pp. 865 – 872, Oct. 1990.
    DOI: 10.1016/0360-5442(90)90068-D
  18. A. Aktağ and E. Yilmaz, “A Suitable Model to Estimate Global Solar Radiation in Black Sea Shoreline Countries,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 34, no. 17, pp. 1628 – 1636, Jul. 2012.
    DOI: 10.1080/15567036.2011.649339

Medical Imaging

THERMAL IMAGING AS A TOOL FOR PATTERN RECOGNITION AND ANOMALY STUDIES: IDENTIFYING THE CHANGES IN THE CONDITION OF AN OBJECT OVER TIME BY SPOTTING A TREND OF CHANGING TEMPERATURES

Gordana Laštovička-Medin

Pages: 198-206

DOI: 10.21175/RadProc.2017.41

More than five decades have passed since the hypothesis of thermography in breast imaging was proposed. During this time, thermography has gone from a legitimate, promising technology to one relegated to the shadows outside conventional medicine. Thermal imaging in clinical trials is still controversial issue. However even those who discard the method due to insufficient reliability of data do not validate their arguments by clear understanding of the reasons behind the inaccuracy. While thermography is not well evidenced for use as a screening tool, its use as an adjunctive imaging procedure alongside mammography should be considered, particularly for those with dense breast tissue. It is certain that images captured by digital infrared thermal imaging support the effective recognition of irregular body patterns and that they can be used as indicators of any anomaly over the time period by spotting a trend of changes in the temperature. But data has to be not only interpreted accurately but also taken carefully and the effect of surrounding environment has to be kept minimal. The identified localized patterns have to be accurately assigned to a certain anomaly in order to be treated as diagnostic method, and the evaluation method as well as interpretation have to be standardized, and method replicable. Moreover, validation of protocols, equipment, and analytical techniques is needed to be placed in the context of large, randomized trials before its use can be considered truly evidence-based. Accurate interpretation of thermal data is largely dependent upon an experienced, knowledgeable operator who understands infrared theory and heat transfer concepts, basic anatomy and physiology, and infrared equipment operation and importantly, limitations too. In this paper we integrate theory behind thermal imaging, potential of thermal imaging in clinical research and general uncertainties and misinterpretations that lead to reduced accuracy of data interpretation and feasibility of the method.
  1. E. F. J. Ring, “Quantitative thermal images,” Clin. Phys. Physiol. Meas., vol. 11, no. suppl. A, pp. 87 – 95, 1990.
    DOI: 10.1088/0143-0815/11/4A/310
    PMiD: 2286052
  2. E. F. J. Ring and J. M. Dicks, “Spatial resolution of new thermal imaging systems,” Thermol. Int. vol. 9, no. 1, pp. 7 – 14, 1999.
  3. J. Fraden, Handbook of modern sensors, Physics, design and applications, 5th ed., San Diego (CA), USA: Springer, 2016.
    DOI: 10.1007/978-3-319-19303-8
  4. R. Dobrin, C. Kirsch, S. Kirsch et al., “Experimental measurements of the human energy field,” Psychoenergetic Systems, vol. 2, pp. 213 – 216, 1979.
  5. C. R. Hitchcock, D. F. Hickok, J. Soucheray, T. Moulton, R. C. Baker, “Thermography in mass screening for occult breast cancer,” JAMA. vol. 204, no. 6, pp. 419 – 422, May 1968.
    DOI: 10.1001/jama.1968.03140190001001
    PMid: 5694429
  6. S. A. Feig, G. S. Shaber, G. F. Schwartz et al., “Thermography, mammography, and clinical examination in breast cancer screening: Review of 16,000 studies,” Radiology,vol. 122, no. 1, pp. 123 – 127, Jan. 1977.
    DOI: 10.1148/122.1.123
    PMid: 830320
  7. M. Kontos, R. Wilson, I. Fentiman, “Digital infrared thermal imaging (DITI) of breast lesions: sensitivity and specificity of detection of primary breast cancers,” Clin. Radiol., vol. 66, no. 6, pp. 536 – 539, Jun. 2011.
    DOI: 10.1016/j.crad.2011.01.009
    PMid: 21377664
  8. S. Bagavathiappan, T. Saravanan, “Infrared thermal imaging for detection of peripheral vascular disorders,” J. Med. Phys., vol. 34, no. 1, pp. 43 – 47, Jan. 2009.
    DOI: 10.4103/0971-6203.48720
    PMid: 20126565
    PMCid: PMC2804148
  9. F. Ring, “Thermal imaging today and its relevance to diabetes”, J. Diabetes Sci. Technol., vol. 4, no. 4, pp. 857 – 862, Jul. 2010.
    DOI: 10.1177/193229681000400414
    PMid: 20663449
    PMCid: PMC2909517
  10. E. F. J. Ring and K. Ammer, “Infrared thermal imaging in medicine,” Physiological Measurement, vol. 33, no. 3, pp. 33 – 46, Feb. 2012.
    DOI: 10.1088/0967-3334/33/3/R33
    PMid: 22370242
  11. B. L. Jian, C. L. Chen, W. L. Chu, M. W. Huang, “The facial expression of schizophrenic patients applied with infrared thermal facial image sequence,” BMC Psychiatry., vol. 17, no. 1, p. 229, Jun. 2017.
    DOI: 10.1186/s12888-017-1387-y
    PMid: 28646852
    PMCid: PMC5483292
  12. E. Keenan, G. Gethin, L. Flynn, D. Watterson, G. M. O`Connor, “Enhanced thermal imaging of wound tissue for better clinical decision making,” Physiol. Meas., vol. 38, no. 6, pp. 1104 – 1115, May 2017.
    DOI: 10.1088/1361-6579/aa6ea0
    PMid: 28430667
  13. N. Golestani, M. EtehadTavakol, E. Ng, “Level set method for segmentation of infrared breast thermograms,” EXCLI J.,vol. 13, no. 13, pp. 241 – 251, Mar. 2014.
    PMid: 26417258
    PMCid: PMC4464455
  14. M. Milosevic, D. Jankovic, A. Peulic, “Thermography based breast cancer detection using texture features and minimum variance quantization,” EXCLI J., vol. 13, pp. 1204 – 1215, Nov. 2014.
    PMid: 26417334
    PMCid: PMC4464488
  15. S. Shen, W. Sandham, M. Granat, A. Sterr, “MRI fuzzy segmentation of brain tissue using neighbourhood attraction with neural-network optimization,” IEEE Trans. Inf. Technol. Biomed., vol. 9, no. 3, pp. 459 – 467, Sep. 2005.
    DOI: 10.1109/TITB.2005.847500
    PMid: 16167700
  16. M. R. K. Mookiah, U. R. Acharya, E. Y. K. Ng, “Data mining technique for breast cancer detection in thermograms using hybrid feature extraction strategy,” J. Quantit. IR Thermography, vol. 9, no. 2, pp. 151 – 165, Nov. 2012.
    DOI: 10.1080/17686733.2012.738788
  17. S. V. Francis, M. Sasikala, “Automatic detection of abnormal breast thermograms using asymmetry analysis of texture features,” J. Med. Eng. Technol., vol. 37, no. 1, pp. 17 – 21, Nov. 2012.
    DOI: 10.3109/03091902.2012.728674
    PMid: 23194447
  18. P. J. Lisboa, A. F. Taktak, “The use of artificial neural networks in decision support in cancer: a systematic review,” Neural. Netw., vol. 19, no. 4, pp. 408 – 415, May 2006.
    DOI: 10.1016/j.neunet.2005.10.007
    PMid: 16483741
  19. A. Chanmugam, R. Hatwar, C. Herman, “Thermal analysis of cancerous breast model,” in Proc. Int. Mech. Eng. Congress Expo., 2012, pp. 134 – 143.
    DOI: 10.1115/IMECE2012-88244
    PMid: 25328914
    PMCid: PMC4199207
  20. N. Köşüş, A. Köşüş, M. Duran, S. Simavlı, N. Turhan, “Comparison of standard mammography with digital mammography and digital infrared thermal imaging for breast cancer screening,” J. Turk. Ger. Gynecol. Assoc.,vol. 11, no. 3, pp. 152 – 157, Sep. 2010.
    DOI: 10.5152/jtgga.2010.24
    PMid: 24591923
    PMCid: PMC3939224
  21. S. H. Kobrunner, A. Hacker, S. Sedlacek, “Advantages and disadvantages of mammography screening,” Breast Care (Basel, Switzerland), vol. 6, no. 3, pp. 199 – 207, Jun. 2011.
    DOI: 10.1159/000329005
    PMCid: PMC3132967
  22. D. Kennedy, T. Lee, D. Seely, “A comparative review of thermography as a breast screening technique,” Integr. Cancer Ther., vol. 8, no. 1, pp. 9 – 16, Feb. 2009.
    DOI: 10.1177/1534735408326171
    PMid: 19223370
  23. M. Gautherie, C. M. Gros, “Breast thermography and cancer risk prediction,” Cancer, vol. 45, no. 1, pp. 51 – 56, Jan. 1980.
    DOI: 10.1002/cncr.2820450110
    PMid: 7351006
  24. W. Wang, Y. Zeng et al., “Clinical Study on Using Thermal Texture Maps in SARS Diagnose,” in Proc. 26th Annual International Conference of the IEEE EMBS, San Francisco (CA), USA, 2004, pp. 5258 – 5264.
    DOI: 10.1109/IEMBS.2004.1404469
  25. M. Norzakiah, Thermography: infrared thermal imaging: Technology review, S. Sadasivan, Ed., Putrajaya, Malaysia: Health Technology Assessment Unit, Ministry of Health Malaysia, 2005.
    Retrieved from: http://www.moh.gov.my/index.php/database_stores/attach_download/347/39
    Retrieved on: Jan. 20, 2017
  26. K. Ammer, E. F. J. Ring, “Standard Procedures for Infrared Imaging in Medicine,” in Medical Infrared Imaging: Principles and Practice, M. Diakides, J. D. Bronzino, D. R. Peterson, Eds., Boca Raton (FL), USA: CRC Press, 2013, ch. 32. pp. 32.1 – 32.14.
    Retrieved from: https://www.researchgate.net/publication/233986901_Standard_Procedures_For_Infrared_Imaging_in_Medicine
    Retrieved on: Jan. 20, 2017
  27. J. D. Hardy, "The radiation of heat from the human body. III. The human skin as a black body radiator,” J. Clin. Invest., vol. 13, pp. 615 – 620, Jul. 1934.
    DOI: 10.1172/JCI100609
  28. T. Togawa, H. Saito, “Non-contact imaging of thermal properties of the skin,” Physiol. Meas., vol. 15, no. 3, pp. 291 – 298, Aug. 1994.
    DOI: 10.1088/0967-3334/15/3/007
    PMid: 7994207
  29. J. M. Engel, “Physical and physiological influence of medical ointments of infrared thermography,” in Recent Advances in Medical Thermology, E. F. J. Ring, B. Phillips, Eds., New York (NY), USA: Plenum Press, 1984, pp. 177 – 183.
    DOI: 10.1007/978-1-4684-7697-2
  30. S. Hejazi, M. Anbar, “Effects of topical skin treatment and of ambient light in infrared thermal images,” Biomed. Thermol., vol. 12, pp. 300 – 305, Jan. 1993.
  31. N. Zaproudina, V. Varmavuo, O. Airaksinen and M. Närhi, “Reproducibility of infrared thermography measurements in healthy individuals,” Physiological Measurement, vol. 29, no. 4, pp. 515 – 524, Apr. 2008.
    DOI: 10.1088/0967-3334/29/4/007
    PMid: 18401069

MAGNETIC FIELD GRADIENTS AND THEIR EFFECTS ON THE DIFFUSION TENSOR DERIVATE MEASURES

Luminita Moraru, Lucian Traian Dimitrievici, Antoaneta Ene, Simona Moldovanu

Pages: 207-211

DOI: 10.21175/RadProc.2017.42

Diffusion tensor imaging (DTI) and the degree of diffusion weighting of the sequence, expressed as the b-factor, are used to investigate the effect of the magnetic field gradients on the integrity of white matter in patients with temporal intracerebral hemorrhage. The healthy patients are the gold standard. The present study investigated the changes of mean diffusivity (MD) and fractional anisotropy (FA) in a brain hemisphere approach to understand the effect of magnetic field gradients on the brain hemorrhage investigation. The artifacts induced by diffusion gradients in diffusion tensor imaging affect the accuracy of the investigation, and in order to achieve the optimal image quality, strong magnetic field gradients are recommended. The artifact effect of higher magnetic field gradients is analyzed by means of the root-mean-square FA and MD difference between left and right brain hemispheres.
  1. P. Mukherjee, “Diffusion tensor imaging and fiber tractography in acute stroke,” Neuroimaging Clin. N. Am., vol. 15, no. 3, pp. 655 – 665, Aug. 2005.
    DOI: 10.1016/j.nic.2005.08.010
    PMid: 16360595
  2. F. Buffon et al., “Longitudinal diffusion changes in cerebral hemispheres after MCA infarcts,” J. Cereb. Blood Flow Metab., vol. 25, no. 5, pp. 641 – 650, May 2005.
    DOI: 10.1038/sj.jcbfm.9600054
    PMid: 15689956
  3. Q. Yang et al., “Serial study of apparent diffusion coefficient and anisotropy in patients with acute stroke,” Stroke, vol. 30, no. 11, pp. 2382 – 2390, Nov. 1999.
    DOI: 10.1161/01.STR.30.11.2382
    PMid: 10548675
  4. F. Zelaya et al., “An evaluation of the time dependence of the anisotropy of the water diffusion tensor in acute human ischemia,” Magn. Reson. Imaging, vol. 17, no. 3, pp. 331 – 348, Apr. 1999.
    DOI: 10.1016/S0730-725X(98)00192-1
  5. C. T. Hsieh et al., “Role of diffusion tensor imaging in a patient with spontaneous intracerebral hematoma treated by stereotactic evacuation,” Surg. Neurol., vol. 70, no. 1, pp. 75 – 78, Jul. 2008.
    DOI: 10.1016/j.surneu.2007.04.004
    PMid: 17707485
  6. S. Mori, “Mathematics of diffusion measurement,” in Introduction to Diffusion Tensor Imaging, Amsterdam, The Netherlands: Elsevier Science & Technology, 2007, ch. 3, pp. 19 – 23.
    DOI: 10.1016/B978-044452828-5/50017-X
  7. A. L. Alexander et al., “Characterization of cerebral white matter properties using quantitative magnetic resonance imaging stains,” Brain Connectivity, vol. 1, no. 6, pp. 423 – 446, Apr. 2012.
    DOI: 10.1089/brain.2011.0071
    PMid: 22432902
    PMCid: PMC3360545
  8. S. Moldovanu et al., “Edge-based structural similarity analysis in brain MR Images,” JMIHI, vol. 6, no. 2, pp. 539 – 546, Apr. 2016.
    DOI: 10.1166/jmihi.2016.1691
  9. D. Gallichan et al., “Addressing a systematic vibration artifact in diffusion-weighted MRI,” Hum. Brain Mapp., vol. 31, no. 2, pp. 193 – 202, Feb. 2010.
    DOI: 10.1002/hbm.20856
    PMid: 19603408
  10. S. Mohammadi, H. E. Möller, H. Kugel, D. K. Müller, M. Deppe, “Correcting eddy current and motion effects by affine whole-brain registrations: evaluation of three-dimensional distrortions and comparison with slicewise correction,” Mag. Res. Med., vol. 64, pp. 1047 – 1056, 2010.
    DOI: 10.1002/mrm.22501
    PMid: 20574966
  11. S. Mohammadi, et al., “Correction of Vibration Artifacts in DTI Using Phase-Encoding Reversal,” Magn. Reson. Med., vol. 68, no. 3, pp. 882 – 889, Sep. 2012.
    DOI: 10.1002/mrm.23308
    PMid: 22213396
    PMCid: PMC3569871
  12. L. Moraru, S. Moldovanu, A. Biswas, “Intensity – based classification and related methods in brain MR images,” inClassification and Clustering in Biomedical Signal Processing, N. Dey, A. Ashour, Eds., Hershey (PA), USA: IGI Global, 2016, ch. 4 pp. 78 – 105.
    DOI: 10.4018/978-1-5225-0140-4.ch004
  13. L. Moraru, S. Moldovanu, D. Bibicu, M. Stratulat, “Hemorrhage detection in MRI brain images using images features,” in AIP Conf. Proc., Timisoara, Romania, 2013, pp. 171 – 177.
    DOI: 10.1063/1.4832814
  14. S. Moldovanu et al., “Robust Skull Stripping Segmentation based on Irrational Mask for Magnetic Resonance Brain Images,” J. Digit. Imaging, vol. 28, no. 6, pp. 738 – 747, Mar. 2015.
    DOI: 10.1007/s10278-015-9776-6
    PMid: 25733013
    PMCid: PMC4636724
  15. M. V. Punga et al., “Level set method coupled with Energy Image features for brain MR image segmentation,” Biomed. Tech., vol. 59, no. 3, pp. 219 – 229, Jun. 2014.
    DOI: 10.1515/bmt-2013-0111
    PMid: 24598830
  16. S. Moldovanu et al., “The Hough transform and the FSIM similarity index for the sagittal axis identification,” Annals of “Dunarea de Jos” University of Galati Mathematics, Physics, Theoretical Mechanics, vol. 38, no. 1, pp. 5 – 14, 2015.

INFLUENCE OF DATA VISUALIZATION OF TEMPOROMANDIBULAR JOINT ON THE FORMATION OF CLINICAL GROUPS

Oleg Slesarev, Ivan Bayricov, Dmitry Trunin, S. Abul'khanov, N. Kazanskiy

Pages: 212-216

DOI: 10.21175/RadProc.2017.43

The objective of this study was an analysis of the patient complaints of a structure and the nature of the formation of clinical groups for the study of patients with temporomandibular disorders (TMD). We examined 28 men and 148 women with TMD. We analyzed 604 tomographic images. Statistical processing included cross tables and chi-square analysis. Twenty-eight percent of the study population was followed up in a general clinical network, presenting with facial pain. Dental clinics established primary clinical diagnoses: arthrosis and arthritis (71%), dislocation or subluxation of the temporomandibular joint head (16.5%), and/or temporomandibular joint dysfunction (12.5%). X-rays showed the combination of functional disorders (75%) and degenerative dystrophic changes (67%) of the temporomandibular joint; the x-ray norm was observed in 9% of cases. By TMJ visualization, we established the clinical features of females with TMD, depending on the reproductive stage. For patients in puberty, joint mobility was limited (44.4%, p = 0.045) compared with head dislocation, and arthritis (p = 0.024) was predominant. For patients in the early reproductive stage, head subluxation (48.5%, p < 0.010) was found in all detected pathologies except deforming arthrosis. For patients in the late reproductive stage and perimenopause, half of the examined patients had deforming arthrosis (52.8% in the late reproductive stage, p < 0.01, for all detected pathologies, except for limited joint mobility; 50% in perimenopause, p < 0.05, with radiologic norms, dislocation of the head, and arthritis). In postmenopausal women, arthritis and sclerotic arthrosis were noted (30.8% and 27.8%, respectively). Structure of the patient complaints and the nature of the formation of clinical groups of patients with TMD were determined by the place of primary treatment, specialization of the institution, and the level of techniques of primary diagnosis of TMD. This affected the patients' quality of treatment and is a cause of chronic (58%) TMD.
  1. J. P. Okeson, Management of Temporomandibular Disorders and Occlusion, 4th ed., New York (NY), USA: Mosby, 1998, p. 638.
  2. C. R. Rogers, “The necessary and sufficient conditions of therapeutic personality change," Journal of Consulting Psychology, vol. 21, no. 2, pp. 95-103, Apr. 1957.
    DOI: 10.1037/h0045357
  3. Н. А. Рабухина, А. П. Аржанцев, “Панорамная томография в диагностике дисфункций височно-нижнечелюстного сустава,” Визуализация в клинике, т. 1, но. 2, стр. 47-52, Мар. 1993. (N. A. Rabukhnia, A. P. Arzhantsev, “Panoramic tomography in the diagnostics of diseases of the temporomandibular joint,” Visualization in the clinics, vol. 1, no. 2, pp. 47-52, Mar. 1993.)
  4. R. J. Gatchel, Clinical Essentials of Pain Management. Washington (DC), USA: American Psychological Association Press, 2005.
  5. В. П. Потапов, “Клиническая картина и тактика лечения больных с нейромускулярным дисфункциональным синдромом височно-нижнечелюстного сустава,” Саратовский научно-медицинский журнал, т. 5, но. 1, стр. 95-97, 2009 (V. P. Potapov, “Clinical picture and approaches to a treatment of patients with the neuromuscular dysfunctional syndrome of the temporomandibular joint,” Saratov Scientif. Med. J., vol. 5, no. 1, pp. 95-97, 2009.)
    Retrieved from: http://www.ssmj.ru/system/files/archive/ssmj-2009-1-full.pdf
    Retrieved on: Jan. 23, 2017
  6. M. D. Wise, Failure in the restored dentition: management and treatment, 1st ed., London, UK: Quintessence, 1995.
  7. G. E. Carlsson, “Epidemiology and treatment need for temporomandibular disorders,” J. Orofac. Pain, vol. 13, no. 4, pp. 232-237, 1999.
    PMid: 10823035
  8. D. A. Gonçalves, A. L. Dal Fabbro, J. A. Campos, M. E. Bigal, J. G. Speciali, “Symptoms of temporomandibular disorders in the population: an epidemiological study,” J. Orofac. Pain, vol. 24, no. 3, pp. 270-278, 2010.
    PMid: 20664828
  9. Д. А. Трунин, О. В. Слесарев, “Характер нарушения филогенетически детерминированных критериев артикуляционной нормы в онтогенезе, выявляемый на диагностическом этапе у пациентов с неартикулярными расстройствами височно-нижнечелюстного сустава,” Современные проблемы науки и образования, но. 4, Июль, 2014. (D. A. Trunin, O. V. Slesarev, “Character of the disorders of the phylogenetically determined criteria of the articulation norm in the ontogenesis detected at the diagnostic stage in patients with non-articular disorders of the temporomandibular joint”, Modern Iss. Sci. Ed., no. 4, 2014.)
    Retrieved from: https://www.science-education.ru/ru/article/view?id=14106
    Retrieved on: Jan. 17, 2017
  10. C. S. Greene, D. M. Laskin, “Temporomandibular Disorders: Moving to a Medically Based Model,” J. Dent. Res., vol. 79, no. 10, pp. 1736-1739, Oct. 2000.
    DOI: 10.1177/00220345000790100101
    PMid: 11077987
  11. О. В. Слесарев, “Методика краниометрии томограмм височно-нижнечелюстного сустава человека,” Вестник РНЦРР, Ноя. 2013. (O. V. Slesarev, “Methodology of the craniometrics of human temporomandibular joint tomograms,” Bull. Russian Scientif. Centre X-ray Radiol., Nov. 2013.)
    Retrieved from: http://vestnik.rncrr.ru/vestnik/v13/papers/slesarev_v13.htm
    Retrieved on: Jan. 10, 2017
  12. W. K. Solberg, M. W. Woo, J. B. Houston, “Prevalence of mandibular dysfunction in young adults,” J. Am. Dent. Assoc., vol. 98, no. 1, pp. 25-34, Jan. 1979.
    DOI: 10.14219/jada.archive.1979.0008
    PMid: 282342
  13. S. L. Kraus, “Characteristics of 511 patients with temporomandibular disorders referred for physical therapy,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, vol. 118, no. 4, pp. 432 – 439, Oct. 2014.
    DOI: 10.1016/j.oooo.2014.06.005
    PMid: 25240990
  14. Y. M. Costa et al., “Temporomandibular disorders and painful comorbidities: clinical association and underlying mechanisms,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, vol. 123, no. 3, pp. 288 – 297, Mar. 2017.
    DOI: 10.1016/j.oooo.2016.12.005
    PMid: 28153123

RECONSTRUCTION OF MaxEnt IMAGES FROM PET CAMERA

D. Üstündağ

Pages: 217-221

DOI: 10.21175/RadProc.2017.44

We study here one of the imaging technique, used in nuclear medicine, called a Positron Emission Tomographic (PET) imaging that provides information about many biological processes that are essential to the functioning of the organ that is being visualized. Our emphasis is given to applications of the maximum entropy image reconstruction method called “Cambridge MaxEnt Package” (CMEP) for recovering images of the human brain from data obtained by PET camera. Computer simulations demonstrate its usefulness.
  1. A. M. Cormack, “Representation of a function by its line integral, with some radiological applications II,” J. App. Physics, vol. 35, no. 10, pp. 2908 – 2913, Oct. 1964.
    DOI: 10.1063/1.1713127
  2. G. N. Hounsfield, “Computerized transverse axial scanning (tomography). I: Description of System,” British Journal of Radiology, vol. 46, no. 552, pp. 1016 – 1022, Dec. 1973.
    DOI: 10.1259/0007-1285-46-552-1016
    PMid: 4757352
  3. J. Radon, “Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten,” Akad. Wiss., vol. 69, pp. 262 – 277, Apr. 1917. (J. Radon. “On the determination of functions by their integrals along certain manifolds,” Acad. Sci., vol. 69, pp. 262 – 277, Apr. 1917.)
    Retrieved from: http://people.csail.mit.edu/bkph/courses/papers/Exact_Conebeam/Radon_Deutsch_1917.pdf
    Retrieved on: Jan. 20, 2017
  4. N. M. Ter-Pogossian, M. E. Raichle, B. E. Sobel, “Positron-emission tomography,” Scientific America vol. 243, no. 4, pp. 170-181, Oct. 1980.
    DOI: 10.1038/scientificamerican1080-170
    PMid: 6821228
  5. J. Verhaeghe, A. J. Reader, “Simultaneous water activation and glucose metabolic rate imaging with PET,” Phys. Med. Biol., vol. 58, no. 3, pp.393 – 411, Feb. 2013.
    DOI: 10.1088/0031-9155/58/3/393
    PMid: 23296197
  6. R. J. Ott, M. A. Flower, J. W. Babich, P. K. Marsden, “The physics of radioisotope imaging,” in The Physics of Medical Imaging, S. Webb, Ed., 1st ed., Bristol, UK: Adam Hilger, 1988, ch. 6, pp. 142 – 318.
    DOI: 10.1201/9781439822081
  7. G. L. Zeng, Medical Image Reconstruction: A Conceptual Tutorial, Berlin, Germany: Springer-Verlag, 2010.
    DOI: 10.1007/978-3-642-05368-9
  8. I. C. Smith, A. E. Welch, F. Chilcott, S. D. Heys, P. Sharp, O. Eremin, “Gamma Emission Imaging in The Management of Breast Disorders,” European J. of Surgical Oncology, vol. 24, no. 4, pp. 320 – 329, Aug. 1998.
    DOI: 10.1016/S0748-7983(98)80016-4
  9. J. S. Lee, “Technical Advances in Current PET and Hybrid Imaging Systems,” The Open Nuclear Medicine Journal, vol. 2, pp. 192 – 208, Dec. 2010.
    DOI: 10.2174/1876388X01002010192
  10. M. J. Ehrhardt, K. Thielemans et al., “Joint reconstruction of PET-MRI by exploiting structural similarity,” Inverse Problems, vol. 31, no. 1, pp. 1 – 23, Jan. 2015.
    DOI: 10.1088/0266-5611/31/1/015001
  11. A. Del Guerra, N. Belcari, M. Bisogni, “Positron emission tomography: its 65 years,” Riv. Nuovo Cimento, vol. 39, no. 4, pp. 155 – 223, Apr. 2016.
    DOI: 10.1393/ncr/i2016-10122-6
  12. H. Zaidi, M. Becker, “The Promise of hybrid PET/MRI: technical advances and clinical applications,” IEEE Signal Process Mag., vol. 33, no. 3, pp. 67 – 85, Apr. 2016.
    DOI: 10.1109/MSP.2015.2482225
  13. V. Bettinardi, L. Presotto, E. Rapisarda, “Physical performance of the new hybrid PET∕CT discovery-690.,” Med. Phys., vol. 38, no. 10, pp. 5394 – 5411, Oct. 2011.
    DOI: 10.1118/1.3635220
    PMid: 21992359
  14. G. Wang and J. Qi, “An optimization transfer algorithm for nonlinear parametric image reconstruction from dynamic PET data,” IEEE Trans. Med. Imaging, vol. 31, no. 10, pp. 1977 – 1988, Oct. 2012.
    DOI: 10.1109/TMI.2012.2212203
    PMid: 22893380
    PMCid: PMC4086832
  15. R. M. Leahy and J. Qi, “Statistical Approaches in Quantitative Positron Emission Tomography,” Statistics and Computing, vol. 10, no. 2, pp. 147 – 165, Apr. 2000.
    DOI: 10.1023/A:1008946426658
  16. R. M. Lewitt, S. Matej, “Overview of methods for image reconstruction from projections in emission computed tomography,” Proc. IEEE Inst. Electr. Electron Eng., vol. 91, no. 10, pp. 1588 – 1611, Oct. 2003.
    DOI: 10.1109/JPROC.2003.817882
  17. K. M. Hanson, “Introduction to Bayesian image analysis,” in Medical Imaging: Image Processing, M. H. Loew, Ed., Newport Beach (CA), USA: SPIE 1898, 1993, pp. 716 – 731.
    Retrieved from: http://kmh-lanl.hansonhub.com/publications/medim93.pdf
    Retrieved on: Jan. 20, 2017
  18. J. Qi, R. M. Leahy, “Iterative reconstruction techniques in emission computed tomography,” Phys. Med. Biol. vol. 51, no. 15, pp. 541 – 578, Aug. 2006.
    DOI: 10.1088/0031-9155/51/15/R01
    PMid: 16861768
  19. A. R. Davies, R. S. Abderssen, “Optimization in the regularization of Ill-Posed Problems,” J. Austr. Math. Soc. Series B, vol. 28, no. 1, pp. 114 – 133, Jul. 1986.
    DOI: 10.1017/S0334270000005221
  20. J. Skilling, R. K. Bryan, “Maximum entropy image reconstruction: General algorithm,” Monthly National Radio Astronomy Society, vol. 211, no. 1, pp. 111 – 124, Nov. 1984.
    DOI: 10.1093/mnras/211.1.111
  21. J. Skilling, “Quantified maximum entropy,” in Maximum Entropy and Bayesian Methods, F. Fougère, Ed., Dordrecht, The Netherlands: KluwerAcademic Publishers, 1990, ch. 12, pp. 341 – 351.
    DOI: 10.1007/978-94-009-0683-9_21

Biomedicine

EFFECTIVENESS OF COMPLEX TREATMENT OF PATIENTS WITH CHRONIC CATARRHAL GINGIVITIS

Nina Bagdasaryan, Valery Erichev, Tatyana Aksyonova, Marina Mitropanova, Yevgeniya Ovcharenko

Pages: 222-224

DOI: 10.21175/RadProc.2017.45

Method of complex therapy of patients with chronic catarrhal gingivitis has been developed, it includes applications with trypsin in 1% sodium bicarbonate solution and further teeth surface treating with ultrasonic skyler, as well as course of Kudesan. Comparative clinical monitoring of 40 patients with chronic catarrhal gingivitis treated with the offered method has been performed. 15 patients were treated in compliance with conventional therapeutic regimen. The application of the described method of multimodality treatment allows to achieve significant reduction of plaque index (PI, API), improvement of oral hygiene and to stop inflammatory process in paradontium in 1 – 2 weeks since the treatment beginning, the effect of which continues through the long term, up to 12 months compared with the control set.
  1. И. В. Формичев, Г. М. Флейшер, “К вопросу об изучении методов оценки гигиены полости рта населения России,” Медицинский алфавит, т. 4, но. 20, стр. 35 – 39, 2013. (I. V. Fomichev, G. M. Fleischer, “On studies of oral hygiene evaluation methods of population in Russia,” Medical Alphabet Journal, vol. 4, no. 20, pp. 35 – 39, 2013.)
    Retrieved from: http://www.medalfavit.ru/index.php?option=com_k2&view=item&task=download&id=
    24_9f0d0b495f9d1a9530e0f27ff6c44bdc&Itemid=124

    Retrieved on: Jan. 23, 2017
  2. А. К. Иорданшвили, А. В. Тихонов, А. Л. Арыев, С. В. Солдатов, “«Возрастная» эпидемиология заболеваний пародонта,” Пародонтология, т. 15, но. 1, стр. 25 – 28, 2010. (A. K. Iordanishvili, A. V. Tihonov, A. L Aryev, S. V. Soldatov, “Age epidemiology of periodontal pathologies,” The Periodontology Journal, vol. 15, no. 1, pp. 25 – 28, 2010.)
  3. Т. Л. Рединова, О. В. Третьякова, “Сила давления зубной щетки при чистке зубов и ее значимость в развитии заболеваний пародонта,” Пародонтология, т. 21, но. 1, стр. 53 – 57, 2016. (T. L. Redinova, O. V. Tretyakova, “Press force of teeth brush while brushing of teeth and its role in paradontium diseases development,” The Periodontology Journal, vol. 21, no. 1, pp. 53 – 57, 2016.)
    Retrieved from: https://issuu.com/stomgazeta/docs/periodontology__78
    Retrieved on: Jan. 23, 2017
  4. А. И. Николаев, Л. М. Цепов, Практическая терапевтическая стоматология, 8-е изд., Москва, Россия: МЕДпресс-информ, 2008. (A. I. Nikolaev, L. M. Tsepov, Practical therapeutic dentistry, 8th ed., Moscow, Russia: MEDpress-inform, 2008.)
  5. Л. А. Цветкова-Аксамит, С. Д. Арутюнов, Л. В. Петрова, Ю. Н. Перламутров, Заболевания слизистой оболочки рта и губ, 3-е изд., Москва, Россия: МЕДпресс-информ, 2009. (L. A. Tsvetkova-Aksamit, S. D. Arutyunov, L. V. Petrova, U. N. Perlamutrov, Diseases of mouth and lips mucous, 3rd ed., Moscow, Russia: MEDpress-inform, 2009.)
    Retrieved from: http://medpress.tmweb.ru/upload/iblock/6b8/097_Zabolevanija-slizistoj-obolochki-polostia-jCvetkovat.pdf
    Retrieved on: Jan. 23, 2017
  6. V. Zijnge, M. B. M. van Leeuwen, J. E. Degener, F. Abbas, T. Thurnheer et al., “Oral biofilm architecture on natural teeth,” PLoS ONE, vol. 5, no. 2, p. e9321, Feb. 2010.
    DOI: 10.1371/journal.pone.0009321
    PMid: 20195365
    PMCid: PMC2827546
  7. T. Do, D. Devine, P. D. Marsh, “Oral biofilms: molecular analysis, challenges, and future prospects in dental diagnostics,” Clinical, Cosmetic and Investigational Dentistry, vol. 5, pp. 11 – 19, Feb. 2013.
    DOI: 10.2147/CCIDE.S31005
    PMid: 23674928
    PMCid: PMC3652372
  8. C. Cafiero, S. Matarasso, “Predictive, preventive, personalised and participatory periodontology: ‘the 5Ps age’ has already started,” The EPMA Journal. vol. 4, no. 1, pp. 5 – 6, Jun. 2013.
    DOI: 10.1186/1878-5085-4-16
    PMid: 23763842
    PMCid: PMC3703280
  9. В. В. Еричев, А. Н. Бондаренко и др., Учебно-методическое пособие (справочник) для врачей-стоматологов, клинических ординаторов, Краснодар, Россия: Просвещение – Юг, 2016. (V. V. Yerichev, A. N. Bondarenko et al., International Classification of Dental Diseases based on ICD-10 (short variant), Krasnodar, Russia: Prosveshcheniye-Yug, 2016.)
  10. S. Manthena, M. V. Rao, L. P. Penubolu, M. Putcha, A. V. Harsha, “Effectiveness of CoQ10 oral supplements as an adjunct to scaling and root planning in improving periodontal health,” Journal of Clinical and Diagnostic Research, vol. 9, no. 8, pp. ZC26 – ZC28, Aug. 2015.
    DOI: 10.7860/JCDR/2015/13486.6291
    PMid: 26436041
    PMCid: PMC4576635
  11. Клинические рекомендации (протоколы лечения), Стоматологическая ассоциация России, Москва, Россия, 2014. (Clinical Recommendations (Treatement Protocols), Dental Association of Russia, Moscow, Russia, 2014.)
    Retrieved from: http://www.e-stomatology.ru/director/protokols_30-09-2014/
    Retrieved on: Dec. 15, 2016

IMMUNOLOGICAL AND MICROBIOLOGICAL ASPECTS OF THE EFFECTIVENESS OF ORAL HYGIENE FOR PATIENTS WITH PERIODONTAL INFLAMMATORY DISEASES

Yevgeniya Ovcharenko, Valeriy Erichev, Tatyana Aksenova, Nina Bagdasaryan

Pages: 225-227

DOI: 10.21175/RadProc.2017.46

The research objective consisted in studying the local factors of protection of an oral cavity on the basis of balance definition between proinflammatory (INf - γ, TNF - α, IL-8) and anti-inflammatory (IL-4) cytokines with the degree of colonization of Candida in patients with chronic generalized parodontitis. On the basis of the results of this study, it has been established that patients with chronic parodontitis who have a mild and moderate severity level of disease, a high degree colonization of periodontal pockets with Candida tropicalis correlates with a substantial increase in proinflammatory cytokines (TNF - α, IL-8), concentration fall of INF - γ and the increase in anti-inflammatory cytokines of IL-4 level.
  1. T. S. Mang, L. Mikulski, R. E. Hall, “Photodynamic inactivation of normal and antifungal resistant Candida species,” Photodiagnosis Photodyn. Ther., vol. 7, no. 2, pp. 98 – 105, Jun. 2010.
    DOI: 10.1016/j.pdpdt.2010.03.001
    PMid: 20510304
  2. V. M. Jewtuchowicz, M. I. Brusca et al., “Subgingival distribution of yeast and their antifungal susceptibility in immunocompetent subjects with and without dental devices,” Acta Odontol. Latinoam., vol. 20, no. 1, pp. 17 – 22, 2007.
    PMid: 18046966
  3. V. W. Tsui, R. W. Wong, A. B. Rabie, “The inhibitory effects of naringin on the growth of periodontal pathogens in vitro,” Phytother. Res., vol. 22, no. 5, pp. 401 – 406, Mar. 2008.
    DOI: 10.1002/ptr.2338
    PMid: 18167053
  4. G. More, T. E. Tshikalange, N. Lall, F. Botha, J. J. Meyer, “Antimicrobial activity of medicinal plants against oral microorganisms,” J. Ethnopharmacol., vol. 119, no. 6, pp. 473-477, 2008.
    DOI: 10.1016/j.jep.2008.07.001
    PMid: 18672045
  5. V. M. Jewtuchowicz, M. T. Mujica et al., “Phenotypic and genotypic identification of Candida dubliniensis from subgingival sites in immunocompetent subjects in Argentina,” Oral Microbiol. Immunol., vol. 23, no. 6, pp. 505 – 509, Dec. 2008.
    DOI: 10.1111/j.1399-302X.2008.00465.x
    PMid: 18954358
  6. В. Ursua, G. Hermosilla, J. Gamonal et al., “Yeast diversity in the oral microbiota of subjects with periodontitis: Candida albicans and Candida dubliniensis colonize the periodontal pockets,” Med. Mycol., vol. 46, no. 8, pp. 783-793, 2008.
    DOI: 10.1080/13693780802060899
    PMiD:18608938

THE IMPACT OF SMOKING ON THE HEALTH OF PERIODONTAL TISSUE

Ilma Robo, Saimir Heta, Panajot Papa, Edlira Sadiku, Nevila Alliu

Pages: 228-230

DOI: 10.21175/RadProc.2017.47

The aim is to emphasize the notions: determinant indicator and predictor of risk factors for periodontal pathologies, and to show the interconnection logic, analyzing the effects of one of the risk factors, in this case of smoking, mainly on the amount of gingival fluid. For achieving this, measurements were carried out, in mm of the wet amount of adsorbent placed in sulcus, before and 30 minutes after smoking; held in sulcus, for 3 minutes. This procedure was repeated several times. In the end, we organized the summary table, to show the interconnection of concepts about periodontal risk. What represents the human body, consisting at the host which is subjected to the action of oral bacterial flora and this interaction extends in time, where the personal diet of the patient operates as mechanical element that clean the surfaces of the tooth. It is noted that the change in wetting of the adsorbent was only 1 or 0.5 millimeters, within 3 minutes time that was held inside the sulcus. Small changes, but in total for the whole mouth, these are with great action for the oral hygiene. Once this 0.5 mm of humidity produced in 6 different points, around the tooth, and for 32 teeth simultaneously, the cleaning action of gingival fluid is more effective. Smoking increases the amount of crevicular fluid, but also promotes the destruction of the bone, whose clinical signs to the naked eyes, are more than visible.
  1. M. G. Newman, H. Takei, P. R. Klokkevold, F. A. Carranza, Clinical Periodontology, 10th ed., St. Louis (MO), USA: Saunders, 2014.
  2. D. K. Gautam, V. Jindal, S. C. Gupta, A. Tuli,B. Kotwal, R. Thakur, “Effect of cigarette smoking on the periodontal health status: A comparative, cross sectional study,” J. Indian Soc. Periodontol., vol. 15, no. 4, pp. 383–387, Oct. 2011.
    DOI: 10.4103/0972-124X.92575
    PMid: 22368364
    PMCid: PMC3283937
  3. G. Calsina, J. M. Ramón, J. J. Echeverría, “Effects of smoking on periodontal tissues,” Journal of Clinical Periodontology, vol. 29, no. 8, pp. 771–776, Aug. 2002;
    DOI: 10.1034/j.1600-051X.2002.290815.x
    PMid: 12390575
  4. P. Obeid, P. Bercy, “Effects of smoking on periodontal health: a review,” Adv. Ther., vol. 17, no. 5, pp. 230-237, Sep. 2000.
    DOI: 10.1007/BF02853162
    PMid: 11186143
  5. Periodontal Diseases - A Clinician`s Guide, J. Manakil, Ed., Rijeka, Croatia: In Tech, 2012.
    DOI: 10.5772/1274

SKIN PROTECTION AGAINST SOLAR UV RADIATION BY NATURAL PLANT PRODUCTS: EXTRACTS FROM ELDER FRUIT (SAMBUCUS NIGRA L.)

Milica Stanković, Jelena Živković, Vanja Tadić, Ivana Arsić

Pages: 231-236

DOI: 10.21175/RadProc.2017.48

Solar radiation has harmful effects on exposed skin, producing accelerated aging processes (wrinkles, dryness, telangiectasia, dyspigmentations). Also, there is an increased ROS generation in skin exposed to the UV-A and UV-B radiation. This results in oxidative stress, photodamage of skin macromolecules and photocarcinogenesis processes. In order to prevent this, botanical extracts with antioxidant properties can be used in anti-photoaging preparations, as a substitute for traditional sunscreen products. Plant extracts, rich in natural polyphenols, exert fewer sensitization effects on skin and are very effective against oxidative damaging caused by UV radiation. The aim of this study was to evaluate the antioxidative activity of different elder (Sambucus nigra L.) fruit extracts. Active components of S. nigra, such as polyphenols, have an important biological activity. Fruit extracts were obtained by the maceration method using four different solvents (methanol - ME, propylene glycol 45% v/v - PE, ethanol 70% v/v - EE and distilled water - WE). To study antioxidant activity we used different in vitro assays: 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, ferric reducing antioxidant power (FRAP) assay and β-carotene bleaching assay. The concentrations at which 50% of the DPPH radicals were scavenged (IC50) were 3.54, 3.94 and 12.07 mg/ml for the samples EE, ME and PE, respectively. The sample WE showed a stronger scavenging activity (IC50 value was 2.62 mg/ml). FRAP values were 242.29 and 686.43 μmol Fe2+/g of dry extract for PE and ME samples, respectively. Higher values were obtained using the EE and WE samples, 793.54 and 934.81 μmol Fe2+/g of dry extract, respectively. Sample EE was the most active in the β-carotene bleaching assay (IC50 was 0.235±0.004 mg/ml). Extracts WE and PE showed similar, but lower percentage of inhibition of β-carotene bleaching. FRAP assay showed a significant (p < 0.05) negative correlation (r = - 0.975) with radical scavenging capacity (IC50 values).The extract WE (distilled water was used as a solvent) exhibited the highest radical scavenging activity and had the highest ferric reducing potential.
  1. Y. Matsumura, H. N. Ananthaswamy, “Toxic effects of ultraviolet radiation on the skin,” Toxicol. Appl. Pharmacol., vol. 195, no. 3, pp. 298 – 308, Mar. 2004.
    DOI: 10.1016/j.taap.2003.08.019
    PMid: 15020192
  2. J. A. Nichols, S. K. Katiyar, “Skin photoprotection by natural polyphenols: anti-inflammatory, antioxidant and DNA repair mechanisms,” Arch. Dermatol. Res., vol. 302, no. 2, pp. 71 – 83, Mar. 2010.
    DOI: 10.1007/s00403-009-1001-3
    PMid: 19898857
    PMCid: PMC2813915
  3. F. Afaq, H. Mukhtar, “Botanical antioxidants in the prevention of photocarcinogenesis and photoaging,” Exp. Dermatol., vol. 15, no. 9, pp. 678 – 684, Sep. 2006.
    DOI: 10.1111/j.1600-0625.2006.00466.x
    PMid: 16881964
  4. L. Chen, J. Y. Hu, S. Q. Wang, “The role of antioxidants in photoprotection: A critical review,” J. Am. Acad. Dermatol., vol. 67, no. 5, pp. 1013 – 1024, Nov. 2012.
    DOI: 10.1016/j.jaad.2012.02.009
    PMid: 22406231
  5. V. V. da Silva et al., “Chemical stability and SPF determination of Pothomorphe umbellata extract gel and photostability of 4-nerolidylcathecol,” Int. J. Pharm., vol. 303, no. 1-2, pp. 125 – 131, Oct. 2005.
    DOI: 10.1016/j.ijpharm.2005.07.006
    PMid: 16129576
  6. R. Stevanato, M. Bertelle, S. Fabris, “Photoprotective characteristics of natural antioxidant polyphenols,” Regul. Toxicol. Pharmacol., vol. 69, no. 1, pp. 71 – 77, Jun. 2014.
    DOI: 10.1016/j.yrtph.2014.02.014
    PMid: 24607767
  7. A. Jarzycka, A. Lewinska, R. Gancarz, K. A. Wilk, “Assessment of extracts of Helichrysum arenarium, Crataegus monogyna, Sambucus nigra in photoprotective UVA and UVB; photostability in cosmetic emulsions,” J. Photochem. Photobiol. B, vol. 128, pp. 50 – 57, Nov. 2013.
    DOI: 10.1016/j.jphotobiol.2013.07.029
    PMid: 24007865
  8. M. Radice et al., “Herbal extracts, lichens and biomolecules as natural photo-protection alternatives to synthetic UV filters. A systematic review,” Fitoterapia, vol. 114, pp. 144 – 162, Oct. 2016.
    DOI: 10.1016/j.fitote.2016.09.003
    PMid: 27642040
  9. S. Hu, X. Zhang, F. Chen, M. Wang, “Dietary polyphenols as photoprotective agents against UV radiation,” J. Funct. Foods, vol. 30, pp. 108 – 118, Mar. 2017.
    DOI: 10.1016/j.jff.2017.01.009
  10. H. G. Duymus, F. Goger, K. H. Can Baser, “In vitro antioxidant properties and anthocyanin compositions of elderberry extracts,” Food Chem., vol. 155, pp. 112 – 119, Jul. 2014.
    DOI: 10.1016/j.foodchem.2014.01.028
    PMid: 24594162
  11. S. Jarić et al., “An ethnobotanical study on the usage of wild medicinal herbs from Kopaonik Mountain (Central Serbia),” J. Ethnopharmacol.,vol. 111, no. 1, pp. 160 – 170, Apr. 2007.
    DOI: 10.1016/j.jep.2006.11.007
    PMid: 17145148
  12. R. E. U. Manganelli, L. Zaccaro, P. E. Tomei, “Antiviral activity in vitro of Urtica dioica L., Parietaria diffusa M. et K. and Sambucus nigra L.,” J. Ethnopharmacol., vol. 98, no. 3, pp. 323 – 327, Apr. 2005.
    DOI: 10.1016/j.jep.2005.01.021
    PMid: 15814267
  13. B. Roschek, R. C. Fink, M. D. McMichael, D. Li, R. S. Alberte, “Elderberry flavonoids bind to and prevent H1N1 infection in vitro,” Phytochemistry, vol. 70, no. 10, pp. 1255 – 1261, Jul. 2009.
    DOI: 10.1016/j.phytochem.2009.06.003
    PMid: 19682714
  14. A. Sidor, A. Gramza-Michałowska, “Advanced research on the antioxidant and health benefit of elderberry (Sambucus nigra) in food – a review,” J. Funct. Foods, vol. 18, pp. 941 – 958, Oct. 2015.
    DOI: 10.1016/j.jff.2014.07.012
  15. R. Veberic, J. Jakopic, F. Stampar, V. Schmitzer, “European elderberry (Sambucus nigra L.) rich in sugars, organic acids, anthocyanins and selected polyphenols,” Food Chem., vol. 114, no. 2, pp. 511 – 515, May 2009.
    DOI: 10.1016/j.foodchem.2008.09.080
  16. S. H. Nile, S. W. Park, “Edible berries: bioactive components and their effect on human health,” Nutrition, vol. 30, no. 2, pp. 134 – 144, Feb. 2014.
    DOI: 10.1016/j.nut.2013.04.007
    PMid: 24012283
  17. J. C. Espin, C. Soler-Rivas, H. J. Wichers, “Characterization of the Total Free Radical Scavenger Capacity of Vegetable Oils and Oil Fractions Using 2,2-Diphenyl-1-picrylhydrazyl Radical,” J. Agric. Food Chem., vol. 48, no. 3, pp. 648 – 656, Mar. 2000.
    DOI: 10.1021/jf9908188
    PMid: 10725129
  18. I. F. F. Benzie, J. J. Strain, “The Ferric Reducing Ability of Plasma (FRAP) as a Measure of ‘‘Antioxidant Power’’: The FRAP Assay,” Anal. Biochem., vol. 239, no. 1, pp. 70 – 76, Jul. 1996.
    DOI: 10.1006/abio.1996.0292
    PMid: 8660627
  19. I. I. Koleva, T. A. van Beek, J. P. H. Linssen, A. de Groot, L. N. Evstatieva, “Screening of Plant Extracts for Antioxidant Activity: a Comparative Study on Three Testing Methods,” Phytochem. Anal., vol. 13, no. 1, pp. 8 – 17, Jan-Feb. 2002.
    DOI: 10.1002/pca.611
    PMid: 11899609
  20. J. A. Mendiola et al., “Screening of functional compounds in supercritical fluid extracts from Spirulina platensis,” Food Chem., vol. 102, no. 4, pp. 1357 – 1367, 2007.
    DOI: 10.1016/j.foodchem.2006.06.068
  21. S. M. Stajčić et al., “Chemical composition and antioxidant activity of berry fruits,” APTEFF, no. 43, pp. 93 – 105, Oct. 2012.
    DOI: 10.2298/APT1243093S
  22. N. F. Omar et al., “Phenolics, Flavonoids, Antioxidant Activity and Cyanogenic Glycosides of Organic and Mineral-base Fertilized Cassava Tubers,” Molecules, vol. 17, no. 3, pp. 2378 – 2387, Feb. 2012.
    DOI: 10.3390/molecules17032378
    PMid: 22370524
  23. I. Gulcin, M. Elmastas, H. Y. Aboul-Enein, “Antioxidant activity of clove oil - A powerful antioxidant source,” Arab. J. Chem., vol. 5, no. 4, pp. 489 – 499, Oct. 2012.
    DOI: 10.1016/j.arabjc.2010.09.016
  24. A. Fazio, P. Plastina, J. Meijerink, R. F. Witkamp, B. Gabriele, “Comparative analyses of seeds of wild fruits of Rubus and Sambucus species from Southern Italy: fatty acid composition of the oil, total phenolic content, antioxidant and anti-inflammatory properties of the methanolic extracts,” Food Chem., vol. 140, no. 4, pp. 817 – 824, Oct. 2013.
    DOI: 10.1016/j.foodchem.2012.11.010
    PMid: 23692771
  25. R. Mogana, K. Teng-Jin, C. Wiart, “Anti-Inflammatory, Anticholinesterase, and Antioxidant Potential of Scopoletin Isolated From Canarium Patentinervium Miq. (Burseraceae Kunth),” Evid. Based Complement. Alternat. Med., vol. 2013, pp. 1 – 7, Jun. 2013.
    DOI: 10.1155/2013/734824
    PMid: 23878606
    PMCid: PMC3708431
  26. D. Granato, A. R. Karnopp, S. M. van Ruth, “Characterization and comparison of phenolic composition, antioxidant capacity and instrumental taste profile of juices from different botanical origins,” J. Sci. Food Agric., vol. 95, no. 10, pp. 1997 – 2006, Aug. 2015.
    DOI: 10.1002/jsfa.6910
    PMid: 25213811
  27. A. M. Maisarah, N. B. Amira, R. Asmah, O. Fauziah, “Antioxidant analysis of different parts of Carica papaya,” Int. Food Res. J., vol. 20, no. 3, pp. 1043 – 1048, Jan. 2013.
    Retrieved from: http://www.ifrj.upm.edu.my/20%20(03)%202013/8%20IFRJ%2020%20(03)%202013%20Asmah%20(306).pdf
    Retrieved on: Jan. 20, 2017
  28. A. L. Dawidowicz, D. Wianowska, B. Baraniak, “The antioxidant properties of alcoholic extracts from Sambucus nigra L. (antioxidant properties of extracts),” LWT – Food Science and Technology, vol. 39, no. 3, pp. 308 – 315, Apr. 2006.
    DOI: 10.1016/j.lwt.2005.01.005
  29. M. M. Bratu, E. Doroftei, T. Negreanu-Pirjol, C. Hostina, S. Porta, “Determination of Antioxidant Activity and Toxicity of Sambucus nigra Fruit Extract Using Alternative Methods,” Food Technol. Biotechnol.,vol. 50, no. 2, pp. 177 – 182, Apr. 2012.
    Retrieved from: http://hrcak.srce.hr/file/124750
    Retrieved on: Jan. 20, 2017

SUPEROXIDE DISMUTASE AND LIPID PEROXIDATION IN CHILDREN AFFECTED BY CELIAC DISEASE

Vesna Stojiljković , Ljubica Gavrilović, Snežana Pejić, Ana Todorović, Nataša Popović, Ivan Pavlović, Snežana B. Pajović

Pages: 237-242

DOI: 10.21175/RadProc.2017.49

Celiac disease (CD) is an autoimmune disorder provoked by wheat gluten and related proteins from other grains. The only treatment for the patients is a lifelong gluten free diet (GFD). Oxidative stress has been implicated in the pathogenesis of CD. The aim of this study was to examine the modulation of the biochemical response to oxidative stress in children affected by CD. Study involved peripheral blood samples and small intestinal biopsies from 69 children diagnosed with CD. According to the histological findings, patients were divided into following groups: Marsh 0: normal mucosa with no signs of inflammation (n=31); Marsh 1: mucosa was characterized by intraepithelial lymphocytosis (n=5); Marsh 2: intraepithelial lymphocytosis was accompanied by crypt hyperplasia (n=4); Marsh 3a: mucosa showed partial villous atrophy (n=20); Marsh 3b: subtotal villous atrophy was present (n=9). For the statistical purposes groups Marsh 1 and Marsh 2 were treated as one (Marsh 1+2, n=9). The activities and protein levels of copper, zinc superoxide dismutase (CuZnSOD) and manganese SOD (MnSOD), as well as the concentrations of lipid hydroperoxides (LOOH) were determined in intestinal biopsies, while in the peripheral blood, MnSOD activity was not measured, due to the methodological obstacles. CuZnSOD activity in the blood varied significantly between the analyzed groups. Marsh 3a and Marsh 3b had increased CuZnSOD activity comparing to the Marsh 0 (P < 0.05). LOOH concentration also varied significantly. LOOH level was higher in the blood of Marsh 3a (P < 0.001) and Marsh 3b (P < 0.05), than in Marsh 0. In the biopsy samples, MnSOD activity and LOOH concentration showed significant differences between the groups, while no significant difference was found for CuZnSOD activity. In comparison to Marsh 0, MnSOD activity was significantly elevated in Marsh 3a (P < 0.01). Significant increase in LOOH concentration was found in Marsh 3a (P < 0.001) and Marsh 3b (P < 0.01), comparing to Marsh 0. In addition, Marsh 3a group had higher LOOH concentration than Marsh 1+2. Relative MnSOD and CuZnSOD protein level in peripheral blood and intestinal mucosa did not vary significantly between the analyzed groups. Positive correlations were found between the severity of mucosal lesion and CuZnSOD activity (P < 0.001), as well as LOOH concentration (P < 0.001) in peripheral blood. Similar correlations were found also in intestinal mucosa: MnSOD: P < 0.05; CuZnSOD: P < 0.05; LOOH: P < 0.001. Our results show that oxidant/antioxidant balance is disturbed in CD patients with mucosal lesions. An increase in SOD activity as a consequence of oxidant pressure, is not enough to maintain the normal level of free radicals, which leads to enhanced lipid peroxidation. These processes persist even in some patients on a long-term GFD.
  1. C. Catassi, E. Fabiani, “The spectrum of coeliac disease in children,” Bailliere’s Clin. Gastroenterol., vol. 11, no. 3, pp. 485-507, Sep. 1997.
    DOI: 10.1016/S0950-3528(97)90028-2
  2. R. J. Farrell, C. P. Kelly, “Celiac sprue,” N. Engl. J. Med., vol. 346, no. 3, pp. 180-188, Jan. 2002.
    DOI: 10.1056/NEJMra010852
    PMid: 11796853
  3. B. Dugas, P. Debre, S. Moncada, “Nitric oxide, a vital poison inside the immune and inflammatory network,” Res. Immunol,vol. 146, no. 9, pp. 664-670, Nov-Dec. 1995.
    DOI: 10.1016/0923-2494(96)84914-5
  4. P. Odetti et al., “Oxidative stress in subjects affected by celiac disease,” Free Radic. Res., vol. 29, no. 1, pp. 17-24, Jul. 1998.
    DOI: 10.1080/10715769800300031
    PMid: 9733018
  5. V. Stojiljkovic et al., “Antioxidant enzymes, glutathione and lipid peroxidation in peripheral blood of children affected by coeliac disease,” Ann. Clin. Biochem.,vol. 44, no. 6, pp. 537-543, Nov. 2007.
    Retrieved from: http://journals.sagepub.com/doi/pdf/10.1258/000456307782268075
    Retrieved on: Dec. 15, 2016
  6. V. Stojiljkovic et al., “Antioxidant status and lipid peroxidation in small intestinal mucosa of children with celiac disease,” Clin. Biochem.,vol. 42, no. 13-14, pp. 1431-1437, Sep. 2009.
    DOI: 10.1016/j.clinbiochem.2009.06.009
    PMid: 19560448
  7. J. A. Walker-Smith, “Revised criteria for diagnosis of coeliac disease, Report of Working Group of European Society of Paediatric Gastroenterology and Nutrition,” Arch. Dis. Child., vol. 65, no. 8, pp. 909-911, Aug. 1990.
    DOI: 10.1136/adc.65.8.909
  8. G. Oberhuber, G. Granditsch, H. Vogelsang, “The histopathology of coeliac disease: time for a standardized report scheme for pathologists,” Eur. J. Gastroenterol. Hepatol.,vol. 11, no. 10, pp. 1185-1194, Oct. 1999.
    DOI: 10.1097/00042737-199910000-00019
    PMid: 10524652
  9. M. Valko et al., “Free radicals and antioxidants in normal physiological functions and human disease,” Int. J. Biochem. Cell Biol., vol. 39, no. 1, pp. 44–84, 2007.
    DOI: 10.1016/j.biocel.2006.07.001
    PMid: 16978905
  10. D. T. Sawyer, “Superoxide Chemistry,” AccessScience, 2014.
    DOI: 10.1036/1097-8542.669650
  11. M. Boda, I. Németh and D. Boda, “The caffeine metabolic ratio as an index of xanthine oxidase activity in clinically active and silent celiac patients,” J. Pediatr. Gastroenterol. Nutr., vol. 29, no. 5, pp. 546–550, Nov. 1999.
    DOI: 10.1097/00005176-199911000-00014
    PMid: 10554121
  12. F. Yamakura and H. Kawasaki, “Post-translational modifications of superoxide dismutase,” Biochim. Biophys. Acta., vol. 1804, no. 2, pp. 318-325, Feb. 2010.
    DOI: 10.1016/j.bbapap.2009.10.010
    PMid: 19837190
  13. Y. Furukawa, A. S. Torres, T. V. O`Halloran, “Oxygen-induced maturation of SOD1: a key role for disulfide formation by the copper chaperone CCS,” EMBO J., vol. 23, no. 14, pp. 2872-2881, Jul. 2004.
    DOI: 10.1038/sj.emboj.7600276
    PMid: 15215895
    PMCid: PMC1150991
  14. T. Y. Aw, “Molecular and cellular responses to oxidative stress and changes in oxidation-reduction imbalance in the intestine,” Am. J. Clin. Nutr.,vol. 70, no. 4, pp. 557–565, Oct. 1999.
    Retrieved from: http://ajcn.nutrition.org/content/70/4/557.full.pdf+html
    Retrieved on: Dec. 11, 2016
  15. R. Rivabene, E. Mancini, M. De Vincenzi, “In vitro cytotoxic effect of wheat gliadin-derived peptides on the Caco-2 intestinal cell line is associated with intracellular oxidative imbalance: implications for coeliac disease,” Biochim. Biophys. Acta, vol. 1453, no. 1, pp. 152–160, Jan. 1999.
    DOI: 10.1016/S0925-4439(98)00095-7

ELECTROMAGNETIC FIELD THERAPY AND IMMUNE MECHANISMS WHICH ARE INVOLVED IN ANTI-INFLAMMATORY RESPONSE

Mihai Surcel, Didi Surcel, Sebastian Toader, Mioara Butan

Pages: 243-248

DOI: 10.21175/RadProc.2017.50

The aim of this study was to evaluate the mechanism by which EMF therapy can interfere with the modified immune and oxidative reactions by the experimental approach on the lab animals. In vivo and vitro experiment was carried out on 60 Wistar rats that were divided in 4 groups as following: 1. Control-group tested on the 10th day; 2.ELF-EMF-exposed group tested on the 10th day; 3. Group that received intradermic Staphylococcus aureus culture (SA) and was tested on the 10th day; 4. Group that received intradermic SA and was treated with ELF- EMF and was tested after 10 days. The rats were exposed to 50 Hz, 1 mT. Splenic lymphocytes and alveolar macrophages for the cellular cultures were harvested. The following parameters were assessed: a) 3HTdR incorporation test; b) Macrophage inhibition factor (MIF) assay; c)Inteleukine-1 (IL-1)-assay; d) Tumor Necrosis Factor (TNF)- assay; e) Chemiluminescence assay; f) Phagocytosis assay. The 3HTdR incorporation assay and assays for cytokine activity and phagocytosis indicate a partial reversal of the values of the results obtained in the ELF + EMF group. Our experiment reveals that the EMF interferes with the immune and oxidative systems, becomes chronic and plays a key role in the development of serious diseases. The EMF-therapy can be beneficial in reducing the inflammation by interfering with the inflammatory molecules and surface receptors.
  1. M. Simkó, M. Mattsson, “Extremely low frequency electromagnetic fields as effectors of cellular responses in vitro: possible immune cell activation,” J. Cell Biochem., vol. 93, no. 1, pp 83 – 92, Sep. 2004.
    DOI: 10.1002/jcb.20198
    PMid: 15352165
  2. D. B. Lyle, R. D. Ayotte, A. R. Sheppard, W. R. Adey, “Suppression of T-lymphocyte cytotoxicity following exposure to 60-Hz sinusoidal electric fields,” Bioelectromagnetics, vol. 9, no. 3, pp. 303 – 313, 1988.
    DOI: 10.1002/bem.2250090311
    PMid: 3263132
  3. C. D’Angelo, E. Costantini, M. A. Kamal, “Experimental model for elf-emf exposure: concern for human health,” Saudi J. Biol. Sci., vol. 22, no. 1, pp. 75 – 84, Jan. 2015.
    DOI: 10.1016/j.sjbs.2014.07.006
    PMid: 25561888
    PMCid: PMC4281612
  4. M. L. Guzman, S. J. Neering et al., “Nuclear factor-κB is constitutively activated in primitive human acute myelogenous leukemia cells,” Blood, vol. 98, no. 8, pp. 2301 – 2307, Oct. 2001.
    DOI: 10.1182/blood.V98.8.2301
    PMid: 11588023
  5. A. Maziarz, B. Kocan, M. Bester, S. Budzik, “How electromagnetic fields can influence adult stem cells: positive and negative impacts,” Stem Cell Res. Ther., vol. 7, no. 1, p. 54, Apr. 2016.
    DOI: 10.1186/s13287-016-0312-5
    PMid: 27086866
    PMCid: PMC4834823
  6. S. Gangi, O. Johansson, “A theoretical model based upon mast cells and histamine to explain the recently proclaimed sensitivity to electric and/or magnetic fields in humans,” Medical Hypotheses, vol. 54, no. 4, pp. 663 – 671, Apr. 2000.
    DOI: 10.1054/mehy.1999.0923
    PMid: 10859662
  7. O. Johansson, “Disturbance of the immune system by electromagnetic fields—A potentially underlying cause for cellular damage and tissue repair reduction which could lead to disease and impairment,” Pathophysiology, vol. 16, no. 2-3, pp. 157 – 177, Aug. 2009.
    DOI: 10.1016/j.pathophys.2009.03.004
    PMid: 19398310
  8. C. L. Ross, B. S. Harrison, “An introduction to electromagnetic field therapy and immune function: a brief history and current status,” J. of Science and Applications: Biomedicine, vol. 3, no. 2, pp. 18 – 29, 2015.
    Retrieved from: http://inter-use.com/uploads/soft/150302/1-150302163S4.pdf
    Retrieved on: Jan. 20, 2017
  9. M. Pesce, A. Patruno, L. Speranza, M. Reale, “Extremely Low Frequency Electromagnetic Field and Wound Healing: Implication of Cytokines as Biological Mediators,” European Cytokine Network, vol. 24, no. 1, pp. 1 – 10, Mar. 2013.
    DOI: 10.1684/ecn.2013.0332
    PMid: 23674517
  10. F. Guerriero, G. Ricevuti, “Extremely low frequency electromagnetic fields stimulation modulates autoimmunity and immune responses: a possible immuno-modulatory therapeutic effect in neurodegenerative diseases,” Neural Regen. Res., vol. 11, no. 12, pp. 1888 – 1895, Dec. 2016.
    DOI: 10.4103/1673-5374.195277
    PMid: 28197174
    PMid: PMC5270416

Biochemistry

RECEPTOR ACTIVATOR OF NUCLEAR TRANSCRIPTION FACTOR NF-B (RANK), ITS LIGAND (RANKL) AND NATURAL INHIBITOR OSTEOPROTEGERIN (OPG) IN BLOOD SERUM OF PRIMARY BONE TUMOR PATIENTS: ASSOCIATION WITH CLINICOPATHOLOGICAL FEATURES AND INFLAMMATORY CYTOKINES LEVELS

N. E. Kushlinskii, E. S. Gershtein, Yu. S. Timofeev, E. A. Korotkova, I. V. Babkina, O. I. Kostyleva, Yu. N. Solovyev

Pages: 249-254

DOI: 10.21175/RadProc.2017.51

RANK/RANKL/OPG system (the key regulator of bone homeostasis) component levels were measured in blood serum of 199 patients with primary bone tumors and tumor-like lesions: 121 with bone sarcomas (53 osteosarcoma, 46 chondrosarcoma, 12 chordoma, 8 Ewing sarcoma), 32 with borderline giant cell bone tumor (GCBT), 46 with benign bone neoplasms; 131 persons comprised the control group. OPG, sRANKL, sRANK, IL-6, 8, 16 serum levels were measured by standard ELISA kits. Giant-cell bone tumor (GCBT) manifesting high osteoclastogenic and osteolytic activities was characterized by high serum content of all three components studied and the highest sRANKL/OPG ratio. The group of patients with various benign bone tumors and tumor-like lesions displayed similar to GCBT, but lower indices. Malignant bone tumor patients could be divided into 2 subgroups with opposite characteristics: osteosarcoma and Ewing sarcoma patients demonstrated low sRANK and high sRANKL levels, while chondrosarcoma and chordoma patients, on the contrary - high sRANK and low sRANKL levels. The highest IL-6 levels were revealed in GCBT patients, while serum IL-8 and IL-16 did not differ between groups. Thus, disturbances in osteolysis activators and inhibitors balance in blood serum of primary bone tumor patients were revealed. Their extent depended on neoplasm character (malignant, borderline, or benign) and histological structure of malignant sarcomas. Most prominent changes were found in GCBT characterized by active bone destruction and an accepted target of anti-RANKL antibody denosumab treatment. Hence, the proteins studied can be regarded as promising serologic markers and therapeutic targets in this rare disease.
  1. W. C. Dougall, "RANKL signaling in bone physiology and cancer," Curr. Opin. Support. Palliat. Care, vol. 1, no. 4, pp. 317-322, Dec. 2007.
    DOI: 10.1097/SPC.0b013e3282f335be
    PMid: 18685382
  2. A. Leibbrandt, J. M. Penninger, “RANKL/RANK as key factors for osteoclast development and bone loss in arthropathies,” Adv. Exp. Med. Biol., vol. 649, pp. 100-113, 2009.
    DOI: 10.1007/978-1-4419-0298-6_7
    PMid: 19731623
  3. L. Kiesel, A. Kohl, “Role of the RANK/RANKL pathway in breast cancer,” Maturitas, vol. 86, pp. 10-16, Apr. 2016.
    DOI: 10.1016/j.maturitas.2016.01.001
    PMid: 26921922
  4. A. Kukita, T. Kukita, “Multifunctional properties of RANKL/RANK in cell differentiation, proliferation and metastasis,” Future Oncol., vol. 9, no. 11, pp. 1609-1622, Nov. 2013.
    DOI: 10.2217/fon.13.115
    PMid: 24156322
  5. J. Costa-Rodrigues, C. A. Teixeira, M. H. Fernandes, “Paracrine-mediated osteoclastogenesis by the osteosarcoma MG63 cell line: is RANKL/RANK signalling really important?” Clin. Exp. Metastasis, vol. 28, no. 6, pp. 505-514, Aug. 2011.
    DOI: 10.1007/s10585-011-9387-7
    PMid: 21479680
  6. K. Mori, B. Le Goff, M. Berreur, A. Riet, A. Moreau, F. Blanchardet al., “Human osteosarcoma cells express functional receptor activator of nuclear factor-kappa B,” J. Pathol., vol. 211, no. 5, pp. 555-562, Feb. 2007.
    DOI: 10.1002/path.2140
    PMid: 17323424
  7. J. A. Lee, J. S. Jung, D. H. Kim, J. S. Lim, M. S. Kim, C. B. Konget al., “RANKL expression is related to treatment outcome of patients with localized, high-grade osteosarcoma,” Pediatr. Blood Cancer, vol. 56, no. 5, pp. 738-743, May 2011.
    DOI: 10.1002/pbc.22720
    PMid: 21370405
  8. Z. Wang, L. Ding, S. Zhang, T. Jiang, Y. Yang, R. Li, “Effects of icariin on the regulation of the OPG-RANKL-RANK system are mediated through the MAPK pathways in IL-1β-stimulated human SW1353 chondrosarcoma cells,” Int. J. Mol. Med., vol. 34, no. 6, pp. 1720-1726, Sep. 2014.
    DOI: 10.3892/ijmm.2014.1952
    PMid: 25270538
  9. R. Taylor, H. J. Knowles, N. A. Athanasou, “Ewing sarcoma cells express RANKL and support osteoclastogenesis,” J. Pathol., vol. 225, no. 2, pp. 195-202, Oct. 2011.
    DOI: 10.1002/path.2869
    PMid:21547906
  10. D. W. Pelle, J. W. Ringler, J. D. Peacock, K. Kampfschulte, D. J. Scholten 2nd, M. M. Davis et al., “Targeting receptor-activator of nuclear kappaB ligand in aneurysmal bone cysts: verification of target and therapeutic response,” Transl. Res., vol. 164, no. 2, pp. 139-148, Aug. 2014.
    DOI: 10.1016/j.trsl.2014.03.005
    PMid: 24726460
  11. Е. С. Герштейн, Ю. С. Тимофеев, А. А. Зуев, Н. Е. Кушлинский, “Лиганд-рецепторная система RANK/RANKL/OPG и ее роль при первичных новообразованиях костей (анализ литературы и собственные результаты),” Успехи молекулярной онкологии, т. 2, no. 3, стр. 51-59, 2015. (E. S. Gershtein, Y. S. Timofeev, A. A. Zuev, N. E. Kushlinskii,”RANK/RANKL/OPG Ligand-Receptor systems and its role in primary bone neoplasms (literature analysis and own data),” Advances in molecular oncology, vol. 2, no. 3, pp. 51-59, 2015.)
    DOI: 10.17650/2313-805X.2015.2.3.51-59
  12. J. S. Burkiewicz, S. L. Scarpace, S. P. Bruce, “Denosumab in osteoporosis and oncology,” Ann. Pharmacother., vol. 43, no. 9, pp. 1445-1455, Jul. 2009.
    DOI: 10.1345/aph.1M102
    PMid: 19622756
  13. N. E. Kushlinskii, Y. S. Timofeev, Y. N. Solov’ev, E. S. Gerstein, N. V. Lyubimova, I. V. Bulycheva, “Components of the RANK/RANKL/OPG System, IL-6, IL-8, IL-16, MMP-2, and Calcitonin in the Sera of Patients with Bone Tumors,” Bulletin of Experimental Biology and Medicine, vol. 157, no. 4, pp. 520-523, Aug. 2014.
    DOI: 10.1007/s10517-014-2605-y
    PMid: 25110097
  14. D. M. Findlay, G. J. Atkins, “Relationship between serum RANKL and RANKL in bone,” Osteoporos. Int., vol. 22, no. 10, pp. 2597-2602, Oct. 2011.
    DOI: 10.1007/s00198-011-1740-9
    PMid: 21850548
  15. D. Wagner, A. Fahrleitner-Pammer, “Levels of osteoprotegerin (OPG) and receptor activator for nuclear factor kappa B ligand (RANKL) in serum: are they of any help?” Wien Med. Wochenschr., vol. 160, no. 17-18, pp. 452-457, Sep. 2010.
    DOI: 10.1007/s10354-010-0818-x
    PMid: 20714810
  16. A. S. Singh, N. S. Chawla, S. P. Chawla, “Giant-cell tumor of bone: treatment options and role of denosumab,” Biologics, vol. 9, pp. 69-74, Jul. 2015.
    DOI: 10.2147/BTT.S57359
    PMid: 26203221
    PMCid: PMC4507456
  17. A. Lopez-Pousa, J. M. Broto, T. Garrido, J. Vazquez, “Giant cell tumour of bone: new treatments in development,” Clin. Transl. Oncol., vol. 17, no. 6, pp. 419-430, Jun. 2015.
    DOI: 10.1007/s12094-014-1268-5
    PMid: 25617146
    PMCid: PMC4448077
  18. D. G. Branstetter, S. D. Nelson, J. C. Manivel, J. Y. Blay, S. Chawla, D. M. Thomas et al., “Denosumab induces tumor reduction and bone formation in patients with giant-cell tumor of bone,” Clin. Cancer Res., vol. 18, no. 16, pp. 4415-4424, Aug. 2012.
    DOI: 10.1158/1078-0432.CCR-12-0578
    PMid: 22711702
  19. F. C. Lam, J. E. Arle, P. A. Glazer, E. M. Kasper, “Primary Extradural Tumors of the Spine - Case Review with Evidence-guided Management,” Surg. Neurol. Int., vol. 5, no. 7, pp. S373-375, Aug. 2014.
    DOI: 10.4103/2152-7806.139673
    PMid: 25289164
    PMCid: PMC4173213
  20. R. Cathomas, C. Rothermundt, B. Bode, B. Fuchs, R. von Moos, M. Schwitter, “RANK ligand blockade with denosumab in combination with sorafenib in chemorefractory osteosarcoma: a possible step forward?” Oncology, vol. 88, no 4, pp. 257-260, Dec. 2014.
    DOI: 10.1159/000369975
    PMid: 25531914

RELATIONSHIP BETWEEN BEHAVIORS AND CATECHOLAMINE CONTENT IN PREFRONTAL CORTEX AND HIPPOCAMPUS OF CHRONICALLY STRESSED RATS

Nataša Popović, Snežana B. Pajović, Vesna Stojiljković, Ana Todorović, Snežana Pejić, Ivan Pavlović, Ljubica Gavrilović

Pages: 255-259

DOI: 10.21175/RadProc.2017.52

Chronic stress induces over-activation and dysfunction of stress-activated systems, resulting in further brain damage and depressive-like behavior. Depression is a potentially life-threatening disorder that affects people and, therefore, it is one of the most important public health problems. This study examined the effects of chronic restraint stress (CRS: 2 hours × 14 days) on the anxiety-like and depression-like behaviors in rats, as well as on the possible changes in the concentrations of dopamine (DA) and noradrenaline (NA) in the prefrontal cortex and hippocampus. We observed a decrease in the number of entries into open arms and time spent in open arms during the elevated plus-maze test (anxiety-like behavior), as well as the increased immobility during the forced swimming test (depression-like behavior). In addition, we found that CRS increases concentration of NA and decreases concentration of DA in the prefrontal cortex and hippocampus. Also, we recorded a significant correlation between the animal behavior and levels of neurotransmitters in the prefrontal cortex and hippocampus in stress conditions provoked by CRS. The results presented here suggest that there is a relationship between the animal behavior and levels of neurotransmitters in the prefrontal cortex and hippocampus in stress conditions provoked by CRS, which may be important in the research of numerous psychiatric diseases caused by chronic stress.
  1. D. Ongür, J. L. Price, “The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans,” Cereb. Cortex, vol. 10, no. 3, pp. 206-219, Mar. 2000.
    DOI: 10.1093/cercor/10.3.206
    PMid: 10731217
  2. H. Eichenbaum, “Hippocampus: cognitive processes and neural representations that underlie declarative memory,” Neuron, vol.44, no. 1,pp.109-120, Sep. 2004.
    DOI: 10.1016/j.neuron.2004.08.028
    PMid: 15450164
  3. Y. C. Tse, I. Montoya, A. S. Wong, A. Mathieu, J. Lissemore, D. C. Lagace, T. P. Wong, “A longitudinal study of stress-induced hippocampal volume changes in mice that are susceptible or resilient to chronic social defeat,” Hippocampus, vol.24, no.9, pp.1120-1128, Sep. 2014.
    DOI: 10.1002/hipo.22296
    PMid: 24753271
  4. R. Jankord, J. P. Herman, “Limbic regulation of hypothalamo–pituitary–adrenocortical function during acute and chronic stress,” Ann. N. Y. Acad. Sci., vol. 1148, pp. 64–73, Dec. 2008.
    DOI: 10.1196/annals.1410.012
    PMid: 19120092
    PMCid: PMC2637449
  5. M. R. Levinstein, B. A. Samuels, “Mechanisms underlying the antidepressant response and treatment resistance,” Front. Behav. Neurosci. vol. 8, p.208, Jun. 2014.
    DOI: 10.3389/fnbeh.2014.00208
    PMid: 25018708
    PMCid: PMC4073308
  6. Y. Liu, X. Zhuang, L. Gou, X. Ling, X. Tian, L. Liu, Y. Zheng, L. Zhang, X. Yin, “Protective effects of nizofenone administration on the cognitive impairments induced by chronic restraint stress in mice,” Pharmacol. Biochem. Behav. vol. 103, no. 3, pp. 474–480, Jan. 2013.
    DOI: 10.1016/j.pbb.2012.09.009
    PMid: 23026061
  7. A. C. Ferraz, A. M. Delattre, R. G. Almendra, M. Sonagli, C. Borges, P. Araujo, M. L. Andersen, S. Tufik, M. M. Lima, “Chronic omega-3 fatty acids supplementation promotes beneficial effects on anxiety, cognitive and depressive-like behaviors in rats subjected to a restraint stress protocol,” Behav. Brain Res., vol. 219, no. 1, pp. 116–122, May 2011.
    DOI: 10.1016/j.bbr.2010.12.028
    PMid: 21192985
  8. Y. Wang, H. Kan, Y. Yin, W. Wu, W. Hu, M. Wang, W. Li, W. Li, “Protective effects of ginsenoside Rg1 on chronic restraint stress induced learning and memory impairments in male mice,” Pharmacol. Biochem. Behav., vol. 120, pp. 73–81, May, 2014.
    DOI: 10.1016/j.pbb.2014.02.012
    PMid: 24560910
  9. G. D. Gamaro, M. B. Michalowski, D. H. Catelli, M. H. Xavier, C. Dalmaz, “Effect of repeated restraint stress on memory in different tasks,” Braz. J. Med. Biol. Res., vol. 32, no. 3, pp. 341-347, Mar. 1999.
    DOI: 10.1590/S0100-879X1999000300015
    PMid: 10347794
  10. K. S. Kim, P. L. Han, “Optimization of chronic stress paradigms using anxiety- and depression-like behavioral parameters,” J. Neurosci. Res., vol. 83, no. 3, pp. 497-507, Feb. 2006.
    DOI: 10.1002/jnr.20754
    PMid: 16416425
  11. S. Pellow, P. Chopin, S. E. File, M. Briley, “Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat,” J. Neurosci. Methods., vol. 14, no.3,pp.149-167, Aug. 1985.
    DOI: 10.1016/0165-0270(85)90031-7
  12. H. Cohen, A. B. Geva, M. A. Matar, J. Zohar, Z. Kaplan, “Post-traumatic stress behavioural responses in inbred mouse strains: can genetic predisposition explain phenotypic vulnerability?” Int. J. Neuropsychopharmacol., vol.11, no. 3, pp.331-349, May 2008.
    DOI: 10.1017/S1461145707007912
    PMid: 17655807
  13. H. Cohen, M. A. Matar, D. Buskila, Z. Kaplan, J. Zohar, “Early post-stressor intervention with high-dose corticosterone attenuates posttraumatic stress response in an animal model of posttraumatic stress disorder,” Biol. Psychiatry., vol.64, no. 8, pp. 708-717, Oct. 2008.
    DOI: 10.1016/j.biopsych.2008.05.025
    PMid: 18635156
  14. A. Mazor, M. A. Matar, Z. Kaplan, N. Kozlovsky, J. Zohar, H. Cohen, “Gender-related qualitative differences in baseline and post-stress anxiety responses are not reflected in the incidence of criterion-based PTSD-like behaviour patterns,” World J. Biol. Psychiatry., vol.10, no. 4-3, pp.856-869, Dec. 2009.
    DOI: 10.1080/15622970701561383
    PMid: 17886167
  15. J. F. Cryan, A. Markou, I. Lucki, “Assessing antidepressant activity in rodents: recent developments and future needs,” Trends Pharmacol. Sci., vol. 23, no. 5, pp. 238-245, May 2002.
    DOI: 10.1016/S0165-6147(02)02017-5
  16. R. D. Porsolt, G. Anton, N. Blavet, M. Jalfre, “Behavioural despair in rats: a new model sensitive to antidepressant treatments,” Eur. J. Pharmacol., vol. 47, no. 4, pp.379-391, Feb. 1978.
    DOI: 10.1016/0014-2999(78)90118-8
  17. M. J. Detke, M. Rickels, I. Lucki, “Active behaviors in the rat forced swimming test differentially produced by serotonergic and noradrenergic antidepressants,” Psychopharmacology, vol.121, no. 1, pp.66-72, Sep. 1995.
    DOI: 10.1007/BF02245592
  18. G. Piras, O. Giorgi, M. G. Corda, “Effects of antidepressants on the performance in the forced swim test of two psychogenetically selected lines of rats that differ in coping strategies to aversive conditions,” Psychopharmacology, vol. 211, no. 4, pp.403-414, Sep. 2010.
    DOI: 10.1007/s00213-010-1904-x
    PMid: 20589496
  19. S. Chiba, T. Numakawa, M. Ninomiya, M. C. Richards, C. Wakabayashi, H. Kunugi, “Chronic restraint stress causes anxiety- and depression-like behaviors, downregulates glucocorticoid receptor expression, and attenuates glutamate release induced by brain-derived neurotrophic factor in the prefrontal cortex,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 39, no. 1, pp. 112-119, Oct. 2012.
    DOI: 10.1016/j.pnpbp.2012.05.018
    PMid: 22664354
  20. B. Haenisch, A. Bilkei-Gorzo, M. G. Caron, H. Bönisch, “Knockout of the norepinephrine transporter and pharmacologically diverse antidepressants prevent behavioral and brain neurotrophin alterations in two chronic stress models of depression,” J. Neurochem., vol. 111, no. 2, pp. 403-416, Oct. 2009.
    DOI: 10.1111/j.1471-4159.2009.06345.x
    PMid: 19694905
    PMCid: PMC2764285
  21. G. Patki, F. Atrooz, I. Alkadhi, N. Solanki, S. Salim, “High aggression in rats is associated with elevated stress, anxiety-like behavior, and altered catecholamine content in the brain,” Neurosci. Lett., vol. 584, no. 1, pp. 308-313, Jan. 2015.
    DOI: 10.1016/j.neulet.2014.10.051
    PMid: 25450144
    PMCid: PMC4322760
  22. G. Tanda, E. Carboni, R. Frau, G. Di Chiara, “Increase of extracellular dopamine in the prefrontal cortex: a trait of drugs with antidepressant potential?” Psychopharmacology, vol. 115, no. 1, pp. 285–288, Jun. 1994.
    DOI: 10.1007/BF02244785
  23. K. W. Lange, T. W. Robbins, C. D. Marsden, M. James, A. M. Owen, G. Paul, “L-dopa withdrawal in Parkinson`s disease selectively impairs cognitive performance in tests sensitive to frontal lobe dysfunction,” Psychopharmacology, vol. 107, no. 2, pp. 394–404, Jun. 1992.
    DOI: 10.1007/BF02245167
  24. M. Rusnák, R. Kvetnanský, J. Jeloková, M. Palkovits, “Effect of novel stressors on gene expression of tyrosine hydroxylase and monoamine transporters in brainstem noradrenergic neurons of long-term repeatedly immobilized rats,” Brain Res., vol. 899, no. 1-2, pp 20-35, Apr. 2001.
    DOI: 10.1016/S0006-8993(01)02126-6
  25. B. E. Leonard, “Stress, norepinephrine and depression,” J. Psychiatry Neurosci., vol. 26, pp.11-16, 2001.
    PMCid: PMC2553257
  26. H. Eichenbaum, “Hippocampus: cognitive processes and neural representations that underlie declarative memory,” Neuron, vol. 44, no. 1, pp.109-120, Sep. 2004.
    DOI: 10.1016/j.neuron.2004.08.028
    PMid: 15450164
  27. Y. C. Tse, I. Montoya, A. S. Wong, A. Mathieu, J. Lissemore, D. C. Lagace, T. P. Wong, “A longitudinal study of stress-induced hippocampal volume changes in mice that are susceptible or resilient to chronic social defeat,” Hippocampus, vol. 24, no. 9, pp.1120-1128, Sep. 2014.
    DOI: 10.1002/hipo.22296
    PMid: 24753271

Biophysics

RADIOACTIVITY IN THE LIGHT OF THE FUNDAMENTAL LAW OF PHYSICS

Yu. P. Chukova

Pages: 260-264

DOI: 10.21175/RadProc.2017.53

One of fundamental laws of physics is the law of efficiency of conversion of one kind of energy into another which was formulated in second half of the 20-th century for whole region of electromagnetic radiation. On the basis of this law for weak influences (isothermal processes) whole region of wavelengths of electromagnetic radiation breaks up on two parts strictly corresponding to the W.Wien region and the Rayleigh-Jeans region, in which efficiency laws are essentially various. Gamma radiation is the most high-energy part of electromagnetic radiation. It is the top frequency boundary for the W. Wien region. Efficiency of conversion of energy for different frequencies of the W. Wien region in approach of reversible process has been considered. Influence of irreversibility on conversion of energy in system for a value of efficiency has been shown. Features of laws of efficiency of conversion for endergonic and exergonic processes are considered.
  1. Yu. P. Chukova, Advances in nonequilibrium thermodynamics of systems under electromagnetic radiation, Moscow, Russia: Khrizostom, 2001.
  2. Ю. П. Чукова, Закон Вебера – Фехнера, Москва, Россия: ЗАО МП Гигиена, 2009. (Yu. P. Chukova, The Weber – Fechner law, Moscow, Russia: ZAO MP Gigiena, 2009.)
  3. Yu. P. Chukova, “Fundamental laws of efficiency of isothermal processes under ionizing and non-ionizing electromagnetic radiation,” in Proc. RAD Conference 2012, Niš, Serbia, 2012, pp. 351-353.
    Retrieved from: http://www.rad-conference.org/helper/download.php?file=../pdf/Proceedings%20RAD%202012.pdf
    Retrieved on: Jan. 22, 2017
  4. M. Planck, The theory of heat radiation, Philadelphia (PN), USA: P. Blakiston`s Son & Co, 1914.
    Retrieved from: https://www.gutenberg.org/files/40030/40030-pdf.pdf
    Retrieved on: Dec. 12, 2016
  5. В. Г. Левич, Введение в статистическую физику, Москва, Россия: ГИТТЛ, 1954. (W. G. Levich, Introduction to Statistical Physics, Moscow, Russia: GITTL, 1954.)
  6. P. T. Landsberg, G. Tonge, “Thermodynamic energy conversion efficiencies,” J. Appl. Phys., vol. 51, no. 7, pp. R1-R20, 1980.
    DOI: 10.1063/1.328187
  7. 7. G. T. Fechner, Elemente der Psychophysik, Leipzig, Deutschland: Breitkopf und Hartel, 1860. (G. T. Fechner, Elements of Psychophysics, Leipzig, Germany: Breitkopf and Hartel, 1860.)
    Retrieved from:https://archive.org/stream/elementederpsych001fech#page/n7/mode/2up
    Retrieved on: Dec. 22, 2016
  8. 8. Ю. П. Чукова, “О спектральной чувствительности глаза человека,” Доклады АН СССР, т. 300, но. 2, стр. 504 – 507, 1988. (Yu. P. Chukova, “Spectral sensitivity of the human eye,” Docl. biological science. Proceedings of the Academy of Sciences of the USSR, vol. 300, pp. 504 – 507, 1988.)
  9. 9. S. S. Stevens, “To honor Fechner and repeal his law. A power function, not a log function, describes operating characteristic of a sensory system,” Science, vol. 133, no. 3446, pp. 80 – 86, Jan. 1961.
    DOI: 10.1126/science.133.3446.80
    PMid: 17769332
  10. 10. W. Nultsch, “Der einfluss der lichtes auf die bewegung der cyanophyceen. II Mitteilung: Photokinesis bei Phormidium autumnale,” Planta, vol. 57, no. 6, pp. 613–623, Feb. 1962. (W. Nultsch, “The influence of the light on the movement of the cyanophyceae. II Communication Photokinesis by Phormidium autumnale,” Planta, vol. 57, no. 6, pp. 613–623, Feb. 1962.)
    DOI: 10.1007/BF01930343
  11. 11. W. Nultsch, “Der einfluss der lichtes auf die bewegung der cyanophyceen. III Photophobotaxis von Phormidium Uncinatum,” Planta, vol. 58, no. 6, pp. 647–663, Aug. 1962. (W. Nultsch, “The influence of the light on the movement of the cyanophyceae. III Communication Photophobotaxis of Phormidium Uncinatum,” Planta, vol. 58, no. 6, pp. 647–663, Aug. 1962.)
    DOI: 10.1007/BF01914754
  12. 12. B. Diehn, G. Tollin, “Phototaxis in euglena. Physical factors determining the rate of phototactic response,” Photochem. Photobiol., vol. 5, no. 7, pp. 23–532, Jul. 1966.
    DOI: 10.1111/j.1751-1097.1966.tb09842.x
  13. 13. Yu. P. Chukova, “Bose condensation and non thermal processes in living systems under millimeter (MM) radiation,” Electromagn. Biol. Med., vol. 28, no. 1, pp. 41–45, Jul. 2009.
    DOI: 10.1080/15368370802708355
    PMid: 19337893
  14. 14. Ю. П. Чукова, Закон Девяткова (Эффективность нетеплового преобразования энергии длинноволнового электромагнитного излучения), Москва, Россия: Мегаполис, 2006. (Yu. P. Chukova, The Devyatkov law (Efficiency of nonthermal conversion of energy of long-wave electromagnetic radiation), Moscow, Russia: Megapolis, 2006.)

ERYTHROCYTES AND DNA STUDY VIA OPTICAL MICROSCOPY

N. V. Kamanina, S. V. Likhomanova, А. А. Kamanin

Pages: 265-268

DOI: 10.21175/RadProc.2017.54

The physical phenomena resulting from forces exerted on a liquid-crystal mesophase on the account of the electric, magnetic, thermal fields and deformation are due to the weak intermolecular interaction of the structural elements of liquid-crystal media. In order to take an advantage of the factors, such as the presence of weak dispersion forces between the molecules of liquid crystals and the high orienting ability, the liquid-crystal anisotropic medium has been considered for visualizing, fixing, and orienting human red blood cells and DNA. The feedback mechanism of the liquid crystal self-organization has been discussed, due to the interaction with erythrocytes; moreover, the spectral features of the LC with DNA have been shown. In the present paper, the special accent will be on the orientation of these types of the bio-objects under the conditions in which the interface between solid and liquid crystal mesophase is modified via laser oriented deposition technique, as well as by using the surface electromagnetic waves treatment. It provokes the best visualization and orientation of the bio-objects in the anisotropic liquid crystal media when the direct orienting polymer coatings have been removed.
  1. A. L. Garner, M. Deminsky, V. B. Neculaes, V. Chashi- hin, A. Knizhnik, B. Potapkin, “Cell membrane thermal gradients induced by electromagnetic fields,” Journal of Applied Physics, vol. 113, no. 21, pp. 214701-1 – 214701-11, Jun. 2013.
    DOI: 10.1063/1.4809642
  2. A. K. Sharm, “Plasmonic biosensor for detection of hemoglobin concentration in human blood: Design considerations,” Journal of Applied Physics, vol. 114, no. 4, pp. 044701-1 – 044701-8, Jul. 2013.
    DOI: 10.1063/1.4816272
  3. W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt., vol. 19, no. 7, pp. 071412-1 – 071412-34, Jul. 2014.
    DOI: 10.1117/1.JBO.19.7.071412
    PMid: 25079820
  4. M. Li, F. Zhao, J. Zeng, J. Qi, J. Lu, W. Ch. Shih, “Microfluidic surface-enhanced Raman scattering sensor with monolithically integrated nanoporous gold disk arrays for rapid and label-free biomolecular detection,” J. Biomed. Opt., vol. 19, no. 11, pp. 111611-1 – 111611-8, Jul. 2014.
    DOI: 10.1117/1.JBO.19.11.111611
  5. S. Manakasettharn, T. H. Hsu, J. A. Taylor, T. Krupenkin, “Interplay between iridescent and non-iridescent coloration in bio-inspired electrically-tunable nanostructures,” Optical Materials Express, vol. 4, no. 4, pp. 681–688, Apr. 2014.
    DOI: 10.1364/OME.4.000681
  6. A. A. Vdovichev, T. S. Sych, Z. V. Reveguk, A. A. Smirnova, D. A. Maksimov, R. R. Ramazanov, A. I. Kononov, “Structure of fluorescent metal clusters on a DNA template,” Journal of Physics: Conference Series, vol. 741, pp. 012069-1 – 012069-4, 2016.
    DOI: 10.1088/1742-6596/741/1/012069
  7. N. V. Kamanina and V. N. Kidalov, “A study of the lining up of red blood cells in a nematic liquid crystal medium,” Tech. Phys. Lett., vol. 22, no. 7, pp. 571–572, 1996.
  8. N. V. Kamanina, “Similarities and differences between the effect of orientation of red blood cells in a nematic liquid-crystal medium and the Fröhlich electrical vibrations,” Tech. Phys. Lett., vol. 23, no. 12, pp. 902–905, Dec. 1997.
    DOI: 10.1134/1.1261926
  9. A. A. Kamanin, N. V. Kamanina, “Induced rearrangement of liquid crystal caused by aligning of human erythrocytes,” Materials Science Forum, vol. 555, pp. 401-404, Sep. 2007.
    DOI: 10.4028/www.scientific.net/MSF.555.401
  10. A. Kamanin and N. Kamanina, “Self-Organization of Liquid Crystals Induced by Aligning of Human Erythrocytes,” Mol. Cryst. Liq. Cryst., vol. 486, no. 1, pp. 50–56, 2008.
    DOI: 10.1080/15421400801917379
  11. N. V. Kamanina, S. V. Serov, Y. Bretonniere, C. Andraud, “Organic Systems and Their Photorefractive Properties under the Nano- and Biostructuration: Scientific View and Sustainable Development,” Journal of Nanomaterials, vol. 2015, 2015.
    DOI: 10.1155/2015/278902
  12. Н. В. Каманина, П. Я. Васльев, “Оптическое покрытие на основе углеродных нанотрубок для оптического приборостроения и наноэлектроники,” Патент на изобретение №2355001, Май 10. 2009. (N. V. Kamanina, P. Ya. Vasilyev, “Optical coatings based on CNTs for the optical devises and nanoelectronics,” Patent RU 2355001 C2, May 10, 2009.)
    Retrieved from: http://bd.patent.su/2355000-2355999/pat/servl/servlet331f.html
    Retrieved on: Dec. 19, 2016
  13. Н. В. Каманина, П. Я. Васльев, В. И. Студенов, “Оптическое покрытие на основе ориентированных в электрическом поле углеродных нанотубок для оптического приборостроения, микро- и наноэлектроники при нивелировании границы раздела сред: твердая подложка-покрытие,” Патент № RU 2405177 С2, Ноя. 27. 2010. (N. V. Kamanina, P. Ya. Vasilyev, V. I. Studeonov, “Optical coating based on oriented in the electric field CNTs for the optical devises, micro- and nanoelectronics under the conditions when the interface: solid substrate-coating can be eliminated,” Patent RU 2405177 С2, Nov. 27, 2010.)
    Retrieved from: http://www.freepatent.ru/images/patents/57/2405177/patent-2405177.pdf
    Retrieved on: Dec. 16, 2016
  14. N. V. Kamanina, Yu. A. Zubtcova, A. A. Kukharchik, C. Lazar, I. Rau, “Control of the IR-spectral shift via modification of the surface relief between the liquid crystal matrixes doped with the lanthanide nanoparticles and the solid substrate,” OPTICS EXPRESS, vol. 24, no. 2, pp. A270 – A275, Jan. 2016.
    DOI: 10.1364/OE.24.00A270
    PMid: 26832580
  15. N. Kamanina, “Refractive properties of the bio- and nano-structured materials as an indicator of the model matrix macro parameters modification,” Radiation and Applications, vol. 2, no. 1, pp. 58 – 61, Apr. 2017.
    DOI: 10.21175/radj.2017.01.012

THE EFFECT OF PLANT DISEASES ON HYPERSPECTRAL LEAF REFLECTANCE AND BIOPHYSICAL PARAMETERS

Dora Krezhova, Kalinka Velichkova, Nikolai Petrov, Svetla Maneva

Pages: 269-275

DOI: 10.21175/RadProc.2017.55

Contemporary remote sensing techniques have acquired new and more advanced applications in environmental and ecological researches. Hyperspectral remote sensing data provide significant advancement in understanding the subtle changes in biophysical and biochemical parameters of the plants and their responses to adverse environmental conditions. In this study, a remote sensing method based on hyperspectral measurements of leaf reflectance was used to extract information on the effect of biotic stress (two viral infections) on young potato plants. The reflectance data were collected by means of a portable fiber-optics spectrometer in the visible and near-infrared spectral ranges (400 –1100 nm). To translate the hyperspectral data into information about plant biophysical and biochemical variables, an empirical-statistical approach was applied based on Student’s t-test, first derivative, and serological analyses. The changes in some important biophysical parameters such as color and spectral signature of plants, chlorophyll absorption characteristics, moisture content, etc., were analyzed. The results showed that the variations in the chlorophyll content, leaf structure, and water content dominate in the reflectance variance in the green, red, and near-infrared spectral ranges. Comparative analysis was performed between the results from the leaf spectral reflectance and serological test (DAS-ELISA) for the presence and degree of the viral infections.
  1. J. Qi, F. Cabot, M. S. Moran, G. Dedieu, “Biophysical Parameter Estimations Using Multidirectional Spectral Measurements,” Remote Sens. Environ., vol. 54, no. 1, pp. 71-83, Oct. 1995.
    DOI: 10.1016/0034-4257(95)00102-7
  2. P. Jordano, “Chasing Ecological Interactions,” PLoS Biol., vol. 14, no. 9, pp. e1002559-1 – e1002559-4, Sep. 2016.
    DOI: 10.1371/journal.pbio.1002559
    PMid: 27631692
    PMCid: PMC5025190
  3. J. P. T. Valkonen, “Viruses: Economical losses and biotechnological potential,” in Potato Biology and Biotechnology, D. Vreugdenhil, J. Bradshaw, C. Gebhardt, F. Govers, D. K. L. Mackerron, M. A. Taylor, H. A. Ross, Eds., San Diego (CA), USA: Elsevier Academic Press, 2007, ch. 28, pp. 619-641.
    DOI: 10.1016/B978-044451018-1/50070-1
  4. K. Usha, B. Singh, “Potential applications of remote sensing in horticulture - A review,” Sci. Horticul., vol. 153, pp. 71–83, Apr. 2013.
    DOI: 10.1016/j.scienta.2013.01.008
  5. M. Meroni, M. Rossini, R. Colombo, “Characterization of leaf physiology using reflectance and fluorescence hyperspectral measurements,” in Remote Sensing Optical observation of vegetation properties, F. Maselli, M. Menenti, P. A. Brivio Eds., Trivandrum, India: Research Signpost, 2010, pp. 165-187.
  6. S. Sankaran, A. Mishra, R. Ehsani, C. Davis, “A review of advanced techniques for detecting plant diseases,” Comput. Electron. Agric., vol. 72, no. 1, pp. 1–13, Jun. 2010.
    DOI: 10.1016/j.compag.2010.02.007
  7. D. D. Krezhova, N. M. Petrov, S. N. Maneva, “Hyperspectral remote sensing applications for monitoring and stress detection in cultural plants: viral infections in tobacco plants,” in Proc. of Remote Sensing for Agriculture, Ecosystems, and Hydrology Conf., Edinburgh, UK, 2012, pp. 24-27.
    DOI: 10.1117/12.974722
  8. Z. Ni, Z. Liu, H. Huo, Z. H. Li, F. Nerry, Q. Wang, X. Li, “Early Water Stress Detection Using Leaf-Level Measurements of Chlorophyll Fluorescence and Temperature Data,” Remote Sens., vol. 7, no. 3, pp. 3232-3249, Mar. 2015.
    DOI: 10.3390/rs70303232
  9. G. R. Mahajan, R. N. Sahoo, R. N. Pandey, V. K. Gupta, D. Kumar, “Using hyperspectral remote sensing techniques to monitor nitrogen, phosphorus, sulphur and potassium in wheat (Triticum aestivum L.),” Precision Agric., vol. 15, no. 2, pp. 499 – 522, Oct. 2014.
    DOI: 10.1007/s11119-014-9348-7
  10. C. M. Champagne, K. Staenz, A. Bannari, H. Mcnairn, J. C. Deguise, “Validation of a hyperspectral curve-fitting model for the estimation of plant water content of agricultural canopies,” Remote Sensing Environ., vol. 87, no. 2-3, pp. 148–160, Oct. 2003.
    DOI: 10.1016/S0034-4257(03)00137-8
  11. M. Prabhakar, Y. G. Prasad, M. Thirupathi, G. Sreedevi, B. Dharajothi, B. Venkateswarlu, “Use of ground based hyperspectral remote sensing for detection of stress in cotton caused by leafhopper (Hemiptera: Cicadellidae),” Comput. Electron. Agric., vol. 79, no. 2, pp. 189–198, Nov. 2011.
    DOI: 10.1016/j.compag.2011.09.012
  12. A. A. Gitelson, U. Gritz, M. N. Merzlyak, “Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves,” J. Plant Physiol., vol. 160, no. 3, pp. 271-282, Mar. 2003.
    DOI: 10.1078/0176-1617-00887
    PMid: 12749084
  13. G. A. Carter, B. A. Spiering, “Optical properties of intact leaves for estimating chlorophyll content,” J. Environ. Quality, vol. 31, no. 5, Sep-Oct. pp. 1424–1432, 2002.
    DOI: 10.2134/jeq2002.1424
    PMid: 12371158
  14. I. B. Strachan, E. Pattey, J. B. Boisvert, “Impact of nitrogen and environmental conditions on corn as detected by hyperspectral reflectance,” Remote Sensing Environ., vol. 80, no. 2, pp. 213–224, May 2002.
    DOI: 10.1016/S0034-4257(01)00299-1
  15. D. Krezhova, “Spectral remote sensing of the responses of soybean plants to environmental stresses,” in Soybean - Genetics and Novel Techniques for Yield Enhancement, D. Krezhova, Ed., Rijeka, Croatia: InTech, 2011, ch. 11, pp. 215-256.
    DOI: 10.5772/24741
  16. S. Pradhan, K. K. Bandyopadhyay et al., “Predicting wheat grain and biomass yield using canopy reflectance of booting stage,” J. Indian Soc. Remote Sensing, vol. 42, no. 4, pp. 711 – 718, Dec. 2014.
    DOI: 10.1007/s12524-0140372-x
  17. C. S. T. Daughtry, C. L. Walthall, M. S. Kim, E. B. Colstoun, J. E. McMurtrey, “Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance,” Remote Sens. Environ., vol. 74, no. 2, pp. 229–239, Nov. 2000.
    DOI: 10.1016/S0034-4257(00)00113-9
  18. D. Krezhova, S. Maneva, N. Petrov, “Application of remote sensing technique for preservation of plant ecosystems,” in Proc. RAD 2015 Conference, Budva, Montenegro, 2015, pp. 285-290.
    Retrieved from: http://www.rad-conference.org/helper/download.php?file=../pdf/Proceedings%20RAD%202015.pdf
    Retrieved on: Jan. 15, 2017
  19. S. J. Goetz, “Recent advances in remote sensing of biophysical variables. An overview of the special issue,” Remote Sensing of Environment, vol. 79, no. 2-3, pp. 145–146, Feb. 2002.
    DOI: 10.1016/S0034-4257(01)00268-1
  20. D. Krezhova, E. Kirova, “Hyperspectral remote sensing of the impact of environmental stresses on nitrogen fixing soybean plants (Glycine max L.),” in IEEE proceedings of 5th International Conference of RAST, Istanbul, Turkey, 2011, pp. 172-177.
    DOI: 10.1109/rast.2011.5966816
  21. S. B. Johnson, “Potato Diseases Caused by PVY and PLRV,” Bulletin, University of Maine, Orono (ME), USA, 1999.
    Retrieved from: https://extension.umaine.edu/publications/2492e/
    Retrieved on: Dec. 23, 2016
  22. Н. Петров, Д. Христова, К. Хайнце, П. Вилингман, Г. Адам, “Идентифициране на вируса, причинител на некротични пръстеновидни петна по клубените на картофите в България,” Растениевъдни науки, т. 45, стр. 407 – 411, 2008. (N. Petrov, D. Hristova, C. Heinze, P. Willingman, G. Adam, “Identification of the virus, causing necrotic ring spots on potato tubers in Bulgaria,” Plant Science, vol. 45, pp. 407–411, 2008.)
    Retrieved from: https://www.researchgate.net/publication/260244501_Identification_of_the_virus_causing_necrotic
    _ring_spots_on_potato_tubers_in_Bulgaria

    Retrieved on: Dec. 23, 2016
  23. N. Petrov, V. Lyubenova, “Variability in P1 gene region of Potato virus Y isolates and its effect on potato crops,” in Proc. Conf. The Man and the Universe, Smolyan, Bulgaria, 2011, pp. 671–677.
    Retrieved from: https://www.researchgate.net/publication/260244852_VARIABILITY_IN_P1_GENE_REGION_OF_
    POTATO_VIRUS_Y_ISOLATES_AND_ITS_EFFECT_ON_POTATO_CROPS

    Retrieved on: Jan. 13, 2017
  24. Н. Петров, “Картофен вирус Y (Potato Virus - PVY) по културни видове от сем. Solenaceae,” докторска дисертация, ИПАЗР “Н. Пушкаров”, София, България, 2012. (N. Petrov, “Potato virus Y (PVY) in crop species from the family Solanaceae,” ISSAPP “N. Pushkarov”, Sofia, Bulgaria, 2012.)
    Retrieved from: http://www.iss-poushkarov.org/N%20Petrov/Avtoreferat_N%20Petrov.pdf
    Retrieved on: Jan. 23, 2017
  25. B. Dikova, “Tobacco rattle virus (TRV) transmission by sugarbeet seeds,” Biotechnology & Biotechnological Equipment, vol. 19, no. 2, pp. 87–90, 2005.
    DOI: 10.1080/13102818.2005.10817196
  26. D. Noordam, Identification of plant viruses: methods and experiments, Wageningen, The Netherlands: Centre for Agricultural Publishing and Documentation, 1973.
  27. USB2000+ Data Sheet, Ocean Optics, Dunedin (FL), USA.
    Retrieved from: https://oceanoptics.com/wp-content/uploads/OEM-Data-Sheet-USB2000-.pdf
    Retrieved on: Jan. 23, 2017.
  28. D. Krezhova, T. Yanev et al., “Method for detecting stress induced changes in leaf spectral reflectance,” Compt. Rend. Acad. Bulg. Sci., vol. 58, no. 5, pp. 517 – 522, 2005.
  29. M. Clark, A. Adams, “Characteristics of the microplate method of enzyme linked immunosorbent assay for the detection of plant viruses,” J. Gen. Virol., vol. 34, no. 3, pp. 475-483, Mar. 1977.
    DOI: 10.1099/0022-1317-34-3-475
    PMid: 323416
  30. C. L. Bădărău, S. C. Chiru, F. Damşa, A. Mărculescu, “Behavior of several potato varieties with different starch content to potato tuber necrotic ringspot disease,” Forest. Wood Ind. Agric. Food Eng., vol. 8, no. 57, 2015.
    Retrieved from: http://webbut.unitbv.ro/BU2015/Series%20II/BULETIN%20I%20PDF/06_BADARAU.pdf
    Retrieved on: Jan. 24, 2017

SENSITIVITY OF REMOTELY-SENSED SPECTRAL REFLECTANCE TO BIOPHYSICAL VARIABLES OF PLANTS

Kalinka Velichkova, Dora Krezhova

Pages: 276-282

DOI: 10.21175/RadProc.2017.56

Estimation and monitoring of plant health and influence of the environment are important components of the climate change researches. Recent hyperspectral remote sensing technologies, based on measurements of leaf reflectance in the visible and near infrared spectral ranges, allow detecting subtle absorption features in foliar spectra and to study correlations of these features linked to plant biophysical variables. The purpose of this study is to explore the sensitivity of several narrowband vegetation indices (VIs) when used to estimate the effect of a biotic stress (viral infection) on the biophysical parameters and physiological state of young potato plants. Two groups of plants were investigated – healthy and infected with Potato Virus Y (PVY). Hyperspectral reflectance data were collected by means of a portable fiber-optics spectrometer in the spectral range 400-1100 nm with a spectral resolution of 1.5 nm. The VIs – Normalized Difference VI (NDVI), modified Normalized Difference VI (mNDVI), Simple Ratio (SR); Chlorophyll Absorption Ratio Index (CARI), Modified CARI (MCARI), Chlorophyll Indices (ChIgreen and ChIred edge); Pigment index (PI), Disease index (fD) and Photochemical Reflectance Index (PRI) were evaluated for their potential to detect changes in physiological state and biochemical content of the infected plants. Three VIs appeared to be most sensitive – CARI, ChIgreen, and MCARI, the latter one has shown about two time better sensitivity than the others.
  1. A. F. H. Goetz, B. C. Gao, C. Wessman, “Vegetation biochemistry: what can imaging spectrometry tell us about canopies?” in vol. 3 Proc. of the 6th Australasian Remote Sensing Conference, Wellington, New Zealand, 1992, pp. 150-160.
  2. L. Chaerle, D. van der Straeten, “Seeing is believing: Imaging techniques to monitor plant health,” Biophys. Biochim. Acta – Gene Struct. Expr., vol. 1519, no. 3, pp. 153-166, Jun. 2001.
    DOI: 10.1016/S0167-4781(01)00238-X
  3. C. V. M. Barton, “Advances in remote sensing of plant stress,” Plant Soil, vol. 354, no. 1-2. pp. 41 – 44, May 2012.
    DOI: 10.1007/s11104-011-1051-0
  4. C. Panigada et al., “Chlorophyll concentration mapping with MIVIS data to assess crown discoloration in the Ticino Park oak forest,” Int. J. Remote Sens., vol. 31, no. 12, pp. 3307-3332, Jul. 2010.
    DOI: 10.1080/01431160903193497
  5. F. Fava et al., “Identification of hyperspectral vegetation indices for Mediterranean pasture characterization,” Int. J. Applied Earth Observ. and Geoinform., vol. 11, no. 4, pp. 233 – 243, Aug. 2009.
    DOI: 10.1016/j.jag.2009.02.003
  6. R. Colombo et al., “Estimation of leaf and canopy water content in poplar plantations by means of hyperspectral indices and inverse modelling,” Remote Sens. Environ., vol. 112, no. 4, pp. 1820-1834, Apr. 2008.
    DOI: 10.1016/j.rse.2007.09.005
  7. R. Colombo et al., “Retrieval of leaf area index in different vegetation types using high resolution satellite data”, Remote Sens. Environ., vol. 86, no. 1, pp. 120-131, Jun. 2003.
    DOI: 10.1016/S0034-4257(03)00094-4
  8. J. G. P. W. Clevers, L. Kooistra, “Using Hyperspectral Remote Sensing Data for Retrieving Canopy Chlorophyll and Nitrogen Content,” IEEE Journal of Selected Topics in Applied Earth Observation and Remote Sensing, vol. 5, no. 2, pp. 574-583, Apr. 2012.
    DOI: 10.1109/JSTARS.2011.2176468
  9. M. Meroni, R. Colombo and C. Panigada, “Inversion of a radiative transfer model with hyperspectral observations for LAI mapping in poplar plantations,” Remote Sens. Environ., vol. 92, no. 2, pp. 195-206, Aug. 2004.
    DOI: 10.1016/j.rse.2004.06.005
  10. F. C. Monteiro et al., “Assessing biophysical variable parameters of bean crop with hyperspectral measurements Priscylla,” Sci. Agric., vol. 69, no. 2, pp. 87-94, Mar-Apr. 2012.
    DOI: 10.1590/S0103-90162012000200001
  11. P. J. Zarco-Tejada et al., “A PRI-based water stress index combining structural and chlorophyll effects: Assessment using diurnal narrow-band airborne imagery and the CWSI thermal index,” Remote Sens. Environ., vol. 138, pp. 38-50, Nov. 2013.
    DOI: 10.1016/j.rse.2013.07.024
  12. W. Verhoef, “Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model,” Remote Sens. Environ., vol. 16, no. 2, pp. 125-141, Oct. 1984.
    DOI: 10.1016/0034-4257(84)90057-9
  13. A. J. Berjón et al., “Retrieval of biophysical vegetation parameters using simultaneous inversion of high resolution remote sensing imagery constrained by a vegetation index,” Precision Agric., vol. 14, no. 5, pp. 541-557, Oct. 2013.
    DOI: 10.1007/s11119-013-9315-8
  14. C. S. T. Daughtry et al., “Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance,” Remote Sens. Environ., vol. 74, no. 2, pp. 229-239, Nov. 2000.
    DOI: 10.1016/S0034-4257(00)00113-9
  15. N. Petrov. V. Lyubenova, “Variability in P1 gene region of Potato virus Y isolates and its effect on potato crops,” in Proc. Conf. The Man and the Universe, Smolyan, Bulgaria, 2011, pp. 671 – 677.
    Retrieved from: https://www.researchgate.net/publication/260244852_VARIABILITY_IN_P1_GENE_REGION_OF_POTATO_
    VIRUS_Y_ISOLATES_AND_ITS_EFFECT_ON_POTATO_CROPS

    Retrieved on: Jan. 20, 2017
  16. D. Noordam, Identification of plant viruses: methods and experiments, 1st ed., Wageningen, The Netherlands: Centre for Agricultural Publishing and Documentation, 1973.
  17. M. A. Aqeel Ashraf, M. J. Maach, I. Yusoff, “Introduction to Remote Sensing of Biomass,” in Biomas and Remote Sensing of Biomass, I. Atazadeh, Ed., Rijeka, Croatia: InTech, 2011, ch. 8, sec. 1.5, p. 135.
    Retrieved from: https://cdn.intechopen.com/pdfs-wm/19222.pdf
    Retrieved on: Jan. 20, 2017
  18. G. R. Mahajan et al., “Using hyperspectral remote sensing techniques to monitor nitrogen, phosphorus, sulphur and potassium in wheat (Triticum aestivum L.),” Precision Agric., vol. 15, no. 5, pp. 499-522, Oct. 2014.
    DOI: 10.1007/s11119-014-9348-7
  19. D. Krezhova, A. Stoev and S. Maneva, “Detection of biotic stress caused by apple stem grooving virus in apple trees using hyperspectral reflectance analysis,” Compt. rend. Acad. Bulg. Sci., vol. 68, no. 2, pp. 175-182, Jun. 2015.
    Retrieved from: https://www.researchgate.net/publication/278406271_Detection_of_biotic_stress_caused
    _by_apple_stem_grooving_virus_in_apple_trees_using_hyperspectral_reflectance_analysis

    Retrieved on: Jan. 20, 2017
  20. D. A. Fuentes et al., “Mapping Canadian boreal forest vegetation using pigment and water absorption features derived from the AVIRIS sensor,” J. Geophys. Res., vol. 106, no. D24, pp. 33565-33577, Dec. 2001.
    DOI: 10.1029/2001JD900110
  21. D. Krezhova et al., “Detection of environmental changes using hyperspectral remote sensing,” in Proc. of 9th Int. Physics Conf. of the Balkan Physical Union (BPU9), Istanbul, Turkey, 2015.
    DOI: 10.1063/1.4944275
  22. USB2000 Fiber Optic Spectrometer Installation and Operation Manual, Ocean Optics, Inc., Dunedin (FL), USA.
    Retrieved from: https://oceanoptics.com/wp-content/uploads/USB2000-Operating-Instructions.pdf
    Retrieved on: Jan. 20, 2017
  23. D. Krezhova et al., “Method for detecting stress induced changes in leaf spectral reflectance,” Compt. Rend. Acad. Bulg. Sci., vol. 58, no. 5, pp. 517-522, 2005.
  24. P. J. Zarco-Tejada et al., “Hyperspectral indices and model simulation for chlorophyll estimation in open-canopy tree crops,” Remote Sens. Environ., vol. 90, no. 4, pp. 463-476, Apr. 2004.
    DOI: 10.1016/j.rse.2004.01.017
  25. G. A. Carter, “Ratios of leaf reflectances in narrow wavebands as indicators of plant stress,” Int. J. Remote Sens., vol. 15, no. 3, pp. 697-704, 1994.
    DOI: 10.1080/01431169408954109
  26. C. F. Jordan, “Derivation of leaf area index from quality of light on the forest floor,” Ecology, vol. 50, no. 4, pp. 663-666, Jul. 1969.
    DOI: 10.2307/1936256
  27. D. R. Tilley, M. Ahmed, J. Son and H. Badrinarayanan, “Hyperspectral reflectance of emergent macrophytes as an indicator of water column ammonia in an oligohaline, subtropical marsh,” Ecol. Eng., vol. 21, no. 2-3, pp. 153-163, Dec. 2003.
    DOI: 10.1016/j.ecoleng.2003.10.004
  28. C. J. Tucker, “Red and photographic infrared linear combinations for monitoring vegetation,” Remote Sens. Environ., vol. 8, no. 2, pp. 127-150, May 1979.
    DOI: 10.1016/0034-4257(79)90013-0
  29. J. W. Rouse et al., “Monitoring the vernal advancement of retrogradation of natural vegetation,” NASA GSFC, Greenbelt (MD), USA, Rep. 1-371, 1974.
    Retrieved from: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19740022555.pdf
    Retrieved on: Jan. 21, 2017
  30. A. D. Roberts, L. K. Roth and L. R. Perroy, “Hyperspectral Vegetation Indices,” in Hyperspectral Remote Sensing of Vegetation, A. Thenkabail, P. S. Lyon, J. G. Huete Eds., Boca Raton (FL), USA: CRC Press, 2011, ch. 14, sec. 2, pp. 309-328.
    DOI: 10.1201/b11222-20
  31. C. Jurgens, “The modified normalized difference vegetation index (mNDVI) a new index to determine frost damages in agriculture based on Landsat TM data,” Int. J. Remote Sens., vol. 18, no. 17, pp. 3583-3594, 1997.
    DOI: 10.1080/014311697216810
  32. M. N. Merzlyak et al., “Non-destructive optical detection of leaf senescence and fruit ripening,” Physiol. Plant., vol. 106, no. 1, pp. 135-141, May 1999.
    DOI: 10.1034/j.1399-3054.1999.106119.x
  33. A. A. Gitelson, A. Viña, V. Ciganda, D. C. Rundquist, T. J. Arkebauer, “Remote estimation of canopy chlorophyll content in crops,” Geophys. Res. Lett., vol. 32, no. 8, Apr. 2005.
    DOI: 10.1029/2005GL022688
  34. J. A. Gamon, J. Peñuelas, C. B. Field, “A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency,” Remote Sens. Environ., vol. 41, no. 1, pp. 35-44, Jul. 1992.
    DOI: 10.1016/0034-4257(92)90059-S
  35. D. A. Sims, J. A. Gamon, “Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages,” Remote Sens. Environ., vol. 81, no. 2-3, pp. 337-354, Aug. 2002.
    DOI: 10.1016/S0034-4257(02)00010-X
  36. D. Haboudane et al., “Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture,” Remote Sens. Environ., vol. 81, no. 2-3, pp. 416–426, Aug. 2002.
    DOI: 10.1016/S0034-4257(02)00018-4
  37. M. S. Kim, C. S. T. Daughtry, E. W. Chappelle, J. E. McMurtrey, C. L. Walthall, “The use of high spectral resolution bands for estimating absorbed photosynthetically active radiation (Apar),” in Proc. of the 6th Symposium on Physical Measurements and Signatures in Remote Sensing, Val D’Isere, 1994, pp. 299-306.
    Retrieved from: https://goobi.tib.eu/viewer/content/?action=pdf&metsFile=830289488.xml&targetFileName=THE_USE_OF
    _HIGH_SPECTRAL_RESOLUTION_BANDS_FOR_ESTIMATING_ABSORBED_PHOTOSYNTHETICALLY_ACTIVE_
    RADIATION_Apar_Moon_S_Kim_C_S_T_Daughtry_E_W_Chappelle_J_E_McMurtrey_and_C_L_Walthall.pdf

    Retrieved on: Jan. 21, 2017
  38. S. L. Ustin et al., “Remote sensing based assessment of biophysical indicators for land degradation and desertification,” in Recent advances in remote sensing and geo-information processing for land degradation assessment, vol. 8, A. Röder, J. Hill, Eds., Boca Raton (FL), USA: CRC Press, 2009, ch. 2, pp. 15–44.
    Retrieved from: https://books.google.ca/books?isbn=0203875443
    Retrieved on: Jan. 21, 2017
  39. D. Haboudane et al., “Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture,” Remote Sens. Environ., vol. 90, no. 3, pp. 337–352, Apr. 2004.
    DOI: 10.1016/j.rse.2003.12.013

OPTICAL SPECIFICITY OF THIN SHELL FOR NANO-DELIVERY MODEL

Ana J. Šetrajčić-Tomić, Ljubiša D. Džambas, Jovan P. Šetrajčić, Matilda Vojnović, Igor J. Šetrajčić

Pages: 283-289

DOI: 10.21175/RadProc.2017.57

The subject of the research in this paper includes theoretical investigation of nanomaterials modeling in the field of pharmaceutical technology for biomedical application. This includes a very precise encapsulated drug delivery, on exactly defined place in the human tissue or organ and a disintegration of capsule – drug carrier, so that the medicament can start producing its effect. The goal of multidisciplinary researches with biocompatible molecular nanomaterials is to find the parameters and the possibilities to construct boundary surfaces that will, in interaction with biological environment, create such properties of nanolayers that are convenient for use for layers of drug carrier capsules, biochips and biomarkers. These layers should demonstrate controlled disintegration of structure, better dielectric properties, discrete luminescence and appropriate bioporosity as all these are the requirements of contemporary nanomedicine. The main advantage of the theoretical approach is the essential knowledge of the mechanisms that allow us to comprehend the experimental conditions that we have to fulfill to be able to get the desired results. The results achieved up to now by our research group in the application of the Green's function method on flat ultrathin films are promising for applications in the frame of optical core-shell models. This paper presents the review of our current achievement in the field of theoretical physics of exciton ultrathin films and possible ways to materialize the same in the field of nanopharmacy.
  1. J. P. Šetrajčić, A. J. Šetrajčić–Tomić, Lj. D. Džambas and I. Gušić, “Core-shell layered models of nanostructured carriers for a nano-bio-medical applications,” in Proc. of 3rd International Conference on Radiation and Applications in Various Fields of Research, Budva, Montenegro, 2015, pp. 487-494.
    Retrieved from: http://www.rad-conference.org/helper/download.php?file=../pdf/Proceedings%20RAD%202015.pdf
    Retrieved on: Feb. 8, 2016.
  2. A. Ј. Šetrajčić-Tomić, Lj. D. Džambas, D. Lj. Džambas and J. P. Šetrajčić, “Optical Core-Shell Model for Nano-Delivery Applications,” in Proc. of 4th International Conference on Radiation and Applications in Various Fields of Research, Niš, Serbia, 2016, pp. 165-170.
    DOI: 10.21175/RadProc.2016.39
  3. K. J. Morrow Jr., R. Bawa, C. Wei, “Recent advances in basic and clinical nanomedicine,” Med. Clin. N. Am, vol. 91, no. 5, pp. 805-843, Sep. 2007.
    DOI: 10.1016/j.mcna.2007.05.009
    PMid: 17826104
  4. Drug Delivery Nanoparticles: Formulation and Characterization, vol. 191, Y. Pathak, D. Thassu, Eds., 1st ed., New York (NY), USA: Informa Healthcare USA Inc., 2009.
    Retrieved from: http://file.zums.ac.ir/ebook/231-Drug%20Delivery%20Nanoparticles%20Formulation%20and%20
    Characterization,%20Vol.%202-Yashwant%20Pathak%20%20Deepak%20.pdf

    Retrieved on: Jan. 16, 2017.
  5. H. E. Schaefer, Nanoscience – The science of the small in physics, engineering, chemistry, biology and medicine, vol. 1, 1st ed., Berlin, Germany: Springer, 2010.
    DOI: 10.1007/978-3-642-10559-3
  6. M. A. Greenwood, “Are Quantum Dots on the Brink of Their Big Break?” Photonic Spectra, vol. 41, no. 5, May 2007.
    Retrieved from: www.photonics.com/Article.aspx?AID=29421
    Retrieved on: Jan. 14, 2017.
  7. E. A. Murphy, B. K. Majeti, L. A. Barnes, M. Makale, S. M. Weis, K. Lutu-Fuga, W. Wrasidlo, D. A. Cheresh, “Nanoparticle-Mediated Drug Delivery to Tumor Vasculature Suppresses Metastasis,” Proc. Natl. Acad. Sci. USA, vol. 105, no. 27, pp. 9343-9348, July 2008.
    DOI: 10.1073/pnas.0803728105
    PMid: 18607000
    PMCid:PMC2453735
  8. W. C. W. Chan, “Bionanotechnology Progress and Advances,” Biol. Blood Marrow Transplant, vol.12, no. 1, pp. 87-91, Jan. 2006.
    DOI: 10.1016/j.bbmt.2005.10.004
    PMid: 16399591
  9. Y. Pathak, “Recent Developments in Nanoparticulate Drug Delivery Systems,” in Drug Delivery Nanoparticles: Formulation and Characterization, Y.Pathak, D.Thassu, Eds., 1st ed., New York (NY), USA: Informa Healthcare USA Inc., 2009, ch. 1, pp.1-15.
    Retrieved from: http://file.zums.ac.ir/ebook/231-Drug%20Delivery%20Nanoparticles%20Formulation%20and%20
    Characterization,%20Vol.%202-Yashwant%20Pathak%20%20Deepak%20.pdf

    Retrieved on: Jan. 16, 2017.
  10. H. Devapally, A. Chakilam, M. M. Amiji, “Role of Nanotechnology in Pharmaceutical Product Development,” J. Pharm. Sci., vol. 96, no. 10, pp. 2547–2565, Oct. 2007.
    DOI: 10.1002/jps.20875
    PMid: 17688284
  11. J. P. Šetrajčić, “Exact Microtheoretical Approach to Calculation of Optical Properties of Ultralow Dimensional Crystals,” arXiv: 1004.2387 [cond-mat.mtrl-sci], April 2010.
    Retrieved from: https://arxiv.org/abs/1004.2387
    Retrieved on: Jan. 12, 2017.
  12. J. P. Šetrajčić, S. S. Pelemiš, S. M. Vučenović, V. M. Zorić, S. Armaković, B. Škipina, A. J. Šetrajčić, “Absorption Features of Symmetric Molecular Nanofilms,” in IEEE Proceedings 27th International Conference on Microelectronics, Niš, Serbia, 2010, vol. 1, pp. 127-130.
    Retrieved from: http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5483038.
    Retrieved on: Jan. 12, 2017.
  13. B. Škipina, D. Lj. Mirjanić, S. M. Vučenović, J. P. Šetrajčić, I. J. Šetrajčić, A. J. Šetrajčić-Tomić, S. S. Pelemiš, B. Markoski, “Selective IR Absorption in Molecular Nanofilms,” Optical Materials, vol. 33, no. 11, pp. 1578-1584, Sep. 2011.
    DOI: 10.1016/j.optmat.2011.04.008
  14. I. J. Šetrajčić, D. Rodić, J. P. Šetrajčić, “Optical Properties of Layers of Symmetric Molecular Nanofilms,” J. Opt., vol. 44, no. 1, pp. 1–6, Mar. 2015.
    DOI: 10.1007/s12596-014-0231-8
  15. J. P. Šetrajčić, D. Rodić, V. D. Sajfert, N. Pop, M. D. Popov, “Confinement Consequences on Optics of Molecular Crystalline Nanofilms,” Quantum Matter, vol. 6, no. 1, pp. 1–3, Feb. 2017.
    DOI: 10.1166/qm.2017.1392 .
  16. Su Y. Quek, J. B. Neaton, M. S. Hybertsen, E. Kaxiras, S. G. Louie, “First-principles Studies of the Electronic Structure of Cyclopentene on Si(001): Density Functional Theory and GW Calculations,” Phys. Stat. Solidi (b), vol. 243, no. 9, pp. 2048-2053, Jul. 2006.
    DOI: 10.1002/pssb.200666819
  17. G. Samsonidze, M. Jain, J. Deslippe, M. L. Cohen, S. G. Louie, “Simple Approximate Physical Orbitals for GW Quasiparticle Calculations,” Phys. Rev. Lett., vol. 107, no. 18, p. 186404, Oct. 2011.
    DOI: 10.1103/PhysRevLett.107.186404
    PMid: 22107653
  18. J. Deslippe, G. Samsonidze, D. A. Strubbe, M. Jain, M. L. Cohen, S. G. Louie, “BerkeleyGW: A Massively Parallel Computer Package for the Calculation of the Quasiparticle and Optical Properties of Materials and Nanostructures,” Comput. Phys. Commun., vol. 183, no. 6, pp. 1269-1289, Jun. 2012.
    DOI: 10.1016/j.cpc.2011.12.006
  19. G. Mahan, Many Particle Physics, 3rd ed., New York (NY), USA: Springer, 2000.
    DOI: 10.1007/978-1-4757-5714-9
  20. J. P. Šetrajčić, D. Lj. Mirjanić, S. M. Vučenović, D. I. Ilić, B. Markoski, S. K. Jaćimovski, V. D. Sajfert, V. M. Zorić, “Phonon Contribution in Thermodynamics of Nano-Crystalline Films and Wires,” Acta Phys. Pol. A, vol. 115, no. 4, pp. 778-782, Apr. 2009.
    DOI: 10.12693/APhysPolA.115.778
  21. S. M. Stojković, D. Lj. Mirjanić, J. P. Šetrajčić, D. D. Šijačić, I. K. Junger, “Spectra and States of Electrons in Surface Perturbed Quantum Wires,” Surface Science, vol. 477, no. 2-3, pp. 235-242, April 2001.
    DOI: 10.1016/S0039-6028(01)00887-1
  22. D. I. Ilić, S. M. Vučenović, S. K. Jaćimovski, V. M. Zorić, J. P. Šetrajčić, “Phonon Spectra and Thermodynamics of Crystalline Nanowires, in Low-Dimensional Materials Synthesis, Assembly, Property Scaling, and Modeling,” Mater. Res. Soc. Proc., vol. 1017, pp. 1-6, Jan. 2007.
    DOI: 10.1557/PROC-1017-DD08-50
  23. I. D. Vragović, J. P. Šetrajčić, R. Scholz, “Quantum Size Effects in the Optical Properties of Organic Superlattices Containing 3,4,9,10 PTCDA,” Eur. Phys. J. B, vol. 66, no. 2, pp. 185-190, Nov. 2008.
    DOI: 10.1140/epjb/e2008-00409-1
  24. J. P. Šetrajčić , S. K. Jaćimovski, “Review of Results of Theoretical Approaches to Phonon Engineering of Thermodynamic Properties for Different Quantum Structures,” NBP, vol. 20, no. 3, pp. 67-82, 2015 .
    DOI: 10.5937/NBP1503067J
  25. J. P. Šetrajčić, “Research of Properties of Nanoscopic Structures,” Zaštita materijala, vol. 57, no. 1, pp. 81-92, 2016.
    Retrieved from: http://www.readcube.com/articles/10.5937/ZasMat1601081S
    Retrieved on: Jan. 13, 2017.
  26. J. P. Šetrajčić, V. D. Sajfert, S. K. Jaćimovski, “Fundamental Preferences of the Phonon Engineering for Nanostructural Samples,” Rev. Theor. Sci., vol. 4, no. 4, pp. 353-401, Dec. 2016.
    DOI: 10.1166/rits.2016.1067
  27. G. Samsonidze, F. J. Ribeiro, M. L. Cohen, S. G. Louie, “Quasiparticle and Optical Properties of Polythiophene-Derived Polymers,” Phys. Rev. B, vol. 90, no. 3, p. 035123 Jul. 2014.
    DOI: 10.1103/PhysRevB.90.035123
  28. D. Lj. Mirjanić, J. P. Šetrajčić, Lj. D. Džambas, V. D. Mirjanić, A. J. Šetrajčić – Tomić, V. M. Zorić, “Nanoscopic Bio­materials in Medicine, Dentistry and Pharmacy,” presented at the 10th International Scientific-Practical Conference: Research, Development and Application of High Technologies in Industry, Saint-Petersburg, Russia, 2010.
  29. J. P. Šetrajčić, D. Lj. Mirjanić, A. J. Šetrajčić-Tomić, S. Armaković, I. J. Šetrajčić, “Core-Shell Nanomodels for Biomedical Applications,” in Proc. International Conference – New face of TMCR: Modern Technologies, Quality and Innovation, Chisinau, Moldova, 2011, pp. 545-548.
  30. J. P. Šetrajčić, D. Rodić, A. Ј. Šetrajčić-Tomić, S. M. Vučenović, “Resonant Optical Occurrences in Molecular Nanofilms”, Proc. 8th Internationl Conference: Contemporary Materials, Banja Luka, Rep. Srpska, 2016, pp. 71-78.

PHYSIOLOGICAL PROCESSES WHEN AN ELECTRICAL CURRENT PASSES THROUGH THE TISSUES AND ORGANS

Siniša M. Vučenović, Jovan P. Šetrajčić, Matilda Vojnović, Ana J. Šetrajčić-Tomić, Ljubiša D.Džambas

Pages: 290-295

DOI: 10.21175/RadProc.2017.58

We performed a study to investigate whether some physiological processes are caused by electrical current when passing through the tissues and organs. The basic idea of diathermia, medical treatment and therapy with alternating high frequency electric current, is to use the transformation of electric power into heat when the current goes through the tissue and internal biological environment. The important fact in this process is to avoid the massive displacement of ions, which could be potentially destructing side effect. Advantage and importance of using the alternate current (with frequency ~1 MHz) over the direct current is explained, as well as the fact that this effect was spotted almost simultaneously by Nikola Tesla and Jaques d’Arsonval, at the end of 19th century. This paper also explains later the cooperation between two scientists and the basic principles of diathermy – heating effect with high frequency alternate current.
  1. The National Institute for Occupational Safety and Health. (May 1998.). NIOSH Publications No. 98-131: Workers deaths by electrocution.
    Retrieved from: https://www.cdc.gov/niosh/docs/98-131/pdfs/98-131.pdf
    Retrieved on: Jan. 17, 2017.
  2. S. Grimnes, “Dielectric breakdown of human skin in vivo,” Med. Biol. Eng. Comput., vol. 21, no. 3, pp. 379-381, May 1983.
    DOI: 10.1007/BF02478510
    PMid: 6876915
  3. R. M. Fish, L. A. Geddes, “Conduction of Electrical Current to and through the Human Body: A Rewiev,” ePlasty, vol.9, pp. 407-42, Oct. 2009.
    PMid: 19907637
    PMCid: PMC2763825
  4. C. F. Dalziel, “Effect of electric shock on man,” IRE Trans. Med. Electron., vol. PMGE-5, pp. 44-62, Jul. 1956.
    DOI: 10.1109/IRET-ME.1956.5008573
  5. T. Bernstein, “Investigations of alleged appliance electrocutions and fires caused by internal generated voltage,” IEEE Ind. Appl., vol. 25, no. 4, pp. 664-668, Jul. 1989.
    DOI: 10.1109/28.31244
  6. Electrical Trauma, R. C. Lee, E. G. Cravalho, and J. F. Burke, Eds., 1st ed., Cambridge, UK: Cambridge University Press, 1992.
  7. A. M. Vučenović, D. Lj. Mirjanić, “Tesla – dijatermija i darsonvalizacija,” u Ideje Nikole Tesle Knjiga X/6, D. Lj. Mirjanić, Ur, Banja Luka, BiH: Akademija nauka i umjetnosti Republike Srpske, 2006, str. 51-61.
  8. M. Vučenović, D. Lj. Mirjanić, “Tesla – Diathermy and Darsonvalization,” in The Ideas of Nikola Tesla Book X/6, D. Lj. Mirjanić, Ed.,Banja Luka, B&H: Academy of Sciences and Arts of the Republic of Srpska, 2006, pp. 51-61.)
  9. Medicinska enciklopedija, A. Šercer, Ur, Zagreb, Jugoslavija: Jugoslavenski leksikografski zavod, 1967. (Medical Encyclopedia, A. Šercer, Ed., Zagreb, Yugoslavia: Jugoslavenski leksikografski zavod, 1967.)
  10. L. Daily Jr, K. G. Wakim, J. F. Herrick, E. M. Parkhill, W. L. Benedict, “The effects of microwave diathermy on the eye: An experimental study,” American Journal of Ophthalmology, vol. 33, no. 8, pp. 1241-1254, Aug. 1950.
    DOI: 10.1016/0002-9394(50)90996-2
  11. N. H. Steneck, H. J. Cook, A. J. Vander, G. L. Kane, “The origins of U. S. safety standards for microwave radiation,” Science, vol. 208, no. 4449, pp. 1230-1237, Jun 1980.
    DOI: 10.1126/science.6990492
    PMid: 6990492
  12. N. Tesla, “High frequency oscillators for electro-therapeutic and other purposes,” The Electrical Engineer, vol. 26, no. 550, pp. 477-481, Nov. 1898.
    Retrieved from: http://www.tfcbooks.com/tesla/1898-11-17.htm
    Retrieved on: Jan. 13, 2017.
  13. D. J. Rhees, “Electricity —The Greatest of All Doctors: An Introduction to “High Frequency Oscillators for Electro-Therapeutic and Other Purposes”,” Proc. IEEEXplore, vol. 87, no. 7, pp. 1277-1281, Jul. 1999.
    DOI: 10.1109/jproc.1999.771078
  14. N. Tesla, “Art of transmitting electrical energy through the natural mediums,” U. S. Patent 787 412, Apr. 18, 1905.
    Retrieved from: https://teslauniverse.com/nikola-tesla/patents/us-patent-787412-art-transmitting-electrical-energy-through-natural-mediums
    Retrieved on: Jan. 13, 2017.

Other topics

INVESTIGATION OD ACID-BASE PROPERTIES OF AROMATIC HYDRAZONES IN BASIC MEDIA AT CONSTANT IONIC STRENGTH

Mirjana S. Jankulovska, Vesna Dimova, Ilinka Spirevska

Pages: 296-299

DOI: 10.21175/RadProc.2017.59

UV spectroscopic methods were used in order to determine dissociation constants of some aromatic hydrazones. The acid-base properties of investigated hydrazones were followed in sodium hydroxide media at constant ionic strength of 0.5 mol/dm3 adjusted with sodium perchlorate. Absorption band with maximum at 330 nm was noticed in neutral media. A batochromic shift of this band was observed in basic media, probably due to dissociation process. Dissociation process took place in one step for four investigated hydrazones and in two steps for hydrazone with phenol group in its molecule. The absorbance data from the UV spectra were used for calculation of dissociation constants. The obtained pKHA values were between 2.11 and 2.62 which suggested that the influence of the substituents is not significant. At the same time, pKHA values were determined graphically from the intercept of the dependence of logI on pH. There are no important differences between calculated and graphically determined dissociation constant values.
  1. L. N. Suvarapu, Y. K. Seo, S. Baek, V. R. Ammireddy, “Review on Analytical and Biological Applications of Hydrazones and their Metal Complexes,” E-Journal of Chemistry, vol. 9, no. 3, pp. 1288-1304, Dec. 2011.
    DOI: 10.1155/2012/534617
  2. S. Rollas, Ş. G. Küçükgüzel, “Biological Activities of Hydrazone Derivatives,” Molecules, vol.12, no. 8, pp. 1910–1939, Aug. 2007.
    DOI: 10.3390/12081910
    PMid: 17960096
  3. G. Verma, A. Marella, M. Shaquiquzzaman, M. Akhtar, M. R. Ali and M. M. Alam, “A review exploring biological activities of hydrazones,” J. Pharm. Bioallied. Sci., vol. 6, no. 2, pp. 69–80, Mar. 2014.
    DOI: 10.4103/0975-7406.129170
    PMid: 24741273
    PMCid: PMC3983749
  4. M. Asif and A. Husain, “Analgesic, Anti-Inflammatory, and Antiplatelet Profile of Hydrazones Containing Synthetic Molecules,” J. Appl. Chem., vol. 2013, pp. 1-7, Oct. 2013.
    DOI: 10.1155/2013/247203
  5. R. Narisetty, K. B. Chandrasekhar, S. Mohanty, B. Balram, “Synthesis and Antimicrobial Evaluation of Some Novel Hydrazone Derivatives of 2,5-Diflurobenzoic acid,” Lett. Drug Des. Discov., vol. 10, no. 7, pp. 620-624, 2013.
    DOI: 10.2174/1570180811310070009
  6. L. H. S. A. Terra, M. C. C. Areias, I. Gaubeur, M. E. V. Suez-Iha, “Solvent Extraction-Spectrophotometric Determination of Nickel(II) in Natural Waters Using DI-2-Pyridyl Ketone Benzoylhydrazone,” Spectrosc. Lett., vol. 32, no. 2, pp. 257-271, Mar. 1999.
    DOI: 10.1080/00387019909349981
  7. M. Liu, Y. Wang, W. Wangyang, F. Liu, Y. Cui, Y. Duan, M. Wang, S. Liu, C. Rui, “Design, synthesis, and insecticidal activities of phthalamides containing a hydrazone substructure,” J. Agric. Food Chem.,vol. 58, no. 9 pp. 6858–6863, Jun. 2010.
    DOI: 10.1021/jf1000919
    PMid: 20450195
  8. J. K. Sears, J. R. Darby, The Technology of Plasticizers, 2nd ed., New York (NY), USA: John Wiley & Son, 2003.
  9. R. C. Maurya and S. Rajput, “Neutral dioxo-vanadium(V) complexes of biomimetic hydrazones ONO donor ligands of bioinorganic and medicinal relevance: Synthesis via air oxidation of bis(acetylaceto-nato)oxovanadium(IV), characte-rization, biological activity and 3D molecular modeling,” J. Mol. Struct., vol. 833, no. 1, pp. 133-144, May 2007.
    DOI: 10.1016/j.molstruc.2006.09.022
  10. M. F. Fathalla, S. N. Khattab, “Spectrophotometric determination of pKa`s of 1-Hydroxybenzotriazole and Oxime Derivatives in 95% Acetonitrile-Water,” J Chem. Soc. Pak., vol. 33, no. 3, pp. 324-332, Jun 2011.
    Retrieved from: http://jcsp.org.pk/ArticleUpload/2280-10260-1-CE.pdf
    Retrieved on: Feb. 10, 2017.
  11. K. Zarei, M. Atabati, E. Abdinasab, “Spectrophotometric Determination of Conditional Acidity Constant of Some Sulfonephthalein Dyes as A Function of Anionic, Neutral and Cationic Surfactants Concentrations Using Rank Annihilation Factor Analysis,” Eurasian J. Anal. Chem., vol. 4, no. 3, pp. 314-327, Oct. 2009.
    DOI: 10.12973/ejac.2009.00076a
  12. K. K. Chandrul, B. Srivastava, “A process of method development: A chromatographic approach,” J. Chem. Pharm. Res., vol. 2, no. 2, pp. 519-545, Sep. 2010.
    Retrieved from: http://www.jocpr.com/articles/a-process-of-method-development-a-chromatographic-approach.pdf
    Retrieved on: Feb. 10, 2017.
  13. J. Comer, K. Box, “High-Throughput Measurement of Drug pKa Values for ADME Screening,” J. of Lab. Automation, vol. 8, no. 1, pp. 55-59, Feb. 2003.
    DOI: 10.1016/S1535-5535-04-00243-6
  14. B. Pathare, V. Tambe, S. Dhole and V. Patil, “An update on various analytical techniques based on UV spectroscopy used in determination of dissociation constant,” Int. J. Pharm., vol. 4, no. 1, pp. 278-285, 2014.
    Retrieved from: http://pharmascholars.com/pharma/upload/pharmacy_52e146ff685f4.pdf
    Retrieved on: Feb. 14, 2017.
  15. M. Jankulovska, K. Čolančeska-Ragenovik, V. Dimova, I. Spirevska, P. Makreski, “Synthesis and characterization of new p-substituted aromatic hydrazones,” Org. Chem.:An Ind. J., vol. 8, no. 9, pp. 326-334, Feb. 2012.
    Retrieved from: http://www.tsijournals.com/articles/synthesis-and-characterization-of-new-psubstituted-aromatic-hydrazones.pdf
    Retrieved on: Feb. 14, 2017.
  16. E. L. Kristallovich, A. G. Eshimbetov, V. D. Chuvylkin, L. I. Belenkii, Kh. M. Shakhidoyatov, “Nature of π-Electronic Transitions in UV Spectra of Deoxyvasicionone and Its Derivatives,” Chem. Nat. Comp., vol. 39, no. 5, pp. 495-500, Sep. 2003.
    DOI: 10.1023/B:CONC.0000011127.28348.ca
  17. M. Jankulovska, I. Spirevska, “Analysis of acid-base properties of some p-substituted aromatic hydrazones in aqueous perchloric acid by spectrophotometric and semiempirical methods,” Maced. J. Chem. Eng., vol. 33, no. 1, pp. 85-96 Jan. 2014.
    DOI: 10.20450/mjcce.2014.370
  18. A. A. Salem, “Spectrophotometric and Potentiometric Characterization of Some Arylhydrazone Derivatives and their Applications in Lanthanide Determination,” Microchem. J., vol. 60, pp. 51-66, Mar. 1998.
    DOI: 10.1006/mchj.1998.1621
  19. Ł. Popiołek, A. Chodkowska, A. Tryka, K. Pawłowski, M. Kiełczykowska, J. Kocot, M. Wujec, E. Jagiełło-Wójtowicz, “Synthesis, Dissociation Constants, and Some Pharmacological Properties of Schiff Base Hydrazones and their Cyclization to 1,3-Thiazolidin-4-one Derivatives,” J. Heterocycl. Chem., vol. 52, no. 5, pp. 1506–1512, Sep. 2015.
    DOI: 10.1002/jhet.2257

THE OPTIMISING FORCE BALANCE EXERCISED IN THE WHEEL – PROFILE CONTACT FORCE DURING THE CURVED PATH. AN EXPERIMENTAL APPROACH OF USING CURVILINEAR PROFILES

Koci Doraci, Alfred Hasanaj

Pages: 300-303

DOI: 10.21175/RadProc.2017.60

This paper’s objective is to contribute to the optimization of the problem of guiding forces during the movement of a railway vehicle. The paper proposes an innovative solution as compared to classical authors’ suggestions, which are limited to a small number of alternatives. The methodology follows an experimental approach. A two-stage experiment is performed where experimental conditions are modeled after profiles designed following a curved path with a radius of 500 m (by definition classified as tight curve). Standard profiles were used in the first experimental stage used, while curvilinear profiles were exploited the second experimental stage. After the experiment was conducted, data concerning (1) displacement (2) moments of force and (3) guiding forces of wheel-rail contact were analyzed and compared for both stages: both standard profiles and curvilinear profiles. After considering the experimental results, the major conclusions of the paper are: (1) in the case of curvilinear profiles, small movements of the vehicle lead to a change in the size of the wheel displacement smaller than the corresponding change in standard profiles; (2) moments of force are greater in the case of standard profiles compared to curvilinear ones; and (3) curvilinear profiles enable movement without many contact points with the wheel, friction forces exert their action in longitudinal direction, thus causing a smaller value of guiding forces.
  1. Railway applications – Testing and Simulation for the acceptance of running characteristics of railway vehicles – Running Behaviour and stationary tests, EN 14363, Oct. 15, 2015.
    Retrieved from: https://shop.austrian-standards.at/Preview.action;jsessionid=85F8BFFD9F79497A3EC8CC846B181177?preview=&dokkey=583227&selectedLocale=en
    Retrieved on: Dec. 15, 2016
  2. Testing and approval of railway vehicles from the point of view of their dynamic behavior – Safety – Track fatigue – Ride quality, 3rd ed., International Union of Railways, Paris, France, 2005.
    Retrieved from: http://xa.yimg.com/kq/groups/22520649/1117459065/name/uic
    Retrieved on: Dec. 15, 2016
  3. S. Kalay, R. P. Reiff, R. Smith, M. Scholl, “Control of Wheel/Rail friction,” National Research Council, Washington (DC), USA, Rep, 71b, 2002.
    Retrieved from: http://onlinepubs.trb.org/onlinepubs/tcrp/tcrp_rpt_71b.pdf
    Retrieved on: Dec. 15, 2016
  4. P. Dupont, “Testing the dynamic behavior of vehicles: Normalisation of test conditions by use of multi linear regressions,” in Proc. WCRR 2011, Lille, France, 2011.
    Retrieved from: http://www.railway-research.org/IMG/pdf/g8_dupont_patrick.pdf
    Retrieved on: Dec. 15, 2016
  5. J. Wang, S. Chen, X. Li, Y. Wu, “Optimal rail profile design for a curved segment of a heavy haul railway using a response surface approach,” Proc. Inst. Mech. Eng. Part F: J. Rail and Rapid Transit, vol. 230, no. 6, pp. 1496 – 1508, Aug. 2016.
    DOI: 10.1177/0954409715602513
  6. W. Zhai, J. Gao, P. Liu, K. Wang, “Reducing rail side wear on heavy-haul railway curves based on wheel-rail dynamic interaction,” Int. J. Vehicle Mech. Mobility, vol. 52, no. suppl. 1, pp. 440 – 454, May 2014.
    DOI: 10.1080/00423114.2014.906633
  7. L. J. Wilson, “Performance measurements of rail curve lubricants,” Ph.D. dissertation, School of Engineering Systems Queensland University of Technology, QUT, Brisbane, Australia, 2006.
    Retrieved from: https://eprints.qut.edu.au/16344/1/Lance_Wilson_Thesis.pdf
    Retrieved on: Dec. 15, 2016
  8. S. Fukagai, T. Ban et al., “Development of Friction Moderating Systems to Improve Wheel/Rail Interface in Sharp Curves,” in Proc. WCRR 2008, Seoul, Korea, 2008.
    Retrieved from: http://uic.org/cdrom/2008/11_wcrr2008/pdf/S.2.2.4.2.pdf
    Retrieved on: Dec. 15, 2016

OPTIMIZATION OF WHEEL-RAIL PROFILE COMBINATIONS IN TERMS OF ACCURATE WEAR PREDICTION

Koci Doraci, Alfred Hasanaj

Pages: 304-307

DOI: 10.21175/RadProc.2017.61

Predicting, calculating and minimizing rail profile-wheel wear is still an important inquiry, despite the evolution in its formulation. This paper will contribute to solving the wear prediction problem, frameworked by the guidelines given below: (a) Wear minimization in terms of different curve radiuses and (2) Wear minimization in terms of different wheel-rail profile combinations. The objectives of the paper are: (1) To maximize prediction accuracy of the wear index (a) in terms of the overall wear index, (b) in terms of wheel-rail combinations and (c) in terms of curve radius; (2) To optimize wheel-rail profile combinations in terms of wear indices for different curve radius scenarios. Overall, the main contributions of the paper are: (1) this paper significantly contributes to solving one of the most important problems of wheel-rail contact optimization: prediction of wear indices in tight curved rail tracks; (2) this paper accesses the predicted value of the wear index in different curve radius scenarios, creating the possibility of adaptation in both ways – to adapt the rail profile to the wheel type and/ or to adapt the wheel type to the rail profile type.
  1. J. Pomoboa, J. Ambrósioa, M. Pereiraa, R. Lewisb, R. D. Joyceb, C. Ariaudoc, “Development of a wear prediction tool for steel railway wheels using three alternative wear function,” in Proc. 8th Int. Conf. Contact Mechanics and Wear of Rail/Wheel Systems, Florence, Italy, 2009, pp. 238 – 245.
    DOI: 10.1016/j.wear.2010.10.072
  2. M. Ignesti, L. Marini, E. Meli, A. Rindi, “Development of a Model for the Prediction of Wheel and Rail Wear in the Railway field,” J. comp. and nonlinear dyn., vol. 7, no. 4, pp. 041004-1 – 041004-14, Oct. 2012.
    DOI: 10.1115/1.4006732
  3. P. Han, W. H. Zhang, Y. Li, “Wear characteristics and prediction of wheel profiles in high-speed trains,” J. Centr. South Univ., vol. 22, no. 8, pp. 3232 – 3238, Aug. 2015.
    DOI: 10.1007/s11771-015-2861-7
  4. R. Luo, J. Zeng, “Simulation on wheel wear prediction of high-speed train,” Mocuaxue Xuebao, no. 6, pp. 551 – 558, 2009.
  5. A. Innocenti, L. Marini, E. Meli, G. Pallini, A. Rindi, “Prediction of wheel and rail profile wear on complex railway nets,” Int. J. Rail Transportation, vol. 2, no. 2, pp. 111 – 145, Apr. 2014.
    DOI: 10.1080/23248378.2014.897792
  6. S. Hossein, C. Casanueva, S. Stichel, “Prediction of RCF and wear evolution of iron-ore locomotive wheels,” Wear, vol. 338-339, pp. 62 – 72, Sep. 2015.
    DOI: 10.1016/j.wear.2015.05.015
  7. A. Zmitrowicz, “Wear patterns and laws of wear: A review,” J. Theor. Appl. Phys., vol. 44, no. 2, pp. 219 – 253, Jan. 2006.
    Retrieved from: http://ptmts.org.pl/zmitr-2-06.pdf
    Retrieved on: Dec. 15, 2016
  8. I. Zoboroy, “Prediction of wheel/rail profile wear,” Int. J. Vehicle Mech. Mob., vol. 28, no. 2-3, pp. 221 – 259, Jul. 2007.
    DOI: 10.1080/00423119708969355

Professional Papers

THE CREATION OF THE NATIONAL COMMITTEE OF MEDICAL PHYSICS IN GUATEMALA, CENTRAL AMERICA

Erick Hernández, Ricardo Contreras, Cabrera Ixquiac, Osmar Hernández, Fredy Pérez

Pages: 308-309

DOI: 10.21175/RadProc.2017.62

The IAEA on human health reports, No. 1, Criteria and Recommendations for Academic Training, Clinical Training and Certification in Latin America, suggests that the Medical Physicists of the region be accredited. "The accreditation is issued by a duly authorized professional entity (for example, a college or a professional society) serves as a public recognition that gives quality to the service provided."

The Ministry of Energy and Mines of Guatemala, which regulates the use of ionizing radiation in Guatemala through the Directorate General of Energy, took as reference for the accreditation and practice of the profession of Medical Physics in Guatemala the report No. 1 of the IAEA. For this reason, the National College of Engineers from Guatemala (CIG), where the physicists are members, created the CIG Medical Physics Commission and this commission convened to Universidad de San Carlos de Guatemala USAC (national university), Directorate General of Energy DGE and Guatemalan Association of Physics AGF to appoint their representatives for the creation of the National Committee of Medical Physics, whose functions will be to endorse the registration of medical physicists, and deliberate regarding medical physics when required.
  1. Ministerio de Energía y Minas de Guatemala. (13/05/2016). 137-2016 Acuerdo Ministerial. (Ministry of Energetics and Mining of Guatemala. (May 13, 2016). 137-2016 Ministerial Agreement.)
  2. Asamblea Nacional Constituyente. (17/11/1993). Constitución Política de la República de Guatemala. (National Constituent Assembly. (Nov. 17, 1993). The Constitution of the Republic of Guatemala.)
    Retrieved from: https://www.oas.org/juridico/mla/sp/gtm/sp_gtm-int-text-const.pdf
    Retrieved on: Jan 23, 2017.
  3. Gobierno de Guatemala. (10/01/1986). 11-86 Decreto Ley. (The Government of Guatemala. (Jan. 10, 1986). 11-86 Law decree.)
    Retrieved from: http://www.mem.gob.gt/wp-content/uploads/2012/05/1.2-Ley-para-el-Control-Radioisotopos-y-Radiaciones-Dec-Ley-No.-11-86.pdf
    Retrieved on: Jan 23, 2017.
  4. E. Hernandez et al., “Medical Physics in Guatemala (Historical review)”, in Proc. of the IRPA 2013, Glasgow, Scotland, 2013.
    Retrieved from: http://www.irpa.net/members/P03.65.pdf
    Retrieved on: Jan 20, 2017.
  5. Congreso de la República de Guatemala. (21/12/2001). Decreto No. 72-2001 Ley de Colegiación Profesional Obligatoria. (Congress of the Republic of Guatemala. (Dec. 21, 2001). Decree No. 72-2001 Obligatory act on Professional Asotiations.)
    Retrieved from: http://www.cpa.org.gt/wp-content/uploads/2012/12/leydecolegiacionprofesional.pdf
    Retrieved on: Jan.23, 2017.
  6. “Informes sobre salud humana del OIEA: Criterios y recomnedaciones para su formación académica, entrenamiento clínico y certificación en América Latina,” Organismo Internacional de Energía Atómica, Viena, Austria, 2010. (“IAEA on human health reports: Criteria and Recommendations for Academic Training, Clinical Training and Certification in Latin America,”International Atomic Energy Agency, Vienna, Austria, Rep. 1, 2010.)
    Retrieved from: http://www-pub.iaea.org/MTCD/Publications/PDF/P1424_S_web.pdf
    Retrieved on: Jan. 22, 2017.
  7. Dirección General de Energía. (14/02/2001). No. 55-2001 Reglamento de seguridad y protección radiológica de la ley para el control, uso y aplicación de radioisótopos y radiaciones ionizantes. (General Directorate for Energy. (Feb. 14, 2001). No. 55-2001 Safety and radiological protection regulation by law for the control, use and application of radioizotopes and ionizing radiation.)
    Retrieved from: http://www.mem.gob.gt/wp-content/uploads/2012/05/1.1-Reglamento-de-Seguridad-y-Proteccion-Radiologica.pdf
    Retrieved on: Jan 21, 2017.
  8. Leyes y Reglamentos, Universidad de San Carlos de Guatemala, Ciudad Universitaria, Guatemala, 2006. (Laws and Regulations, University of San Carlos, University City, Guatemala, 2006.)